Theory WickersonDoddsParkinson

(*<*)
theory WickersonDoddsParkinson
imports
  "Assume_Guarantee"
begin

(*>*)
section‹ Wickerson, Dodds and Parkinson: explicit stabilisation\label{sec:explicit_stabilisation} ›

text‹

Notes on citet"WickersonDoddsParkinson:2010" (all references here are to the technical report):
  motivation: techniques for eliding redundant stability conditions
   the standard rules check the interstitial assertion in c ; d› twice
  they claim in \S7 to supersede the ``mid stability'' of citet‹\S4.1› in "Vafeiadis:2008" (wssa, sswa)
  Appendix D:
   not a complete set of rules
   \textsc{AtomR-S} does not self-compose: consider c ; d› -- the interstitial assertion is either a floor or ceiling
    every step therefore requires a use of weakening/monotonicity

The basis of their approach is to make assertions a function of a
relation (a ‹rely›). By considering a set of
relations, a single rely-guarantee specification can satisfy several
call sites. Separately they tweak the RGSep rules of citet"Vafeiadis:2008".

The definitions are formally motivated as follows (\S3):

\begin{quote}

Our operators can also be defined using Dijkstra's predicate
transformer semantics: ⌊p⌋R› is the
weakest precondition of R* given postcondition
p›, while ⌈p⌉R› is the
strongest postcondition of R* given
pre-condition p›.

\end{quote}

The following adapts their definitions and proofs to our setting.

›

setup Sign.mandatory_path "wdp"

definition floor :: "'a rel  'a pred  'a pred" where ―‹ An interior operator, or a closure in the dual lattice ›
  "floor r P s  (s'. (s, s')  r*  P s')"

definition ceiling :: "'a rel  'a pred  'a pred" where ―‹ A closure operator ›
  "ceiling r P s  (s'. (s', s)  r*  P s')"

setup Sign.mandatory_path "floor"

lemma empty_rel[simp]:
  shows "wdp.floor {} P = P"
by (simp add: wdp.floor_def fun_eq_iff)

lemma reflcl:
  shows "wdp.floor (r=) = wdp.floor r"
by (simp add: wdp.floor_def fun_eq_iff)

lemma const:
  shows "wdp.floor r c = c"
by (auto simp: wdp.floor_def fun_eq_iff)

lemma contractive:
  shows "wdp.floor r P  P"
by (simp add: wdp.floor_def le_fun_def le_bool_def)

lemma idempotent:
  shows "wdp.floor r (wdp.floor r P) = wdp.floor r P"
by (auto simp: fun_eq_iff wdp.floor_def dest: rtrancl_trans)

lemma mono:
  assumes "r'  r"
  assumes "P  P'"
  shows "wdp.floor r P  wdp.floor r' P'"
using assms by (auto 6 0 simp add: wdp.floor_def le_bool_def le_fun_def dest: rtrancl_mono)

lemma strengthen[strg]:
  assumes "st_ord (¬F) r r'"
  assumes "st_ord F P P'"
  shows "st_ord F (wdp.floor r P) (wdp.floor r' P')"
using assms by (cases F; simp add: wdp.floor.mono)

lemma weakest:
  assumes "Q  P"
  assumes "stable r Q"
  shows "Q  wdp.floor r P"
using assms by (simp add: wdp.floor_def stable_def monotone_def le_fun_def le_bool_def) (metis rtrancl_induct)

lemma Chernoff:
  assumes "P  Q"
  shows "(wdp.floor r P  Q)  wdp.floor r Q"
using assms by (simp add: wdp.floor_def le_fun_def le_bool_def)

lemma floor1:
  assumes "r  r'"
  shows "wdp.floor r' (wdp.floor r P) = wdp.floor r' P"
unfolding wdp.floor_def by (meson assms rtrancl_cl.cl_mono rtrancl_eq_or_trancl rtrancl_trans)

lemma floor2:
  assumes "r  r'"
  shows "wdp.floor r (wdp.floor r' P) = wdp.floor r' P"
by (metis assms antisym wdp.floor.contractive wdp.floor.idempotent wdp.floor.mono)

setup Sign.parent_path

interpretation ceiling: closure_complete_lattice_distributive_class "wdp.ceiling r" for r
by standard (auto 5 0 simp: wdp.ceiling_def le_fun_def le_bool_def dest: rtrancl_trans)

setup Sign.mandatory_path "ceiling"

lemma empty_rel[simp]:
  shows "wdp.ceiling {} P = P"
by (simp add: wdp.ceiling_def fun_eq_iff)

lemma reflcl:
  shows "wdp.ceiling (r=) = wdp.ceiling r"
by (simp add: wdp.ceiling_def fun_eq_iff)

lemma const:
  shows "wdp.ceiling r c = c"
by (auto simp: wdp.ceiling_def fun_eq_iff)

lemma mono:
  assumes "r  r'"
  assumes "P  P'"
  shows "wdp.ceiling r P  wdp.ceiling r' P'"
using assms by (auto 7 0 simp: wdp.ceiling_def le_bool_def le_fun_def dest: rtrancl_mono)

lemma strengthen[strg]:
  assumes "st_ord F r r'"
  assumes "st_ord F P P'"
  shows "st_ord F (wdp.ceiling r P) (wdp.ceiling r' P')"
using assms by (cases F; simp add: wdp.ceiling.mono)

lemma strongest:
  assumes "P  Q"
  assumes "stable r Q"
  shows "wdp.ceiling r P  Q"
using assms by (simp add: wdp.ceiling_def stable_def monotone_def le_fun_def le_bool_def) (metis rtrancl_induct)

lemma ceiling1:
  assumes "r  r'"
  shows "wdp.ceiling r' (wdp.ceiling r P) = wdp.ceiling r' P"
unfolding wdp.ceiling_def by (meson assms rtrancl_cl.cl_mono rtrancl_eq_or_trancl rtrancl_trans)

lemma ceiling2:
  assumes "r  r'"
  shows "wdp.ceiling r (wdp.ceiling r' P) = wdp.ceiling r' P"
by (metis assms antisym wdp.ceiling.ceiling1 wdp.ceiling.expansive wdp.ceiling.idempotent(1))

setup Sign.parent_path

setup Sign.mandatory_path "stable"

lemma floor:
  shows "stable r (wdp.floor r P)"
unfolding wdp.floor_def stable_def monotone_def by (simp add: converse_rtrancl_into_rtrancl le_boolI)

lemma ceiling:
  shows "stable r (wdp.ceiling r P)"
by (fastforce simp: wdp.ceiling_def stable_def monotone_def le_bool_def
              dest: rtrancl_into_rtrancl)

lemma floor_conv:
  assumes "stable r P"
  shows "P = wdp.floor r P"
using assms unfolding wdp.floor_def stable_def monotone_def le_bool_def fun_eq_iff
by (metis rtrancl_refl rtrancl_induct)

lemma ceiling_conv:
  assumes "stable r P"
  shows "P = wdp.ceiling r P"
using assms unfolding wdp.ceiling_def stable_def monotone_def le_bool_def fun_eq_iff
by (metis rtrancl_refl rtrancl_induct)

setup Sign.parent_path

lemma floor_alt_def: ―‹ citet‹\S3› in "WickersonDoddsParkinson:2010"
  shows "wdp.floor r P = {Q. Q  P  stable r Q}"
by (rule antisym)
   (auto simp: Sup_upper wdp.floor.contractive wdp.stable.floor
        intro: wdp.floor.weakest[unfolded le_bool_def le_fun_def, rule_format])

lemma ceiling_alt_def: ―‹ citet‹\S3› in "WickersonDoddsParkinson:2010"
  shows "wdp.ceiling r P = {Q. P  Q  stable r Q}"
by (rule antisym)
   (auto simp: Inf_lower wdp.ceiling.expansive wdp.stable.ceiling
         dest: wdp.ceiling.strongest[unfolded le_bool_def le_fun_def, rule_format, rotated])

lemma duality_floor_ceiling:
  shows "wdp.ceiling r (¬P) = (¬wdp.floor (r¯) P)"
by (simp add: wdp.ceiling_def wdp.floor_def fun_eq_iff rtrancl_converse)

lemma ceiling_floor:
  assumes "r  r'"
  shows "wdp.ceiling r (wdp.floor r' P) = wdp.floor r' P"
by (metis assms wdp.ceiling.ceiling2 wdp.stable.ceiling_conv wdp.stable.floor)

lemma floor_ceiling:
  assumes "r  r'"
  shows "wdp.floor r (wdp.ceiling r' P) = wdp.ceiling r' P"
by (metis assms wdp.floor.floor2 wdp.stable.ceiling wdp.stable.floor_conv)

lemma floor_ceilr:
  shows "wdp.floor (ceilr P) P = P"
by (metis ceilr.stable wdp.stable.floor_conv)

lemma ceiling_ceilr:
  shows "wdp.ceiling (ceilr P) P = P"
by (metis ceilr.stable wdp.stable.ceiling_conv)

setup Sign.parent_path


subsection‹ Assume/Guarantee rules\label{sec:explicit_stabilisation-ag} ›

paragraph‹ \S3.2 traditional assume/guarantee rules ›

setup Sign.mandatory_path "wdp"

lemma action: ―‹ arbitrary A›
  fixes F :: "('v × 's × 's) set"
  assumes Q: "v s s'. P s; (v, s, s')  F  Q v s'"
  assumes G: "v s s'. P s; s  s'; (v, s, s')  F  (s, s')  G"
  shows "prog.p2s (prog.action F)  wdp.floor A P⦄, A  G, λv. wdp.ceiling A (Q v)"
by (rule ag.prog.action)
   (auto simp: wdp.stable.floor wdp.stable.ceiling
        intro: G
         dest: Q[rotated]
         elim: wdp.floor.contractive[unfolded le_fun_def le_bool_def, rule_format]
               wdp.ceiling.expansive[unfolded le_fun_def le_bool_def, rule_format])

lemmas mono = ag.mono
lemmas bind = ag.prog.bind

text‹ etc. -- the other rules are stock ›

setup Sign.parent_path


paragraph‹ \S4, Appendix C parametric specifications ›

definition pag :: "('s rel  's pred)  's rel set  's rel  ('s rel  'v  's pred)  (sequential, 's, 'v) spec" ("_⦄, _/ P _, _" [0,0,0,0] 100) where
  "P⦄, As P G, Q = (AAs. P A⦄, A  G, Q A)"

setup Sign.mandatory_path "pag"

lemma empty:
  shows "P⦄, {} P G, Q = "
by (simp add: pag_def)

lemma singleton:
  shows "P⦄, {A} P G, Q = P A⦄, A  G, Q A"
by (simp add: pag_def)

lemma mono: ―‹ strengthening of the ‹WEAKEN› rule in Figure~4, needed for the example  ›
  assumes "A. A  As'  P' A  P A"
  assumes "As'  As"
  assumes "G  G'"
  assumes "A. A  As'  Q A  Q' A"
  shows "P⦄, As P G, Q  P'⦄, As' P G', Q'"
by (simp add: assms pag_def INF_superset_mono[OF As'  As ag.mono] le_funD)

lemma action: ―‹ allow assertions to depend on assume A›, needed for the example ›
  fixes F :: "('v × 's × 's) set"
  assumes Q: "A v s s'. A  As; P A s; (v, s, s')  F  Q A v s'"
  assumes G: "A v s s'. A  As; P A s; s  s'; (v, s, s')  F  (s, s')  G"
  shows "prog.p2s (prog.action F)  λA. wdp.floor A (P A)⦄, As P G, λA v. wdp.ceiling A (Q A v)"
by (simp add: assms pag_def wdp.action INFI)

lemmas sup = ag.prog.sup

lemma bind:
  assumes "v. prog.p2s (g v)  λA. Q' A v⦄, As P G, Q"
  assumes "prog.p2s f  P⦄, As P G, Q'"
  shows "prog.p2s (f  g)  P⦄, As P G, Q"
unfolding pag_def
by (fastforce intro: INFI ag.prog.bind[rotated]
                     order.trans[OF assms(2) pag.mono[OF _ _ _ order.refl]]
                     order.trans[OF assms(1) pag.mono[where As'="{A}" for A], simplified pag.singleton]
          simp flip: pag.singleton)+

lemma parallel:
  assumes "prog.p2s c1  P1⦄, (∪) G2 ` A P G1, Q1"
  assumes "prog.p2s c2  P2⦄, (∪) G1 ` A P G2, Q2"
  shows "prog.p2s (prog.parallel c1 c2)
       λR. P1 (R  G2)  P2 (R  G1)⦄, A P G1  G2, λR v. Q1 (R  G2) v  Q2 (R  G1) v"
unfolding pag_def
by (force intro: INFI ag.prog.parallel order.trans[OF assms(1) pag.mono]
                 order.trans[OF assms(2) pag.mono]
      simp flip: pag.singleton)

text‹ etc. -- the other rules follow similarly ›

setup Sign.parent_path


subsection‹ Examples\label{sec:explicit_stabilisation_eg} ›

text‹

There is not always a single (traditional) most general assume/guarantee specification (\S2.1).

›

type_synonym state = int ―‹ just x›
abbreviation (input) "incr  prog.write ((+) 1)" ―‹ atomic increment ›
abbreviation (input) increases :: "int rel" where "increases  {(x, x'). x  x'}"

lemma ag_incr1: ―‹ the precondition is stable as the rely is very strong ›
  shows "prog.p2s incr  (=) c⦄, {}  increases, (=) (c + 1)"
by (rule ag.prog.action; simp add: stable.empty)

lemma ag_incr2: ―‹ note the weaker precondition due to the larger assume ›
  shows "prog.p2s incr  (≤) c⦄, increases  increases, (≤) (c + 1)"
by (rule ag.prog.action; auto simp: stable_def monotone_def le_bool_def)

lemma ag_incr1_par_incr1:
  shows "prog.p2s (incr  incr)  λx. c  x⦄, increases  increases, λ_ x. c + 1  x"
apply (rule ag.pre_pre)
 apply (rule ag.pre_post)
  apply (rule ag.prog.parallel[where P1="λx. c  x" and P2="λx. c  x"
                                 and Q1="λ_ x. c + 1  x" and Q2="λ_ x. c + 1  x"
                                 and G1="increases" and G2="increases", simplified])
    apply (rule ag.prog.action; simp add: stable_def monotone_def le_boolI; fail)
   apply (rule ag.prog.action; simp add: stable_def monotone_def le_boolI; fail)
  apply simp_all
done

text‹

Using explicit stabilisation we can squash the two specifications for constincr into a single one (\S4).

›

lemma ―‹ postcondition cannot be simplified for arbitrary A›
  shows "prog.p2s incr  wdp.ceiling A ((=) c)⦄, A  increases, wdp.ceiling A (λs. wdp.ceiling A ((=) c) (s - 1))"
by (rule ag.pre_pre[OF wdp.action]) (simp add: wdp.floor_ceiling)+

―‹ The set of assumes that commute with the increment ›
abbreviation (input) comm_xpp :: "int rel set" where
  "comm_xpp  {A. p s. wdp.ceiling A p (s - 1) = wdp.ceiling A (λs. p (s - 1)) s}"

lemma pag_incr: ―‹ postcondition can be simplified wrt comm_xpp›
  shows "prog.p2s incr  λA. wdp.ceiling A ((=) c)⦄, comm_xpp P increases, λA. wdp.ceiling A ((=) (c + 1))"
apply (rule order.trans[OF _ pag.mono[OF _  order.refl order.refl]])
  apply (rule pag.action[where P="λA. wdp.ceiling A ((=) c)"
                           and Q="λA v s. wdp.ceiling A ((=) c) (s - 1)"])
   apply (simp_all add: wdp.floor_ceiling eq_diff_eq)
done

―‹ the two earlier specifications can be recovered ›
lemma
  shows "prog.p2s incr  (=) c⦄, {}  increases, (=) (c + 1)"
apply (rule order.trans[OF pag_incr])
apply (subst pag.singleton[symmetric])
apply (rule pag.mono; force)
done

lemma
  shows "prog.p2s incr  (≤) c⦄, increases  increases, (≤) (c + 1)"
apply (rule order.trans[OF pag_incr[where c=c]])
apply (subst pag.singleton[symmetric])
apply (rule pag.mono; force simp: wdp.ceiling_def order_rtrancl dest: zless_imp_add1_zle)
done

(*<*)

end
(*>*)