Theory BFS
theory BFS
imports
"Assume_Guarantee"
begin
section‹ Example: data refinement (search)\label{sec:ex-data_refinement} ›
text‹
We show a very simple example of data refinement: implementing sets with functional queues
for breadth-first search (BFS). The objective here is to transfer a simple correctness property
proven on the abstract level to the concrete level.
Observations:
▪ there is no concurrency in the BFS: this is just about data refinement
▪ however arbitrary interference is allowed
▪ the abstract level does not require the implementation of the pending set to make progress
▪ the concrete level does not require a representation invariant
▪ depth optimality is not shown
References:
▪ queue ADT: 🗏‹$ISABELLE_HOME/src/Doc/Codegen/Introduction.thy›
▪ BFS verification:
▪ J. C. Filliâtre 🌐‹http://toccata.lri.fr/gallery/vstte12_bfs.en.html›
▪ 🗏‹$AFP/Refine_Monadic/examples/Breadth_First_Search.thy›
▪ our model is quite different
›
setup ‹Sign.mandatory_path "pending"›
record ('a, 's) interface =
init :: "('s, unit) prog"
enq :: "'a ⇒ ('s, unit) prog"
deq :: "('s, 'a option) prog"
type_synonym 'a abstract = "'a set"
definition abstract :: "('a, 'a pending.abstract × 's) pending.interface" where
"abstract =
⦇ pending.interface.init = prog.write (map_prod ⟨{}⟩ id)
, pending.interface.enq = λx. prog.write (map_prod (insert x) id)
, pending.interface.deq = prog.action ({(None, s, s) |s. fst s = {}}
∪ {(Some x, (insert x X, s), (X, s)) |X s x. True})
⦈"
type_synonym 'a concrete = "'a list × 'a list"
fun cdeq_update :: "'a pending.concrete × 's ⇒ 'a option × 'a pending.concrete × 's" where
"cdeq_update (([], []), s) = (None, (([], []), s))"
| "cdeq_update ((xs, []), s) = cdeq_update (([], rev xs), s)"
| "cdeq_update ((xs, y # ys), s) = (Some y, ((xs, ys), s))"
definition concrete :: "('a, 'a pending.concrete × 's) pending.interface" where
"concrete =
⦇ pending.interface.init = prog.write (map_prod ⟨([], [])⟩ id)
, pending.interface.enq = λx. prog.write (map_prod (map_prod ((#) x) id) id)
, pending.interface.deq = prog.det_action pending.cdeq_update
⦈"
abbreviation absfn' :: "'a pending.concrete ⇒ 'a list" where
"absfn' s ≡ snd s @ rev (fst s)"
definition absfn :: "'a pending.concrete ⇒ 'a pending.abstract" where
"absfn s = set (pending.absfn' s)"
setup ‹Sign.mandatory_path "ag"›
lemma init:
fixes Q :: "unit ⇒ 'a pending.abstract × 's ⇒ bool"
fixes A :: "'s rel"
assumes "stable (Id ×⇩R A) (Q ())"
shows "prog.p2s (pending.init pending.abstract) ≤ ⦃λs. Q () ({}, snd s)⦄, Id ×⇩R A ⊢ UNIV ×⇩R Id, ⦃Q⦄"
using assms by (auto intro: ag.prog.action simp: pending.abstract_def stable_def monotone_def)
lemma enq:
fixes x :: 'a
fixes Q :: "unit ⇒ 'a pending.abstract × 's ⇒ bool"
fixes A :: "'s rel"
assumes "stable (Id ×⇩R A) (Q ())"
shows "prog.p2s (pending.enq pending.abstract x) ≤ ⦃λs. Q () (insert x (fst s), snd s)⦄, Id ×⇩R A ⊢ UNIV ×⇩R Id, ⦃Q⦄"
using assms by (auto intro: ag.prog.action simp: pending.abstract_def stable_def monotone_def)
lemma deq:
fixes Q :: "'a option ⇒ 'a pending.abstract × 's ⇒ bool"
fixes A :: "'s rel"
assumes "⋀v. stable (Id ×⇩R A) (Q v)"
shows "prog.p2s (pending.deq pending.abstract) ≤ ⦃λs. if fst s = {} then Q None s else (∀x X. fst s = insert x X ⟶ Q (Some x) (X, snd s))⦄, Id ×⇩R A ⊢ UNIV ×⇩R Id, ⦃Q⦄"
unfolding pending.abstract_def pending.interface.simps
by (rule ag.prog.action)
(use assms in ‹auto simp: stable_def monotone_def le_bool_def split: if_split_asm›)
setup ‹Sign.parent_path›
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "set"›
record ('a, 's) interface =
init :: "('s, unit) prog"
ins :: "'a ⇒ ('s, unit) prog"
mem :: "'a ⇒ ('s, bool) prog"
type_synonym 'a abstract = "'a list"
definition abstract :: "('a, 's × 'a set.abstract × 't) set.interface" where
"abstract =
⦇ set.interface.init = prog.write (map_prod id (map_prod ⟨[]⟩ id))
, set.interface.ins = λx. prog.write (map_prod id (map_prod ((#) x) id))
, set.interface.mem = λx. prog.read (λs. x ∈ set (fst (snd s)))
⦈"
setup ‹Sign.mandatory_path "ag"›
lemma init:
fixes Q :: "unit ⇒ 's × 'a set.abstract × 't ⇒ bool"
fixes A :: "'s rel"
assumes "stable (A ×⇩R Id ×⇩R B) (Q ())"
shows "prog.p2s (set.init set.abstract) ≤ ⦃λs. Q () (fst s, [], snd (snd s))⦄, A ×⇩R Id ×⇩R B ⊢ Id ×⇩R UNIV ×⇩R Id, ⦃Q⦄"
using assms by (auto intro: ag.prog.action simp: set.abstract_def stable_def monotone_def)
lemma ins:
fixes x :: 'a
fixes Q :: "unit ⇒ 's × 'a set.abstract × 't ⇒ bool"
fixes A :: "'s rel"
assumes "stable (A ×⇩R Id ×⇩R B) (Q ())"
shows "prog.p2s (set.ins set.abstract x) ≤ ⦃λs. Q () (fst s, x # fst (snd s), snd (snd s))⦄, A ×⇩R Id ×⇩R B ⊢ Id ×⇩R UNIV ×⇩R Id, ⦃Q⦄"
using assms by (auto intro: ag.prog.action simp: set.abstract_def stable_def monotone_def)
lemma mem:
fixes Q :: "bool ⇒ 's × 'a set.abstract × 't ⇒ bool"
assumes "⋀v. stable (A ×⇩R Id ×⇩R B) (Q v)"
shows "prog.p2s (set.mem set.abstract x) ≤ ⦃λs. Q (x ∈ set (fst (snd s))) s⦄, A ×⇩R Id ×⇩R B ⊢ Id ×⇩R UNIV ×⇩R Id, ⦃Q⦄"
using assms by (auto intro: ag.prog.action simp: set.abstract_def stable_def monotone_def)
setup ‹Sign.parent_path›
setup ‹Sign.parent_path›
context
fixes pending :: "('a, 'p × 'a set.abstract × 's) pending.interface"
fixes f :: "'a ⇒ 'a list"
begin
definition loop :: "'a pred ⇒ ('p × 'a set.abstract × 's, 'a option) prog" where
"loop p =
prog.while (λ_.
do { aopt ← pending.deq pending
; case aopt of
None ⇒ prog.return (Inr None)
| Some x ⇒
if p x
then prog.return (Inr (Some x))
else do { prog.app (λy. do { b ← set.mem set.abstract y;
prog.unlessM b (do { set.ins set.abstract y
; pending.enq pending y }) })
(f x)
; prog.return (Inl ())
}
}) ()"
definition main :: "'a pred ⇒ 'a ⇒ ('p × 'a set.abstract × 's, 'a option) prog" where
"main p x =
do {
set.init set.abstract
; pending.init pending
; set.ins set.abstract x
; pending.enq pending x
; loop p
}"
definition search :: "'a pred ⇒ 'a ⇒ ('s, 'a option) prog" where
"search p x = prog.local (prog.local (main p x))"
end
abbreviation (input) "aloop ≡ loop pending.abstract"
abbreviation (input) "amain ≡ main pending.abstract"
abbreviation (input) "asearch ≡ search pending.abstract"
abbreviation (input) "bfs ≡ search pending.concrete"
lemma
shows pending_g: "UNIV ×⇩R Id ⊆ UNIV ×⇩R UNIV ×⇩R Id"
and set_g: "Id ×⇩R UNIV ×⇩R Id ⊆ UNIV ×⇩R UNIV ×⇩R Id"
by fastforce+
context
fixes f :: "'a ⇒ 'a list"
fixes P :: "'a pred"
fixes x⇩0 :: "'a"
begin
abbreviation (input) step :: "'a rel" where
"step ≡ {(x, y). y ∈ set (f x)}"
abbreviation (input) path :: "'a rel" where
"path ≡ step⇧*"
definition aloop_invP :: "'a pending.abstract ⇒ 'a set.abstract ⇒ bool" where
"aloop_invP q v ⟷
q ⊆ set v
∧ set v ⊆ path `` {x⇩0}
∧ set v ∩ Collect P ⊆ q
∧ x⇩0 ∈ set v"
definition vclosureP :: "'a ⇒ 'a pending.abstract ⇒ 'a set.abstract ⇒ bool" where
"vclosureP x q v ⟷ (x ∈ set v - q ⟶ step `` {x} ⊆ set v)"
definition search_postP :: "'a option ⇒ bool" where
"search_postP rv = (case rv of
None ⇒ finite (path `` {x⇩0}) ∧ (path `` {x⇩0} ∩ Collect P = {})
| Some y ⇒ (x⇩0, y) ∈ path ∧ P y)"
abbreviation "aloop_inv s ≡ aloop_invP (fst s) (fst (snd s))"
abbreviation "vclosure x s ≡ vclosureP x (fst s) (fst (snd s))"
abbreviation "search_post rv ≡ ⟨search_postP rv⟩"
lemma vclosureP_closed:
assumes "set v ⊆ path `` {x⇩0}"
assumes "∀y. vclosureP y {} v"
assumes "x⇩0 ∈ set v"
shows "path `` {x⇩0} = set v"
proof -
have "y ∈ set v" if "(x⇩0, y) ∈ path" for y
using that assms(2,3) by induct (auto simp: vclosureP_def)
with assms(1) show ?thesis
by fast
qed
lemma vclosureP_app:
assumes "∀y. x ≠ y ⟶ local.vclosureP y q v"
assumes "set (f x) ⊆ set v"
shows "vclosureP y q v"
using assms by (fastforce simp: vclosureP_def)
lemma vclosureP_init:
shows "vclosureP x {x⇩0} [x⇩0]"
by (simp add: vclosureP_def)
lemma vclosureP_step:
assumes "∀z. x ≠ z ⟶ vclosureP z q v"
assumes "x ≠ z"
shows "vclosureP z (insert y q) (y # v)"
using assms by (fastforce simp: vclosureP_def)
lemma vclosureP_dequeue:
assumes "∀z. vclosureP z (insert x q) v"
assumes "x ≠ z"
shows "vclosureP z q v"
using assms by (fastforce simp: vclosureP_def)
lemma aloop_invPD:
assumes "aloop_invP q v"
assumes "x ∈ q"
shows "(x⇩0, x) ∈ path"
using assms by (auto simp: aloop_invP_def)
lemma aloop_invP_init:
shows "aloop_invP {x⇩0} [x⇩0]"
by (simp add: aloop_invP_def)
lemma aloop_invP_step:
assumes "aloop_invP q v"
assumes "(x⇩0, x) ∈ path"
assumes "y ∈ set (f x) - set v"
shows "aloop_invP (insert y q) (y # v)"
using assms by (auto simp: aloop_invP_def elim: rtrancl_into_rtrancl)
lemma aloop_invP_dequeue:
assumes "aloop_invP (insert x q) v"
assumes "¬ P x"
shows "aloop_invP q v"
using assms by (auto simp: aloop_invP_def)
lemma search_postcond_None:
assumes "aloop_invP {} v"
assumes "∀y. vclosureP y {} v"
shows "search_postP None"
using assms by (auto simp: search_postP_def aloop_invP_def dest: vclosureP_closed)
lemma search_postcond_Some:
assumes "aloop_invP q v"
assumes "x ∈ q"
assumes "P x"
shows "search_postP (Some x)"
using assms by (auto simp: search_postP_def aloop_invP_def)
lemmas stable_simps =
prod.sel
split_def
sum.simps
lemma ag_aloop:
shows "prog.p2s (aloop f P) ≤ ⦃aloop_inv ❙∧ (❙∀x. vclosure x)⦄, Id ×⇩R Id ×⇩R UNIV ⊢ UNIV ×⇩R UNIV ×⇩R Id, ⦃search_post⦄"
unfolding loop_def
apply (rule ag.prog.while[OF _ _ stable.Id_fst_fst_snd])
apply (rule ag.prog.bind)
apply (rule ag.prog.case_option)
apply (rule ag.prog.return)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.prog.if)
apply (rule ag.prog.return)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.prog.bind)
apply (rule ag.prog.return)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rename_tac x)
apply (rule_tac Q="λ_. aloop_inv ❙∧ (❙∀y. ⟨x ≠ y⟩ ❙⟶ vclosure y) ❙∧ (λs. set (f x) ⊆ set (fst (snd s)) ∧ (x⇩0, x) ∈ path)" in ag.post_imp)
apply (force elim: vclosureP_app)
apply (rule ag.prog.app)
apply (rule ag.prog.bind)
apply (rule ag.prog.if)
apply (rule ag.prog.return)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.prog.bind)
apply (rule ag.pre_g[OF pending.ag.enq pending_g])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.pre_g[OF set.ag.ins set_g])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.pre_pre[OF ag.pre_g[OF set.ag.mem set_g]])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (force simp: aloop_invP_step vclosureP_step)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.pre_g[OF pending.ag.deq pending_g])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (auto elim: search_postcond_Some search_postcond_None aloop_invP_dequeue
aloop_invPD vclosureP_dequeue)
done
lemma ag_amain:
shows "prog.p2s (amain f P x⇩0) ≤ ⦃⟨True⟩⦄, Id ×⇩R Id ×⇩R UNIV ⊢ UNIV ×⇩R UNIV ×⇩R Id, ⦃search_post⦄"
unfolding main_def
apply (rule ag.pre_pre)
apply (rule ag.prog.bind)+
apply (rule ag_aloop)
apply (rule ag.post_imp[where Q="⟨λ(q, v, _). q = {x⇩0} ∧ v = [x⇩0]⟩"])
apply (clarsimp simp: aloop_invP_init vclosureP_init; fail)
apply (rule ag.pre_g[OF pending.ag.enq pending_g])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.pre_g[OF set.ag.ins set_g])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.pre_g[OF pending.ag.init pending_g])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule ag.pre_g[OF set.ag.init set_g])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply simp
done
lemma ag_asearch:
shows "prog.p2s (asearch f P x⇩0 :: ('s, 'a option) prog) ≤ ⦃⟨True⟩⦄, UNIV ⊢ Id, ⦃search_post⦄"
unfolding search_def by (rule ag.prog.local ag_amain)+
paragraph‹ Refinement ›
abbreviation "A ≡ ag.assm (Id ×⇩R Id ×⇩R UNIV)"
abbreviation "absfn c ≡ prog.sinvmap (map_prod pending.absfn id) c"
abbreviation "p2s_absfn c ≡ prog.p2s (absfn c)"
lemma ref_set_init:
shows "prog.p2s (set.init set.abstract) ≤ ⦃λs. True⦄, A ⊩ p2s_absfn (set.init set.abstract), ⦃λv s. True⦄"
by (auto simp: set.abstract_def intro: rair.prog.action stable.intro)
lemma ref_set_ins:
shows "prog.p2s (set.ins set.abstract x) ≤ ⦃λs. True⦄, A ⊩ p2s_absfn (set.ins set.abstract x), ⦃λv s. True⦄"
by (auto simp: set.abstract_def intro: rair.prog.action stable.intro)
lemma ref_set_mem:
shows "prog.p2s (set.mem set.abstract x) ≤ ⦃λs. True⦄, A ⊩ p2s_absfn (set.mem set.abstract x), ⦃λv s. True⦄"
by (auto simp: set.abstract_def intro: rair.prog.action stable.intro)
lemma ref_queue_init:
shows "prog.p2s (pending.init pending.concrete) ≤ ⦃λs. True⦄, A ⊩ p2s_absfn (pending.init pending.abstract), ⦃λv s. True⦄"
by (auto simp: pending.abstract_def pending.concrete_def pending.absfn_def intro: rair.prog.action stable.intro)
lemma ref_queue_enq:
shows "prog.p2s (pending.enq pending.concrete x) ≤ ⦃λs. True⦄, A ⊩ p2s_absfn (pending.enq pending.abstract x), ⦃λv s. True⦄"
by (auto simp: pending.abstract_def pending.concrete_def pending.absfn_def intro: rair.prog.action stable.intro)
lemma ref_queue_deq:
shows "prog.p2s (pending.deq pending.concrete) ≤ ⦃λs. True⦄, A ⊩ p2s_absfn (pending.deq pending.abstract), ⦃λv s. True⦄"
by (auto simp: pending.abstract_def pending.concrete_def pending.absfn_def
intro: rair.prog.action stable.intro elim!: pending.cdeq_update.elims[OF sym])
lemma ref_bfs_loop:
shows "prog.p2s (loop pending.concrete f P) ≤ ⦃λs. True⦄, A ⊩ p2s_absfn (loop pending.abstract f P), ⦃λv s. True⦄"
apply (simp add: loop_def)
apply (rule rair.prog.while)
apply (rule rair.prog.rev_bind)
apply (rule ref_queue_deq)
apply (rule refinement.pre_pre[OF rair.prog.case_option])
apply (rule rair.prog.return)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule rair.prog.if)
apply (rule rair.prog.return)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule rair.prog.rev_bind)
apply (rule rair.prog.app)
apply (rule rair.prog.rev_bind)
apply (rule ref_set_mem)
apply (rule refinement.pre_pre[OF rair.prog.if])
apply (rule rair.prog.return)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule rair.prog.rev_bind)
apply (rule ref_set_ins)
apply (rule ref_queue_enq)
apply (simp; fail)
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (rule refinement.pre_pre[OF rair.prog.return])
apply ((simp only: stable_simps)?; (rule stable.intro)+; fail)
apply (auto intro: stable.intro split: option.split)
done
lemma ref_bfs_main:
shows "prog.p2s (main pending.concrete f P x) ≤ ⦃⟨True⟩⦄, A ⊩ p2s_absfn (amain f P x), ⦃λv s. True⦄"
apply (simp add: main_def)
apply (rule rair.prog.rev_bind)
apply (rule ref_set_init)
apply (rule rair.prog.rev_bind)
apply (rule ref_queue_init)
apply (rule rair.prog.rev_bind)
apply (rule ref_set_ins)
apply (rule rair.prog.rev_bind)
apply (rule ref_queue_enq)
apply (rule ref_bfs_loop)
done
theorem ref_bfs:
shows "bfs f P x ≤ asearch f P x"
unfolding search_def
apply (intro refinement.prog.leI refinement.prog.data[where sf=id])
apply (simp add: spec.invmap.id spec.localizeA.top)
apply (rule refinement.prog.data[where sf=pending.absfn])
apply (simp flip: prog.p2s.invmap)
apply (rule refinement.pre_a[OF ref_bfs_main])
apply (auto simp: spec.localizeA_def spec.invmap.rel
simp flip: spec.rel.inf
intro: spec.rel.mono)
done
theorem bfs_post_le:
shows "prog.p2s (bfs f P x⇩0) ≤ spec.post (search_post)"
apply (strengthen ord_to_strengthen[OF ref_bfs])
apply (strengthen ord_to_strengthen(1)[OF ag_asearch])
apply (simp add: ag_def spec.rel.UNIV flip: Sigma_Un_distrib1)
done
end
end