Theory Stateful_Protocol_Model
section‹Stateful Protocol Model›
theory Stateful_Protocol_Model
imports Stateful_Protocol_Composition_and_Typing.Stateful_Compositionality
Transactions Term_Abstraction
begin
subsection ‹Locale Setup›
locale stateful_protocol_model =
fixes arity⇩f::"'fun ⇒ nat"
and arity⇩s::"'sets ⇒ nat"
and public⇩f::"'fun ⇒ bool"
and Ana⇩f::"'fun ⇒ ((('fun,'atom::finite,'sets,'lbl) prot_fun, nat) term list × nat list)"
and Γ⇩f::"'fun ⇒ 'atom option"
and label_witness1::"'lbl"
and label_witness2::"'lbl"
assumes Ana⇩f_assm1: "∀f. let (K, M) = Ana⇩f f in (∀k ∈ subterms⇩s⇩e⇩t (set K).
is_Fun k ⟶ (is_Fu (the_Fun k)) ∧ length (args k) = arity⇩f (the_Fu (the_Fun k)))"
and Ana⇩f_assm2: "∀f. let (K, M) = Ana⇩f f in ∀i ∈ fv⇩s⇩e⇩t (set K) ∪ set M. i < arity⇩f f"
and public⇩f_assm: "∀f. arity⇩f f > (0::nat) ⟶ public⇩f f"
and Γ⇩f_assm: "∀f. arity⇩f f = (0::nat) ⟶ Γ⇩f f ≠ None"
and label_witness_assm: "label_witness1 ≠ label_witness2"
begin
lemma Ana⇩f_assm1_alt:
assumes "Ana⇩f f = (K,M)" "k ∈ subterms⇩s⇩e⇩t (set K)"
shows "(∃x. k = Var x) ∨ (∃h T. k = Fun (Fu h) T ∧ length T = arity⇩f h)"
proof (cases k)
case (Fun g T)
let ?P = "λk. is_Fun k ⟶ is_Fu (the_Fun k) ∧ length (args k) = arity⇩f (the_Fu (the_Fun k))"
let ?Q = "λK M. ∀k ∈ subterms⇩s⇩e⇩t (set K). ?P k"
have "?Q (fst (Ana⇩f f)) (snd (Ana⇩f f))" using Ana⇩f_assm1 split_beta[of ?Q "Ana⇩f f"] by meson
hence "?Q K M" using assms(1) by simp
hence "?P k" using assms(2) by blast
thus ?thesis using Fun by (cases g) auto
qed simp
lemma Ana⇩f_assm2_alt:
assumes "Ana⇩f f = (K,M)" "i ∈ fv⇩s⇩e⇩t (set K) ∪ set M"
shows "i < arity⇩f f"
using Ana⇩f_assm2 assms by fastforce
subsection ‹Definitions›
fun arity where
"arity (Fu f) = arity⇩f f"
| "arity (Set s) = arity⇩s s"
| "arity (Val _) = 0"
| "arity (Abs _) = 0"
| "arity Pair = 2"
| "arity (Attack _) = 0"
| "arity OccursFact = 2"
| "arity OccursSec = 0"
| "arity (PubConst _ _) = 0"
fun public where
"public (Fu f) = public⇩f f"
| "public (Set s) = (arity⇩s s > 0)"
| "public (Val n) = False"
| "public (Abs _) = False"
| "public Pair = True"
| "public (Attack _) = False"
| "public OccursFact = True"
| "public OccursSec = False"
| "public (PubConst _ _) = True"
fun Ana where
"Ana (Fun (Fu f) T) = (
if arity⇩f f = length T ∧ arity⇩f f > 0
then let (K,M) = Ana⇩f f in (K ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M)
else ([], []))"
| "Ana _ = ([], [])"
definition Γ⇩v where
"Γ⇩v v ≡ (
if (∀t ∈ subterms (fst v).
case t of (TComp f T) ⇒ arity f > 0 ∧ arity f = length T | _ ⇒ True)
then fst v
else TAtom Bottom)"
fun Γ where
"Γ (Var v) = Γ⇩v v"
| "Γ (Fun f T) = (
if arity f = 0
then case f of
(Fu g) ⇒ TAtom (case Γ⇩f g of Some a ⇒ Atom a | None ⇒ Bottom)
| (Val _) ⇒ TAtom Value
| (Abs _) ⇒ TAtom AbsValue
| (Set _) ⇒ TAtom SetType
| (Attack _) ⇒ TAtom AttackType
| OccursSec ⇒ TAtom OccursSecType
| (PubConst a _) ⇒ TAtom a
| _ ⇒ TAtom Bottom
else TComp f (map Γ T))"
lemma Γ_consts_simps[simp]:
"arity⇩f g = 0 ⟹ Γ (Fun (Fu g) []::('fun,'atom,'sets,'lbl) prot_term)
= TAtom (case Γ⇩f g of Some a ⇒ Atom a | None ⇒ Bottom)"
"Γ (Fun (Val n) []::('fun,'atom,'sets,'lbl) prot_term) = TAtom Value"
"Γ (Fun (Abs b) []::('fun,'atom,'sets,'lbl) prot_term) = TAtom AbsValue"
"arity⇩s s = 0 ⟹ Γ (Fun (Set s) []::('fun,'atom,'sets,'lbl) prot_term) = TAtom SetType"
"Γ (Fun (Attack x) []::('fun,'atom,'sets,'lbl) prot_term) = TAtom AttackType"
"Γ (Fun OccursSec []::('fun,'atom,'sets,'lbl) prot_term) = TAtom OccursSecType"
"Γ (Fun (PubConst a t) []::('fun,'atom,'sets,'lbl) prot_term) = TAtom a"
by simp+
lemma Γ_Fu_simps[simp]:
"arity⇩f f ≠ 0 ⟹ Γ (Fun (Fu f) T) = TComp (Fu f) (map Γ T)" (is "?A1 ⟹ ?A2")
"arity⇩f f = 0 ⟹ Γ⇩f f = Some a ⟹ Γ (Fun (Fu f) T) = TAtom (Atom a)" (is "?B1 ⟹ ?B2 ⟹ ?B3")
"arity⇩f f = 0 ⟹ Γ⇩f f = None ⟹ Γ (Fun (Fu f) T) = TAtom Bottom" (is "?C1 ⟹ ?C2 ⟹ ?C3")
"Γ (Fun (Fu f) T) ≠ TAtom Value" (is ?D)
"Γ (Fun (Fu f) T) ≠ TAtom AttackType" (is ?E)
"Γ (Fun (Fu f) T) ≠ TAtom OccursSecType" (is ?F)
proof -
show "?A1 ⟹ ?A2" by simp
show "?B1 ⟹ ?B2 ⟹ ?B3" by simp
show "?C1 ⟹ ?C2 ⟹ ?C3" by simp
show ?D by (cases "Γ⇩f f") simp_all
show ?E by (cases "Γ⇩f f") simp_all
show ?F by (cases "Γ⇩f f") simp_all
qed
lemma Γ_Set_simps[simp]:
"arity⇩s s ≠ 0 ⟹ Γ (Fun (Set s) T) = TComp (Set s) (map Γ T)"
"Γ (Fun (Set s) T) = TAtom SetType ∨ Γ (Fun (Set s) T) = TComp (Set s) (map Γ T)"
"Γ (Fun (Set s) T) ≠ TAtom Value"
"Γ (Fun (Set s) T) ≠ TAtom (Atom a)"
"Γ (Fun (Set s) T) ≠ TAtom AttackType"
"Γ (Fun (Set s) T) ≠ TAtom OccursSecType"
"Γ (Fun (Set s) T) ≠ TAtom Bottom"
by auto
subsection ‹Locale Interpretations›
lemma Ana_Fu_cases:
assumes "Ana (Fun f T) = (K,M)"
and "f = Fu g"
and "Ana⇩f g = (K',M')"
shows "(K,M) = (if arity⇩f g = length T ∧ arity⇩f g > 0
then (K' ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M')
else ([],[]))" (is ?A)
and "(K,M) = (K' ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M') ∨ (K,M) = ([],[])" (is ?B)
proof -
show ?A using assms by (cases "arity⇩f g = length T ∧ arity⇩f g > 0") auto
thus ?B by metis
qed
lemma Ana_Fu_intro:
assumes "arity⇩f f = length T" "arity⇩f f > 0"
and "Ana⇩f f = (K',M')"
shows "Ana (Fun (Fu f) T) = (K' ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M')"
using assms by simp
lemma Ana_Fu_elim:
assumes "Ana (Fun f T) = (K,M)"
and "f = Fu g"
and "Ana⇩f g = (K',M')"
and "(K,M) ≠ ([],[])"
shows "arity⇩f g = length T" (is ?A)
and "(K,M) = (K' ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M')" (is ?B)
proof -
show ?A using assms by force
moreover have "arity⇩f g > 0" using assms by force
ultimately show ?B using assms by auto
qed
lemma Ana_nonempty_inv:
assumes "Ana t ≠ ([],[])"
shows "∃f T. t = Fun (Fu f) T ∧ arity⇩f f = length T ∧ arity⇩f f > 0 ∧
(∃K M. Ana⇩f f = (K, M) ∧ Ana t = (K ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M))"
using assms
proof (induction t rule: Ana.induct)
case (1 f T)
hence *: "arity⇩f f = length T" "0 < arity⇩f f"
"Ana (Fun (Fu f) T) = (case Ana⇩f f of (K, M) ⇒ (K ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M))"
using Ana.simps(1)[of f T] unfolding Let_def by metis+
obtain K M where **: "Ana⇩f f = (K, M)" by (metis surj_pair)
hence "Ana (Fun (Fu f) T) = (K ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M)" using *(3) by simp
thus ?case using ** *(1,2) by blast
qed simp_all
lemma assm1:
assumes "Ana t = (K,M)"
shows "fv⇩s⇩e⇩t (set K) ⊆ fv t"
using assms
proof (induction t rule: term.induct)
case (Fun f T)
have aux: "fv⇩s⇩e⇩t (set K ⋅⇩s⇩e⇩t (!) T) ⊆ fv⇩s⇩e⇩t (set T)"
when K: "∀i ∈ fv⇩s⇩e⇩t (set K). i < length T"
for K::"(('fun,'atom,'sets,'lbl) prot_fun, nat) term list"
proof
fix x assume "x ∈ fv⇩s⇩e⇩t (set K ⋅⇩s⇩e⇩t (!) T)"
then obtain k where k: "k ∈ set K" "x ∈ fv (k ⋅ (!) T)" by auto
have "∀i ∈ fv k. i < length T" using K k(1) by simp
thus "x ∈ fv⇩s⇩e⇩t (set T)"
by (metis (no_types, lifting) k(2) contra_subsetD fv_set_mono image_subsetI nth_mem
subst_apply_fv_unfold)
qed
{ fix g assume f: "f = Fu g" and K: "K ≠ []"
obtain K' M' where *: "Ana⇩f g = (K',M')" by force
have "(K, M) ≠ ([], [])" using K by simp
hence "(K, M) = (K' ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M')" "arity⇩f g = length T"
using Ana_Fu_cases(1)[OF Fun.prems f *]
by presburger+
hence ?case using aux[of K'] Ana⇩f_assm2_alt[OF *] by auto
} thus ?case using Fun by (cases f) fastforce+
qed simp
lemma assm2:
assumes "Ana t = (K,M)"
and "⋀g S'. Fun g S' ⊑ t ⟹ length S' = arity g"
and "k ∈ set K"
and "Fun f T' ⊑ k"
shows "length T' = arity f"
using assms
proof (induction t rule: term.induct)
case (Fun g T)
obtain h where 2: "g = Fu h"
using Fun.prems(1,3) by (cases g) auto
obtain K' M' where 1: "Ana⇩f h = (K',M')" by force
have "(K,M) ≠ ([],[])" using Fun.prems(3) by auto
hence "(K,M) = (K' ⋅⇩l⇩i⇩s⇩t (!) T, map ((!) T) M')"
"⋀i. i ∈ fv⇩s⇩e⇩t (set K') ∪ set M' ⟹ i < length T"
using Ana_Fu_cases(1)[OF Fun.prems(1) 2 1] Ana⇩f_assm2_alt[OF 1]
by presburger+
hence "K = K' ⋅⇩l⇩i⇩s⇩t (!) T" and 3: "∀i∈fv⇩s⇩e⇩t (set K'). i < length T" by simp_all
then obtain k' where k': "k' ∈ set K'" "k = k' ⋅ (!) T" using Fun.prems(3) by force
hence 4: "Fun f T' ∈ subterms (k' ⋅ (!) T)" "fv k' ⊆ fv⇩s⇩e⇩t (set K')"
using Fun.prems(4) by auto
show ?case
proof (cases "∃i ∈ fv k'. Fun f T' ∈ subterms (T ! i)")
case True
hence "Fun f T' ∈ subterms⇩s⇩e⇩t (set T)" using k' Fun.prems(4) 3 by auto
thus ?thesis using Fun.prems(2) by auto
next
case False
then obtain S where "Fun f S ∈ subterms k'" "Fun f T' = Fun f S ⋅ (!) T"
using k'(2) Fun.prems(4) subterm_subst_not_img_subterm by force
thus ?thesis using Ana⇩f_assm1_alt[OF 1, of "Fun f S"] k'(1) by (cases f) auto
qed
qed simp
lemma assm4:
assumes "Ana (Fun f T) = (K, M)"
shows "set M ⊆ set T"
using assms
proof (cases f)
case (Fu g)
obtain K' M' where *: "Ana⇩f g = (K',M')" by force
have "M = [] ∨ (arity⇩f g = length T ∧ M = map ((!) T) M')"
using Ana_Fu_cases(1)[OF assms Fu *]
by (meson prod.inject)
thus ?thesis using Ana⇩f_assm2_alt[OF *] by auto
qed auto
lemma assm5: "Ana t = (K,M) ⟹ K ≠ [] ∨ M ≠ [] ⟹ Ana (t ⋅ δ) = (K ⋅⇩l⇩i⇩s⇩t δ, M ⋅⇩l⇩i⇩s⇩t δ)"
proof (induction t rule: term.induct)
case (Fun f T) thus ?case
proof (cases f)
case (Fu g)
obtain K' M' where *: "Ana⇩f g = (K',M')" by force
have **: "K = K' ⋅⇩l⇩i⇩s⇩t (!) T" "M = map ((!) T) M'"
"arity⇩f g = length T" "∀i ∈ fv⇩s⇩e⇩t (set K') ∪ set M'. i < arity⇩f g" "0 < arity⇩f g"
using Fun.prems(2) Ana_Fu_cases(1)[OF Fun.prems(1) Fu *] Ana⇩f_assm2_alt[OF *]
by (meson prod.inject)+
have ***: "∀i ∈ fv⇩s⇩e⇩t (set K'). i < length T" "∀i ∈ set M'. i < length T" using **(3,4) by auto
have "K ⋅⇩l⇩i⇩s⇩t δ = K' ⋅⇩l⇩i⇩s⇩t (!) (map (λt. t ⋅ δ) T)"
"M ⋅⇩l⇩i⇩s⇩t δ = map ((!) (map (λt. t ⋅ δ) T)) M'"
using subst_idx_map[OF ***(2), of δ]
subst_idx_map'[OF ***(1), of δ]
**(1,2)
by fast+
thus ?thesis using Fu * **(3,5) by auto
qed auto
qed simp
sublocale intruder_model arity public Ana
apply unfold_locales
by (metis assm1, metis assm2, rule Ana.simps, metis assm4, metis assm5)
adhoc_overloading INTRUDER_SYNTH intruder_synth
adhoc_overloading INTRUDER_DEDUCT intruder_deduct
lemma assm6: "arity c = 0 ⟹ ∃a. ∀X. Γ (Fun c X) = TAtom a" by (cases c) auto
lemma assm7: "0 < arity f ⟹ Γ (Fun f T) = TComp f (map Γ T)" by auto
lemma assm8: "infinite {c. Γ (Fun c []::('fun,'atom,'sets,'lbl) prot_term) = TAtom a ∧ public c}"
(is "?P a")
proof -
let ?T = "λf. (range f)::('fun,'atom,'sets,'lbl) prot_fun set"
let ?A = "λf. ∀x::nat ∈ UNIV. ∀y::nat ∈ UNIV. (f x = f y) = (x = y)"
let ?B = "λf. ∀x::nat ∈ UNIV. f x ∈ ?T f"
let ?C = "λf. ∀y::('fun,'atom,'sets,'lbl) prot_fun ∈ ?T f. ∃x ∈ UNIV. y = f x"
let ?D = "λf b. ?T f ⊆ {c. Γ (Fun c []::('fun,'atom,'sets,'lbl) prot_term) = TAtom b ∧ public c}"
have sub_lmm: "?P b" when "?A f" "?C f" "?C f" "?D f b" for b f
proof -
have "∃g::nat ⇒ ('fun,'atom,'sets,'lbl) prot_fun. bij_betw g UNIV (?T f)"
using bij_betwI'[of UNIV f "?T f"] that(1,2,3) by blast
hence "infinite (?T f)" by (metis nat_not_finite bij_betw_finite)
thus ?thesis using infinite_super[OF that(4)] by blast
qed
show ?thesis
proof (cases a)
case (Atom b) thus ?thesis using sub_lmm[of "PubConst (Atom b)" a] by force
next
case Value thus ?thesis using sub_lmm[of "PubConst Value" a] by force
next
case SetType thus ?thesis using sub_lmm[of "PubConst SetType" a] by fastforce
next
case AttackType thus ?thesis using sub_lmm[of "PubConst AttackType" a] by fastforce
next
case Bottom thus ?thesis using sub_lmm[of "PubConst Bottom" a] by fastforce
next
case OccursSecType thus ?thesis using sub_lmm[of "PubConst OccursSecType" a] by fastforce
next
case AbsValue thus ?thesis using sub_lmm[of "PubConst AbsValue" a] by force
qed
qed
lemma assm9: "TComp f T ⊑ Γ t ⟹ arity f > 0"
proof (induction t rule: term.induct)
case (Var x)
hence "Γ (Var x) ≠ TAtom Bottom" by force
hence "∀t ∈ subterms (fst x). case t of
TComp f T ⇒ arity f > 0 ∧ arity f = length T
| _ ⇒ True"
using Var Γ.simps(1)[of x] unfolding Γ⇩v_def by meson
thus ?case using Var by (fastforce simp add: Γ⇩v_def)
next
case (Fun g S)
have "arity g ≠ 0" using Fun.prems Var_subtermeq assm6 by force
thus ?case using Fun by (cases "TComp f T = TComp g (map Γ S)") auto
qed
lemma assm10: "wf⇩t⇩r⇩m (Γ (Var x))"
unfolding wf⇩t⇩r⇩m_def by (auto simp add: Γ⇩v_def)
lemma assm11: "arity f > 0 ⟹ public f" using public⇩f_assm by (cases f) auto
lemma assm12: "Γ (Var (τ, n)) = Γ (Var (τ, m))" by (simp add: Γ⇩v_def)
lemma assm13: "arity c = 0 ⟹ Ana (Fun c T) = ([],[])" by (cases c) simp_all
lemma assm14:
assumes "Ana (Fun f T) = (K,M)"
shows "Ana (Fun f T ⋅ δ) = (K ⋅⇩l⇩i⇩s⇩t δ, M ⋅⇩l⇩i⇩s⇩t δ)"
proof -
show ?thesis
proof (cases "(K, M) = ([],[])")
case True
{ fix g assume f: "f = Fu g"
obtain K' M' where "Ana⇩f g = (K',M')" by force
hence ?thesis using assms f True by auto
} thus ?thesis using True assms by (cases f) auto
next
case False
then obtain g where **: "f = Fu g" using assms by (cases f) auto
obtain K' M' where *: "Ana⇩f g = (K',M')" by force
have ***: "K = K' ⋅⇩l⇩i⇩s⇩t (!) T" "M = map ((!) T) M'" "arity⇩f g = length T"
"∀i ∈ fv⇩s⇩e⇩t (set K') ∪ set M'. i < arity⇩f g"
using Ana_Fu_cases(1)[OF assms ** *] False Ana⇩f_assm2_alt[OF *]
by (meson prod.inject)+
have ****: "∀i∈fv⇩s⇩e⇩t (set K'). i < length T" "∀i∈set M'. i < length T" using ***(3,4) by auto
have "K ⋅⇩l⇩i⇩s⇩t δ = K' ⋅⇩l⇩i⇩s⇩t (!) (map (λt. t ⋅ δ) T)"
"M ⋅⇩l⇩i⇩s⇩t δ = map ((!) (map (λt. t ⋅ δ) T)) M'"
using subst_idx_map[OF ****(2), of δ]
subst_idx_map'[OF ****(1), of δ]
***(1,2)
by auto
thus ?thesis using assms * ** ***(3) by auto
qed
qed
sublocale labeled_stateful_typing' arity public Ana Γ Pair label_witness1 label_witness2
apply unfold_locales
subgoal by (metis assm6)
subgoal by (metis assm7)
subgoal by (metis assm9)
subgoal by (rule assm10)
subgoal by (metis assm12)
subgoal by (metis assm13)
subgoal by (metis assm14)
subgoal by (rule label_witness_assm)
subgoal by (rule arity.simps(5))
subgoal by (metis assm14)
subgoal by (metis assm8)
subgoal by (metis assm11)
done
subsection ‹The Protocol Transition System, Defined in Terms of the Reachable Constraints›
definition transaction_decl_subst where
"transaction_decl_subst (ξ::('fun,'atom,'sets,'lbl) prot_subst) T ≡
subst_domain ξ = fst ` set (transaction_decl T ()) ∧
(∀(x,cs) ∈ set (transaction_decl T ()). ∃c ∈ cs.
ξ x = Fun (Fu c) [] ∧
arity (Fu c::('fun,'atom,'sets,'lbl) prot_fun) = 0) ∧
wt⇩s⇩u⇩b⇩s⇩t ξ"
definition transaction_fresh_subst where
"transaction_fresh_subst σ T M ≡
subst_domain σ = set (transaction_fresh T) ∧
(∀t ∈ subst_range σ. ∃c. t = Fun c [] ∧ ¬public c ∧ arity c = 0) ∧
(∀t ∈ subst_range σ. t ∉ subterms⇩s⇩e⇩t M) ∧
(∀t ∈ subst_range σ. t ∉ subterms⇩s⇩e⇩t (trms_transaction T)) ∧
wt⇩s⇩u⇩b⇩s⇩t σ ∧ inj_on σ (subst_domain σ)"
definition transaction_renaming_subst where
"transaction_renaming_subst α P X ≡
∃n ≥ max_var_set (⋃(vars_transaction ` set P) ∪ X). α = var_rename n"
definition (in intruder_model) constraint_model where
"constraint_model ℐ 𝒜 ≡
constr_sem_stateful ℐ (unlabel 𝒜) ∧
interpretation⇩s⇩u⇩b⇩s⇩t ℐ ∧
wf⇩t⇩r⇩m⇩s (subst_range ℐ)"
definition (in typed_model) welltyped_constraint_model where
"welltyped_constraint_model ℐ 𝒜 ≡ wt⇩s⇩u⇩b⇩s⇩t ℐ ∧ constraint_model ℐ 𝒜"
text ‹
The set of symbolic constraints reachable in any symbolic run of the protocol ‹P›.
‹ξ› instantiates the "declared variables" of transaction ‹T› with ground terms.
‹σ› instantiates the fresh variables of transaction ‹T› with fresh terms.
‹α› is a variable-renaming whose range consists of fresh variables.
›
inductive_set reachable_constraints::
"('fun,'atom,'sets,'lbl) prot ⇒ ('fun,'atom,'sets,'lbl) prot_constr set"
for P::"('fun,'atom,'sets,'lbl) prot"
where
init[simp]:
"[] ∈ reachable_constraints P"
| step:
"⟦𝒜 ∈ reachable_constraints P;
T ∈ set P;
transaction_decl_subst ξ T;
transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜);
transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)
⟧ ⟹ 𝒜@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α) ∈ reachable_constraints P"
subsection ‹Minor Lemmata›
lemma Γ⇩v_TAtom[simp]: "Γ⇩v (TAtom a, n) = TAtom a"
unfolding Γ⇩v_def by simp
lemma Γ⇩v_TAtom':
assumes "a ≠ Bottom"
shows "Γ⇩v (τ, n) = TAtom a ⟷ τ = TAtom a"
proof
assume "Γ⇩v (τ, n) = TAtom a"
thus "τ = TAtom a" by (metis (no_types, lifting) assms Γ⇩v_def fst_conv term.inject(1))
qed simp
lemma Γ⇩v_TAtom_inv:
"Γ⇩v x = TAtom (Atom a) ⟹ ∃m. x = (TAtom (Atom a), m)"
"Γ⇩v x = TAtom Value ⟹ ∃m. x = (TAtom Value, m)"
"Γ⇩v x = TAtom SetType ⟹ ∃m. x = (TAtom SetType, m)"
"Γ⇩v x = TAtom AttackType ⟹ ∃m. x = (TAtom AttackType, m)"
"Γ⇩v x = TAtom OccursSecType ⟹ ∃m. x = (TAtom OccursSecType, m)"
by (metis Γ⇩v_TAtom' surj_pair prot_atom.distinct(7),
metis Γ⇩v_TAtom' surj_pair prot_atom.distinct(18),
metis Γ⇩v_TAtom' surj_pair prot_atom.distinct(26),
metis Γ⇩v_TAtom' surj_pair prot_atom.distinct(32),
metis Γ⇩v_TAtom' surj_pair prot_atom.distinct(38))
lemma Γ⇩v_TAtom'':
"(fst x = TAtom (Atom a)) = (Γ⇩v x = TAtom (Atom a))" (is "?A = ?A'")
"(fst x = TAtom Value) = (Γ⇩v x = TAtom Value)" (is "?B = ?B'")
"(fst x = TAtom SetType) = (Γ⇩v x = TAtom SetType)" (is "?C = ?C'")
"(fst x = TAtom AttackType) = (Γ⇩v x = TAtom AttackType)" (is "?D = ?D'")
"(fst x = TAtom OccursSecType) = (Γ⇩v x = TAtom OccursSecType)" (is "?E = ?E'")
proof -
have 1: "?A ⟹ ?A'" "?B ⟹ ?B'" "?C ⟹ ?C'" "?D ⟹ ?D'" "?E ⟹ ?E'"
by (metis Γ⇩v_TAtom prod.collapse)+
have 2: "?A' ⟹ ?A" "?B' ⟹ ?B" "?C' ⟹ ?C" "?D' ⟹ ?D" "?E' ⟹ ?E"
using Γ⇩v_TAtom Γ⇩v_TAtom_inv(1) apply fastforce
using Γ⇩v_TAtom Γ⇩v_TAtom_inv(2) apply fastforce
using Γ⇩v_TAtom Γ⇩v_TAtom_inv(3) apply fastforce
using Γ⇩v_TAtom Γ⇩v_TAtom_inv(4) apply fastforce
using Γ⇩v_TAtom Γ⇩v_TAtom_inv(5) by fastforce
show "?A = ?A'" "?B = ?B'" "?C = ?C'" "?D = ?D'" "?E = ?E'"
using 1 2 by metis+
qed
lemma Γ⇩v_Var_image:
"Γ⇩v ` X = Γ ` Var ` X"
by force
lemma Γ_Fu_const:
assumes "arity⇩f g = 0"
shows "∃a. Γ (Fun (Fu g) T) = TAtom (Atom a)"
proof -
have "Γ⇩f g ≠ None" using assms Γ⇩f_assm by blast
thus ?thesis using assms by force
qed
lemma Fun_Value_type_inv:
fixes T::"('fun,'atom,'sets,'lbl) prot_term list"
assumes "Γ (Fun f T) = TAtom Value"
shows "(∃n. f = Val n) ∨ (∃bs. f = Abs bs) ∨ (∃n. f = PubConst Value n)"
proof -
have *: "arity f = 0" by (metis const_type_inv assms)
show ?thesis using assms
proof (cases f)
case (Fu g)
hence "arity⇩f g = 0" using * by simp
hence False using Fu Γ_Fu_const[of g T] assms by auto
thus ?thesis by metis
next
case (Set s)
hence "arity⇩s s = 0" using * by simp
hence False using Set assms by auto
thus ?thesis by metis
qed simp_all
qed
lemma Ana⇩f_keys_not_val_terms:
assumes "Ana⇩f f = (K, T)"
and "k ∈ set K"
and "g ∈ funs_term k"
shows "¬is_Val g"
and "¬is_PubConstValue g"
and "¬is_Abs g"
proof -
{ assume "is_Val g"
then obtain n S where *: "Fun (Val n) S ∈ subterms⇩s⇩e⇩t (set K)"
using assms(2) funs_term_Fun_subterm[OF assms(3)]
by (cases g) auto
hence False using Ana⇩f_assm1_alt[OF assms(1) *] by simp
} moreover {
assume "is_PubConstValue g"
then obtain n S where *: "Fun (PubConst Value n) S ∈ subterms⇩s⇩e⇩t (set K)"
using assms(2) funs_term_Fun_subterm[OF assms(3)]
unfolding is_PubConstValue_def by (cases g) auto
hence False using Ana⇩f_assm1_alt[OF assms(1) *] by simp
} moreover {
assume "is_Abs g"
then obtain a S where *: "Fun (Abs a) S ∈ subterms⇩s⇩e⇩t (set K)"
using assms(2) funs_term_Fun_subterm[OF assms(3)]
by (cases g) auto
hence False using Ana⇩f_assm1_alt[OF assms(1) *] by simp
} ultimately show "¬is_Val g" "¬is_PubConstValue g" "¬is_Abs g" by metis+
qed
lemma Ana⇩f_keys_not_pairs:
assumes "Ana⇩f f = (K, T)"
and "k ∈ set K"
and "g ∈ funs_term k"
shows "g ≠ Pair"
proof
assume "g = Pair"
then obtain S where *: "Fun Pair S ∈ subterms⇩s⇩e⇩t (set K)"
using assms(2) funs_term_Fun_subterm[OF assms(3)]
by (cases g) auto
show False using Ana⇩f_assm1_alt[OF assms(1) *] by simp
qed
lemma Ana_Fu_keys_funs_term_subset:
fixes K::"('fun,'atom,'sets,'lbl) prot_term list"
assumes "Ana (Fun (Fu f) S) = (K, T)"
and "Ana⇩f f = (K', T')"
shows "⋃(funs_term ` set K) ⊆ ⋃(funs_term ` set K') ∪ funs_term (Fun (Fu f) S)"
proof -
{ fix k assume k: "k ∈ set K"
then obtain k' where k':
"k' ∈ set K'" "k = k' ⋅ (!) S" "arity⇩f f = length S"
"subterms k' ⊆ subterms⇩s⇩e⇩t (set K')"
using assms Ana_Fu_elim[OF assms(1) _ assms(2)] by fastforce
have 1: "funs_term k' ⊆ ⋃(funs_term ` set K')" using k'(1) by auto
have "i < length S" when "i ∈ fv k'" for i
using that Ana⇩f_assm2_alt[OF assms(2), of i] k'(1,3)
by auto
hence 2: "funs_term (S ! i) ⊆ funs_term (Fun (Fu f) S)" when "i ∈ fv k'" for i
using that by force
have "funs_term k ⊆ ⋃(funs_term ` set K') ∪ funs_term (Fun (Fu f) S)"
using funs_term_subst[of k' "(!) S"] k'(2) 1 2 by fast
} thus ?thesis by blast
qed
lemma Ana_Fu_keys_not_pubval_terms:
fixes k::"('fun,'atom,'sets,'lbl) prot_term"
assumes "Ana (Fun (Fu f) S) = (K, T)"
and "Ana⇩f f = (K', T')"
and "k ∈ set K"
and "∀g ∈ funs_term (Fun (Fu f) S). ¬is_PubConstValue g"
shows "∀g ∈ funs_term k. ¬is_PubConstValue g"
using assms(3,4) Ana⇩f_keys_not_val_terms(1,2)[OF assms(2)]
Ana_Fu_keys_funs_term_subset[OF assms(1,2)]
by blast
lemma Ana_Fu_keys_not_abs_terms:
fixes k::"('fun,'atom,'sets,'lbl) prot_term"
assumes "Ana (Fun (Fu f) S) = (K, T)"
and "Ana⇩f f = (K', T')"
and "k ∈ set K"
and "∀g ∈ funs_term (Fun (Fu f) S). ¬is_Abs g"
shows "∀g ∈ funs_term k. ¬is_Abs g"
using assms(3,4) Ana⇩f_keys_not_val_terms(3)[OF assms(2)]
Ana_Fu_keys_funs_term_subset[OF assms(1,2)]
by blast
lemma Ana_Fu_keys_not_pairs:
fixes k::"('fun,'atom,'sets,'lbl) prot_term"
assumes "Ana (Fun (Fu f) S) = (K, T)"
and "Ana⇩f f = (K', T')"
and "k ∈ set K"
and "∀g ∈ funs_term (Fun (Fu f) S). g ≠ Pair"
shows "∀g ∈ funs_term k. g ≠ Pair"
using assms(3,4) Ana⇩f_keys_not_pairs[OF assms(2)]
Ana_Fu_keys_funs_term_subset[OF assms(1,2)]
by blast
lemma Ana_Fu_keys_length_eq:
assumes "length T = length S"
shows "length (fst (Ana (Fun (Fu f) T))) = length (fst (Ana (Fun (Fu f) S)))"
proof (cases "arity⇩f f = length T ∧ arity⇩f f > 0")
case True thus ?thesis using assms by (cases "Ana⇩f f") auto
next
case False thus ?thesis using assms by force
qed
lemma Ana_key_PubConstValue_subterm_in_term:
fixes k::"('fun,'atom,'sets,'lbl) prot_term"
assumes KR: "Ana t = (K, R)"
and k: "k ∈ set K"
and n: "Fun (PubConst Value n) [] ⊑ k"
shows "Fun (PubConst Value n) [] ⊑ t"
proof (cases t)
case (Var x) thus ?thesis using KR k n by force
next
case (Fun f ts)
note t = this
then obtain g where f: "f = Fu g" using KR k by (cases f) auto
obtain K' R' where KR': "Ana⇩f g = (K', R')" by fastforce
have K: "K = K' ⋅⇩l⇩i⇩s⇩t (!) ts"
using k Ana_Fu_elim(2)[OF KR[unfolded t] f KR'] by force
obtain k' where k': "k' ∈ set K'" "k = k' ⋅ (!) ts" using k K by auto
have 0: "¬(Fun (PubConst Value n) [] ⊑ k')"
proof
assume *: "Fun (PubConst Value n) [] ⊑ k'"
have **: "PubConst Value n ∈ funs_term k'"
using funs_term_Fun_subterm'[OF *] by (cases k') auto
show False
using Ana⇩f_keys_not_val_terms(2)[OF KR' k'(1) **]
unfolding is_PubConstValue_def by force
qed
hence "∃i ∈ fv k'. Fun (PubConst Value n) [] ⊑ ts ! i"
by (metis n const_subterm_subst_var_obtain k'(2))
then obtain i where i: "i ∈ fv k'" "Fun (PubConst Value n) [] ⊑ ts ! i" by blast
have "i < length ts"
using i(1) KR' k'(1) Ana⇩f_assm2_alt[OF KR', of i]
Ana_Fu_elim(1)[OF KR[unfolded t] f KR'] k
by fastforce
thus ?thesis using i(2) unfolding t by force
qed
lemma deduct_occurs_in_ik:
fixes t::"('fun,'atom,'sets,'lbl) prot_term"
assumes t: "M ⊢ occurs t"
and M: "∀s ∈ subterms⇩s⇩e⇩t M. OccursFact ∉ ⋃(funs_term ` set (snd (Ana s)))"
"∀s ∈ subterms⇩s⇩e⇩t M. OccursSec ∉ ⋃(funs_term ` set (snd (Ana s)))"
"Fun OccursSec [] ∉ M"
shows "occurs t ∈ M"
using private_fun_deduct_in_ik''[of M OccursFact "[Fun OccursSec [], t]" OccursSec] t M
by fastforce
lemma deduct_val_const_swap:
fixes θ σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "M ⋅⇩s⇩e⇩t θ ⊢ t ⋅ θ"
and "∀x ∈ fv⇩s⇩e⇩t M ∪ fv t. (∃n. θ x = Fun (Val n) []) ∨ (∃n. θ x = Fun (PubConst Value n) [])"
and "∀x ∈ fv⇩s⇩e⇩t M ∪ fv t. (∃n. σ x = Fun (Val n) [])"
and "∀x ∈ fv⇩s⇩e⇩t M ∪ fv t. (∃n. θ x = Fun (PubConst Value n) []) ⟶ σ x ∈ M ∪ N"
and "∀x ∈ fv⇩s⇩e⇩t M ∪ fv t. (∃n. θ x = Fun (Val n) []) ⟶ θ x = σ x"
and "∀x ∈ fv⇩s⇩e⇩t M ∪ fv t. ∀y ∈ fv⇩s⇩e⇩t M ∪ fv t. θ x = θ y ⟷ σ x = σ y"
and "∀n. ¬(Fun (PubConst Value n) [] ⊑⇩s⇩e⇩t insert t M)"
shows "(M ⋅⇩s⇩e⇩t σ) ∪ N ⊢ t ⋅ σ"
proof -
obtain n where n: "intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) n (t ⋅ θ)"
using assms(1) deduct_num_if_deduct by blast
hence "∃m ≤ n. intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) m (t ⋅ σ)" using assms(2-)
proof (induction n arbitrary: t rule: nat_less_induct)
case (1 n)
note prems = "1.prems"
note IH = "1.IH"
show ?case
proof (cases "t ⋅ θ ∈ M ⋅⇩s⇩e⇩t θ")
case True
note 2 = this
have 3: "∀x ∈ fv⇩s⇩e⇩t M ∪ fv t. ∃c. θ x = Fun c []"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv t. ∃c. σ x = Fun c []"
using prems(2,3) by (blast, blast)
have "t ⋅ σ ∈ M ⋅⇩s⇩e⇩t σ"
using subst_const_swap_eq_mem[OF 2 _ 3 prems(6)] prems(2,5,7) by metis
thus ?thesis using intruder_deduct_num.AxiomN by auto
next
case False
then obtain n' where n: "n = Suc n'" using prems(1) deduct_zero_in_ik by (cases n) fast+
have M_subterms_eq:
"subterms⇩s⇩e⇩t (M ⋅⇩s⇩e⇩t θ) = subterms⇩s⇩e⇩t M ⋅⇩s⇩e⇩t θ"
"subterms⇩s⇩e⇩t (M ⋅⇩s⇩e⇩t σ) = subterms⇩s⇩e⇩t M ⋅⇩s⇩e⇩t σ"
subgoal using prems(2) subterms_subst''[of M θ] by blast
subgoal using prems(3) subterms_subst''[of M σ] by blast
done
from deduct_inv[OF prems(1)] show ?thesis
proof (elim disjE)
assume "t ⋅ θ ∈ M ⋅⇩s⇩e⇩t θ" thus ?thesis using False by argo
next
assume "∃f ts. t ⋅ θ = Fun f ts ∧ public f ∧ length ts = arity f ∧
(∀t ∈ set ts. ∃l < n. intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l t)"
then obtain f ts where t:
"t ⋅ θ = Fun f ts" "public f" "length ts = arity f"
"∀t ∈ set ts. ∃l < n. intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l t"
by blast
show ?thesis
proof (cases t)
case (Var x)
hence ts: "ts = []" and f: "∃c. f = PubConst Value c"
using t(1,2) prems(2) by (force, auto)
have "σ x ∈ M ∪ N" using prems(4) Var f ts t(1) by auto
moreover have "fv (σ x) = {}" using prems(3) Var by auto
hence "σ x ∈ M ⋅⇩s⇩e⇩t σ" when "σ x ∈ M" using that subst_ground_ident[of "σ x" σ] by force
ultimately have "σ x ∈ (M ⋅⇩s⇩e⇩t σ) ∪ N" by fast
thus ?thesis using intruder_deduct_num.AxiomN Var by force
next
case (Fun g ss)
hence f: "f = g" and ts: "ts = ss ⋅⇩l⇩i⇩s⇩t θ" using t(1) by auto
have ss: "∃l < n. intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l (s ⋅ θ)" when s: "s ∈ set ss" for s
using t(4) ts s by auto
have IH': "∃l < n. intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l (s ⋅ σ)"
when s: "s ∈ set ss" for s
proof -
obtain l where l: "l < n" "intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l (s ⋅ θ)"
using ss s by blast
have *: "fv s ⊆ fv t" "subterms⇩s⇩e⇩t (insert s M) ⊆ subterms⇩s⇩e⇩t (insert t M)"
using s unfolding Fun f ts by auto
have "∃l' ≤ l. intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l' (s ⋅ σ)"
proof -
have "∀x ∈ fv⇩s⇩e⇩t M ∪ fv s.
(∃n. θ x = Fun (Val n) []) ∨ (∃n. θ x = Fun (PubConst Value n) [])"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv s. ∃n. σ x = Fun (Val n) []"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv s. (∃n. θ x = Fun (PubConst Value n) []) ⟶ σ x ∈ M ∪ N"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv s. (∃n. θ x = Fun (Val n) []) ⟶ θ x = σ x"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv s. ∀y ∈ fv⇩s⇩e⇩t M ∪ fv s. θ x = θ y ⟷ σ x = σ y"
"∀n. Fun (PubConst Value n) [] ∉ subterms⇩s⇩e⇩t (insert s M)"
subgoal using prems(2) *(1) by blast
subgoal using prems(3) *(1) by blast
subgoal using prems(4) *(1) by blast
subgoal using prems(5) *(1) by blast
subgoal using prems(6) *(1) by blast
subgoal using prems(7) *(2) by blast
done
thus ?thesis using IH l by presburger
qed
then obtain l' where l': "l' ≤ l" "intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l' (s ⋅ σ)"
by blast
have "l' < n" using l'(1) l(1) by linarith
thus ?thesis using l'(2) by blast
qed
have g: "length (ss ⋅⇩l⇩i⇩s⇩t σ) = arity g" "public g"
using t(2,3) unfolding f ts by auto
let ?P = "λs l. l < n ∧ intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l s"
define steps where "steps ≡ λs. SOME l. ?P s l"
have 2: "steps (s ⋅ σ) < n" "intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) (steps (s ⋅ σ)) (s ⋅ σ)"
when s: "s ∈ set ss" for s
using someI_ex[OF IH'[OF s]] unfolding steps_def by (blast, blast)
have 3: "Suc (Max (insert 0 (steps ` set (ss ⋅⇩l⇩i⇩s⇩t σ)))) ≤ n"
proof (cases "ss = []")
case True show ?thesis unfolding True n by simp
next
case False thus ?thesis
using 2 Max_nat_finite_lt[of "set (ss ⋅⇩l⇩i⇩s⇩t σ)" steps n] by (simp add: Suc_leI)
qed
show ?thesis
using intruder_deduct_num.ComposeN[OF g, of "(M ⋅⇩s⇩e⇩t σ) ∪ N" steps] 2(2) 3
unfolding Fun by auto
qed
next
assume "∃s ∈ subterms⇩s⇩e⇩t (M ⋅⇩s⇩e⇩t θ).
(∃l < n. intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l s) ∧
(∀k ∈ set (fst (Ana s)). ∃l < n. intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l k) ∧
t ⋅ θ ∈ set (snd (Ana s))"
then obtain s l
where s:
"s ∈ subterms⇩s⇩e⇩t M ⋅⇩s⇩e⇩t θ"
"∀k ∈ set (fst (Ana s)). ∃l < n. intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l k"
"t ⋅ θ ∈ set (snd (Ana s))"
and l: "l < n" "intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l s"
by (metis (no_types, lifting) M_subterms_eq(1))
obtain u where u: "u ⊑⇩s⇩e⇩t M" "s = u ⋅ θ" using s(1) by blast
have u_fv: "fv u ⊆ fv⇩s⇩e⇩t M" by (metis fv_subset_subterms u(1))
have "∄x. u = Var x"
proof
assume "∃x. u = Var x"
then obtain x where x: "u = Var x" by blast
then obtain c where c: "s = Fun c []" using u prems(2) u_fv by auto
thus False using s(3) Ana_subterm by (cases "Ana s") force
qed
then obtain f ts where u': "u = Fun f ts" by (cases u) auto
obtain K R where KR: "Ana u = (K,R)" by (metis surj_pair)
have KR': "Ana s = (K ⋅⇩l⇩i⇩s⇩t θ, R ⋅⇩l⇩i⇩s⇩t θ)"
using KR Ana_subst'[OF KR[unfolded u'], of θ] unfolding u(2) u' by blast
hence s':
"∀k ∈ set K. ∃l < n. intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) l (k ⋅ θ)"
"t ⋅ θ ∈ set (R ⋅⇩l⇩i⇩s⇩t θ)"
using s(2,3) by auto
have IH1: "∃l < n. intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l (u ⋅ σ)"
proof -
have "subterms u ⊆ subterms⇩s⇩e⇩t M" using u(1) subterms_subset by auto
hence "subterms⇩s⇩e⇩t (insert u M) = subterms⇩s⇩e⇩t M" by blast
hence *: "subterms⇩s⇩e⇩t (insert u M) ⊆ subterms⇩s⇩e⇩t (insert t M)" by auto
have "∃l' ≤ l. intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l' (u ⋅ σ)"
proof -
have "∀x ∈ fv⇩s⇩e⇩t M ∪ fv u.
(∃n. θ x = Fun (Val n) []) ∨ (∃n. θ x = Fun (PubConst Value n) [])"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv u. ∃n. σ x = Fun (Val n) []"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv u. (∃n. θ x = Fun (PubConst Value n) []) ⟶ σ x ∈ M ∪ N"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv u. (∃n. θ x = Fun (Val n) []) ⟶ θ x = σ x"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv u. ∀y ∈ fv⇩s⇩e⇩t M ∪ fv u. θ x = θ y ⟷ σ x = σ y"
"∀n. Fun (PubConst Value n) [] ∉ subterms⇩s⇩e⇩t (insert u M)"
subgoal using prems(2) u_fv by blast
subgoal using prems(3) u_fv by blast
subgoal using prems(4) u_fv by blast
subgoal using prems(5) u_fv by blast
subgoal using prems(6) u_fv by blast
subgoal using prems(7) * by blast
done
thus ?thesis using IH l unfolding u(2) by presburger
qed
then obtain l' where l': "l' ≤ l" "intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l' (u ⋅ σ)"
by blast
have "l' < n" using l'(1) l(1) by linarith
thus ?thesis using l'(2) by blast
qed
have IH2: "∃l < n. intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l (k ⋅ σ)" when k: "k ∈ set K" for k
using k IH prems(2-) Ana⇩f_keys_not_val_terms s'(1) KR u(1)
proof -
have *: "fv k ⊆ fv⇩s⇩e⇩t M" using k KR Ana_keys_fv u(1) fv_subset_subterms by blast
have **: "Fun (PubConst Value n) [] ⊑⇩s⇩e⇩t M" when "Fun (PubConst Value n) [] ⊑ k" for n
using in_subterms_subset_Union[OF u(1)]
Ana_key_PubConstValue_subterm_in_term[OF KR k that]
by fast
obtain lk where lk: "lk < n" "intruder_deduct_num (M ⋅⇩s⇩e⇩t θ) lk (k ⋅ θ)"
using s'(1) k by fast
have "∃l' ≤ lk. intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l' (k ⋅ σ)"
proof -
have "∀x ∈ fv⇩s⇩e⇩t M ∪ fv k.
(∃n. θ x = Fun (Val n) []) ∨ (∃n. θ x = Fun (PubConst Value n) [])"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv k. ∃n. σ x = Fun (Val n) []"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv k. (∃n. θ x = Fun (PubConst Value n) []) ⟶ σ x ∈ M ∪ N"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv k. (∃n. θ x = Fun (Val n) []) ⟶ θ x = σ x"
"∀x ∈ fv⇩s⇩e⇩t M ∪ fv k. ∀y ∈ fv⇩s⇩e⇩t M ∪ fv k. θ x = θ y ⟷ σ x = σ y"
"∀n. Fun (PubConst Value n) [] ∉ subterms⇩s⇩e⇩t (insert k M)"
subgoal using prems(2) * by blast
subgoal using prems(3) * by blast
subgoal using prems(4) * by blast
subgoal using prems(5) * by blast
subgoal using prems(6) * by blast
subgoal using prems(7) ** by blast
done
thus ?thesis using IH lk by presburger
qed
then obtain lk' where lk': "lk' ≤ lk" "intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) lk' (k ⋅ σ)"
by blast
have "lk' < n" using lk'(1) lk(1) by linarith
thus ?thesis using lk'(2) by blast
qed
have KR'': "Ana (u ⋅ σ) = (K ⋅⇩l⇩i⇩s⇩t σ, R ⋅⇩l⇩i⇩s⇩t σ)"
using Ana_subst' KR unfolding u' by blast
obtain r where r: "r ∈ set R" "t ⋅ θ = r ⋅ θ"
using s'(2) by fastforce
have r': "t ⋅ σ ∈ set (R ⋅⇩l⇩i⇩s⇩t σ)"
proof -
have r_subterm_u: "r ⊑ u" using r(1) KR Ana_subterm by blast
have r_fv: "fv r ⊆ fv⇩s⇩e⇩t M"
by (meson r_subterm_u u(1) fv_subset_subterms in_mono in_subterms_subset_Union)
have t_subterms_M: "subterms t ⊆ subterms⇩s⇩e⇩t (insert t M)"
by blast
have r_subterm_M: "subterms r ⊆ subterms⇩s⇩e⇩t (insert t M)"
using subterms_subset[OF r_subterm_u] in_subterms_subset_Union[OF u(1)]
by (auto intro: subterms⇩s⇩e⇩t_mono)
have *: "∀x ∈ fv t ∪ fv r. θ x = σ x ∨ ¬(θ x ⊑ t) ∧ ¬(θ x ⊑ r)"
proof
fix x assume "x ∈ fv t ∪ fv r"
hence "x ∈ fv⇩s⇩e⇩t M ∪ fv t" using r_fv by blast
thus "θ x = σ x ∨ ¬(θ x ⊑ t) ∧ ¬(θ x ⊑ r)"
using prems(2,5,7) r_subterm_M t_subterms_M
by (metis (no_types, opaque_lifting) in_mono)
qed
have **: "∀x ∈ fv t ∪ fv r. ∃c. θ x = Fun c []"
"∀x ∈ fv t ∪ fv r. ∃c. σ x = Fun c []"
"∀x ∈ fv t ∪ fv r. ∀y ∈ fv t ∪ fv r. θ x = θ y ⟷ σ x = σ y"
subgoal using prems(2) r_fv by blast
subgoal using prems(3) r_fv by blast
subgoal using prems(6) r_fv by blast
done
have "t ⋅ σ = r ⋅ σ" by (rule subst_const_swap_eq'[OF r(2) * **])
thus ?thesis using r(1) by simp
qed
obtain l1 where l1: "l1 < n" "intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l1 (u ⋅ σ)"
using IH1 by blast
let ?P = "λs l. l < n ∧ intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) l s"
define steps where "steps ≡ λs. SOME l. ?P s l"
have 2: "steps (k ⋅ σ) < n" "intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) (steps (k ⋅ σ)) (k ⋅ σ)"
when k: "k ∈ set K" for k
using someI_ex[OF IH2[OF k]] unfolding steps_def by (blast, blast)
have 3: "Suc (Max (insert l1 (steps ` set (K ⋅⇩l⇩i⇩s⇩t σ)))) ≤ n"
proof (cases "K = []")
case True show ?thesis using l1(1) unfolding True n by simp
next
case False thus ?thesis
using l1(1) 2 Max_nat_finite_lt[of "set (K ⋅⇩l⇩i⇩s⇩t σ)" steps n] by (simp add: Suc_leI)
qed
have IH2': "intruder_deduct_num ((M ⋅⇩s⇩e⇩t σ) ∪ N) (steps k) k"
when k: "k ∈ set (K ⋅⇩l⇩i⇩s⇩t σ)" for k
using IH2 k 2 by auto
show ?thesis
using l1(1) intruder_deduct_num.DecomposeN[OF l1(2) KR'' IH2' r'] 3 by fast
qed
qed
qed
thus ?thesis using deduct_if_deduct_num by blast
qed
lemma constraint_model_Nil:
assumes I: "interpretation⇩s⇩u⇩b⇩s⇩t I" "wf⇩t⇩r⇩m⇩s (subst_range I)"
shows "constraint_model I []"
using I unfolding constraint_model_def by simp
lemma welltyped_constraint_model_Nil:
assumes I: "wt⇩s⇩u⇩b⇩s⇩t I" "interpretation⇩s⇩u⇩b⇩s⇩t I" "wf⇩t⇩r⇩m⇩s (subst_range I)"
shows "welltyped_constraint_model I []"
using I(1) constraint_model_Nil[OF I(2,3)] unfolding welltyped_constraint_model_def by simp
lemma constraint_model_prefix:
assumes "constraint_model I (A@B)"
shows "constraint_model I A"
by (metis assms strand_sem_append_stateful unlabel_append constraint_model_def)
lemma welltyped_constraint_model_prefix:
assumes "welltyped_constraint_model I (A@B)"
shows "welltyped_constraint_model I A"
by (metis assms constraint_model_prefix welltyped_constraint_model_def)
lemma welltyped_constraint_model_deduct_append:
assumes "welltyped_constraint_model I A"
and "ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I ⊢ s ⋅ I"
shows "welltyped_constraint_model I (A@[(l,send⟨[s]⟩)])"
using assms strand_sem_append_stateful[of "{}" "{}" "unlabel A" _ I]
unfolding welltyped_constraint_model_def constraint_model_def by simp
lemma welltyped_constraint_model_deduct_split:
assumes "welltyped_constraint_model I (A@[(l,send⟨[s]⟩)])"
shows "welltyped_constraint_model I A"
and "ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I ⊢ s ⋅ I"
using assms strand_sem_append_stateful[of "{}" "{}" "unlabel A" _ I]
unfolding welltyped_constraint_model_def constraint_model_def by simp_all
lemma welltyped_constraint_model_deduct_iff:
"welltyped_constraint_model I (A@[(l,send⟨[s]⟩)]) ⟷
welltyped_constraint_model I A ∧ ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I ⊢ s ⋅ I"
by (metis welltyped_constraint_model_deduct_append welltyped_constraint_model_deduct_split)
lemma welltyped_constraint_model_attack_if_receive_attack:
assumes I: "welltyped_constraint_model ℐ 𝒜"
and rcv_attack: "receive⟨ts⟩ ∈ set (unlabel 𝒜)" "attack⟨n⟩ ∈ set ts"
shows "welltyped_constraint_model ℐ (𝒜@[(l, send⟨[attack⟨n⟩]⟩)])"
proof -
have "ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ ⊢ attack⟨n⟩"
using rcv_attack in_ik⇩s⇩s⇩t_iff[of "attack⟨n⟩" "unlabel 𝒜"]
ideduct_subst[OF intruder_deduct.Axiom[of "attack⟨n⟩" "ik⇩l⇩s⇩s⇩t 𝒜"], of ℐ]
by auto
thus ?thesis
using I strand_sem_append_stateful[of "{}" "{}" "unlabel 𝒜" "[send⟨[attack⟨n⟩]⟩]" ℐ]
unfolding welltyped_constraint_model_def constraint_model_def by auto
qed
lemma constraint_model_Val_is_Value_term:
assumes "welltyped_constraint_model I A"
and "t ⋅ I = Fun (Val n) []"
shows "t = Fun (Val n) [] ∨ (∃m. t = Var (TAtom Value, m))"
proof -
have "wt⇩s⇩u⇩b⇩s⇩t I" using assms(1) unfolding welltyped_constraint_model_def by simp
moreover have "Γ (Fun (Val n) []) = TAtom Value" by auto
ultimately have *: "Γ t = TAtom Value" by (metis (no_types) assms(2) wt_subst_trm'')
show ?thesis
proof (cases t)
case (Var x)
obtain τ m where x: "x = (τ, m)" by (metis surj_pair)
have "Γ⇩v x = TAtom Value" using * Var by auto
hence "τ = TAtom Value" using x Γ⇩v_TAtom'[of Value τ m] by simp
thus ?thesis using x Var by metis
next
case (Fun f T) thus ?thesis using assms(2) by auto
qed
qed
lemma wellformed_transaction_sem_receives:
fixes T::"('fun,'atom,'sets,'lbl) prot_transaction"
assumes T_valid: "wellformed_transaction T"
and ℐ: "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) ℐ"
and s: "receive⟨ts⟩ ∈ set (unlabel (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ))"
shows "∀t ∈ set ts. IK ⊢ t ⋅ ℐ"
proof -
let ?R = "unlabel (dual⇩l⇩s⇩s⇩t (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ))"
let ?S = "λA. unlabel (dual⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t θ))"
let ?S' = "?S (transaction_receive T)"
obtain l B s where B:
"(l,send⟨ts⟩) = dual⇩l⇩s⇩s⇩t⇩p ((l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ)"
"prefix ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ]) (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)"
using s dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(2)[of ts "transaction_receive T ⋅⇩l⇩s⇩s⇩t θ"]
dual⇩l⇩s⇩s⇩t_in_set_prefix_obtain_subst[of "send⟨ts⟩" "transaction_receive T" θ]
by blast
have 1: "unlabel (dual⇩l⇩s⇩s⇩t ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ])) = unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))@[send⟨ts⟩]"
using B(1) unlabel_append dual⇩l⇩s⇩s⇩t⇩p_subst dual⇩l⇩s⇩s⇩t_subst singleton_lst_proj(4)
dual⇩l⇩s⇩s⇩t_subst_snoc subst_lsst_append subst_lsst_singleton
by (metis (no_types, lifting) subst_apply_labeled_stateful_strand_step.simps)
have "strand_sem_stateful IK DB ?S' ℐ"
using ℐ strand_sem_append_stateful[of IK DB _ _ ℐ] transaction_dual_subst_unfold[of T θ]
by fastforce
hence "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))@[send⟨ts⟩]) ℐ"
using B 1 unfolding prefix_def unlabel_def
by (metis dual⇩l⇩s⇩s⇩t_def map_append strand_sem_append_stateful)
hence t_deduct: "∀t ∈ set ts. IK ∪ (ik⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ)) ⋅⇩s⇩e⇩t ℐ) ⊢ t ⋅ ℐ"
using strand_sem_append_stateful[of IK DB "unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))" "[send⟨ts⟩]" ℐ]
by simp
have "∀s ∈ set (unlabel (transaction_receive T)). ∃t. s = receive⟨t⟩"
using T_valid wellformed_transaction_unlabel_cases(1)[OF T_valid] by auto
moreover { fix A::"('fun,'atom,'sets,'lbl) prot_strand" and θ
assume "∀s ∈ set (unlabel A). ∃t. s = receive⟨t⟩"
hence "∀s ∈ set (unlabel (A ⋅⇩l⇩s⇩s⇩t θ)). ∃t. s = receive⟨t⟩"
proof (induction A)
case (Cons a A) thus ?case using subst_lsst_cons[of a A θ] by (cases a) auto
qed simp
hence "∀s ∈ set (unlabel (A ⋅⇩l⇩s⇩s⇩t θ)). ∃t. s = receive⟨t⟩"
by (simp add: list.pred_set is_Receive_def)
hence "∀s ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t θ))). ∃t. s = send⟨t⟩"
by (metis dual⇩l⇩s⇩s⇩t_memberD dual⇩l⇩s⇩s⇩t⇩p_inv(2) unlabel_in unlabel_mem_has_label)
}
ultimately have "∀s ∈ set ?R. ∃ts. s = send⟨ts⟩" by simp
hence "ik⇩s⇩s⇩t ?R = {}" unfolding unlabel_def ik⇩s⇩s⇩t_def by fast
hence "ik⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ)) = {}"
using B(2) 1 ik⇩s⇩s⇩t_append dual⇩l⇩s⇩s⇩t_append
by (metis (no_types, lifting) Un_empty map_append prefix_def unlabel_def)
thus ?thesis using t_deduct by simp
qed
lemma wellformed_transaction_sem_pos_checks:
assumes T_valid: "wellformed_transaction T"
and ℐ: "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) ℐ"
shows "⟨ac: t ∈ u⟩ ∈ set (unlabel (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ)) ⟹ (t ⋅ ℐ, u ⋅ ℐ) ∈ DB"
and "⟨ac: t ≐ u⟩ ∈ set (unlabel (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ)) ⟹ t ⋅ ℐ = u ⋅ ℐ"
proof -
let ?s = "⟨ac: t ∈ u⟩"
let ?s' = "⟨ac: t ≐ u⟩"
let ?C = "set (unlabel (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ))"
let ?R = "transaction_receive T@transaction_checks T"
let ?R' = "unlabel (dual⇩l⇩s⇩s⇩t (?R ⋅⇩l⇩s⇩s⇩t θ))"
let ?S = "λA. unlabel (dual⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t θ))"
let ?S' = "?S (transaction_receive T)@?S (transaction_checks T)"
let ?P = "λa. is_Receive a ∨ is_Check_or_Assignment a"
let ?Q = "λa. is_Send a ∨ is_Check_or_Assignment a"
let ?dbupd = "λB. dbupd⇩s⇩s⇩t (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))) ℐ DB"
have s_in: "?s ∈ ?C ⟹ ?s ∈ set (unlabel (?R ⋅⇩l⇩s⇩s⇩t θ))"
"?s' ∈ ?C ⟹ ?s' ∈ set (unlabel (?R ⋅⇩l⇩s⇩s⇩t θ))"
using subst_lsst_append[of "transaction_receive T"]
unlabel_append[of "transaction_receive T"]
by auto
have 1: "unlabel (dual⇩l⇩s⇩s⇩t ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ])) = unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))@[s']"
when B: "(l,s') = dual⇩l⇩s⇩s⇩t⇩p ((l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ)" "s' = ⟨ac: t ∈ u⟩ ∨ s' = ⟨ac: t ≐ u⟩"
for l s s' and B::"('fun,'atom,'sets,'lbl) prot_strand"
using B unlabel_append dual⇩l⇩s⇩s⇩t⇩p_subst dual⇩l⇩s⇩s⇩t_subst singleton_lst_proj(4)
dual⇩l⇩s⇩s⇩t_subst_snoc subst_lsst_append subst_lsst_singleton
by (metis (no_types, lifting) subst_apply_labeled_stateful_strand_step.simps)
have 2: "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))@[s']) ℐ"
when B: "(l,s') = dual⇩l⇩s⇩s⇩t⇩p ((l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ)"
"prefix ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ]) (?R ⋅⇩l⇩s⇩s⇩t θ)"
"s' = ⟨ac: t ∈ u⟩ ∨ s' = ⟨ac: t ≐ u⟩"
for l s s' and B::"('fun,'atom,'sets,'lbl) prot_strand"
proof -
have "strand_sem_stateful IK DB ?S' ℐ"
using ℐ strand_sem_append_stateful[of IK DB _ _ ℐ] transaction_dual_subst_unfold[of T θ]
by fastforce
thus ?thesis
using B(2) 1[OF B(1,3)] strand_sem_append_stateful subst_lsst_append
unfolding prefix_def unlabel_def dual⇩l⇩s⇩s⇩t_def by (metis (no_types) map_append)
qed
have s_sem:
"?s ∈ ?C ⟹ (l,?s) = dual⇩l⇩s⇩s⇩t⇩p ((l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ) ⟹ (t ⋅ ℐ, u ⋅ ℐ) ∈ ?dbupd B"
"?s' ∈ ?C ⟹ (l,?s') = dual⇩l⇩s⇩s⇩t⇩p ((l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ) ⟹ t ⋅ ℐ = u ⋅ ℐ"
when B: "prefix ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ]) (?R ⋅⇩l⇩s⇩s⇩t θ)"
for l s and B::"('fun,'atom,'sets,'lbl) prot_strand"
using 2[OF _ B] strand_sem_append_stateful[of IK DB "unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))" _ ℐ]
by (fastforce, fastforce)
have 3: "∀a ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))). ¬is_Insert a ∧ ¬is_Delete a"
when B: "prefix ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ]) (?R ⋅⇩l⇩s⇩s⇩t θ)"
for l s and B::"('fun,'atom,'sets,'lbl) prot_strand"
proof -
have "∀a ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))). ?Q a"
proof
fix a assume a: "a ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ)))"
have "?P a" when a: "a ∈ set (unlabel ?R)" for a
using a wellformed_transaction_unlabel_cases(1,2)[OF T_valid]
unfolding unlabel_def by fastforce
hence "?P a" when a: "a ∈ set (unlabel (?R ⋅⇩l⇩s⇩s⇩t θ))" for a
using a stateful_strand_step_cases_subst(2,11)[of _ θ] subst_lsst_unlabel[of ?R θ]
unfolding subst_apply_stateful_strand_def by auto
hence B_P: "∀a ∈ set (unlabel (B ⋅⇩l⇩s⇩s⇩t θ)). ?P a"
using unlabel_mono[OF set_mono_prefix[OF append_prefixD[OF B]]] by blast
obtain l where "(l,a) ∈ set (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))"
using a by (meson unlabel_mem_has_label)
then obtain b where b: "(l,b) ∈ set (B ⋅⇩l⇩s⇩s⇩t θ)" "dual⇩l⇩s⇩s⇩t⇩p (l,b) = (l,a)"
using dual⇩l⇩s⇩s⇩t_memberD by blast
hence "?P b" using B_P unfolding unlabel_def by fastforce
thus "?Q a" using dual⇩l⇩s⇩s⇩t⇩p_inv[OF b(2)] by (cases b) auto
qed
thus ?thesis by fastforce
qed
show "(t ⋅ ℐ, u ⋅ ℐ) ∈ DB" when s: "?s ∈ ?C"
proof -
obtain l B s where B:
"(l,?s) = dual⇩l⇩s⇩s⇩t⇩p ((l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ)"
"prefix ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ]) (?R ⋅⇩l⇩s⇩s⇩t θ)"
using s_in(1)[OF s] dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(6)[of _ t u]
dual⇩l⇩s⇩s⇩t_in_set_prefix_obtain_subst[of ?s ?R θ]
by blast
show ?thesis
using 3[OF B(2)] s_sem(1)[OF B(2) s B(1)]
dbupd⇩s⇩s⇩t_no_upd[of "unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))" ℐ DB]
by simp
qed
show "t ⋅ ℐ = u ⋅ ℐ" when s: "?s' ∈ ?C"
proof -
obtain l B s where B:
"(l,?s') = dual⇩l⇩s⇩s⇩t⇩p ((l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ)"
"prefix ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ]) (?R ⋅⇩l⇩s⇩s⇩t θ)"
using s_in(2)[OF s] dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(3)[of _ t u]
dual⇩l⇩s⇩s⇩t_in_set_prefix_obtain_subst[of ?s' ?R θ]
by blast
show ?thesis
using 3[OF B(2)] s_sem(2)[OF B(2) s B(1)]
dbupd⇩s⇩s⇩t_no_upd[of "unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))" ℐ DB]
by simp
qed
qed
lemma wellformed_transaction_sem_neg_checks:
assumes T_valid: "wellformed_transaction T"
and ℐ: "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) ℐ"
and "NegChecks X F G ∈ set (unlabel (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ))"
shows "negchecks_model ℐ DB X F G"
proof -
let ?s = "NegChecks X F G"
let ?R = "transaction_receive T@transaction_checks T"
let ?R' = "unlabel (dual⇩l⇩s⇩s⇩t (?R ⋅⇩l⇩s⇩s⇩t θ))"
let ?S = "λA. unlabel (dual⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t θ))"
let ?S' = "?S (transaction_receive T)@?S (transaction_checks T)"
let ?P = "λa. is_Receive a ∨ is_Check_or_Assignment a"
let ?Q = "λa. is_Send a ∨ is_Check_or_Assignment a"
let ?U = "λδ. subst_domain δ = set X ∧ ground (subst_range δ)"
have s: "?s ∈ set (unlabel (?R ⋅⇩l⇩s⇩s⇩t θ))"
using assms(3) subst_lsst_append[of "transaction_receive T"]
unlabel_append[of "transaction_receive T"]
by auto
obtain l B s where B:
"(l,?s) = dual⇩l⇩s⇩s⇩t⇩p ((l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ)"
"prefix ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ]) (?R ⋅⇩l⇩s⇩s⇩t θ)"
using s dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(7)[of X F G]
dual⇩l⇩s⇩s⇩t_in_set_prefix_obtain_subst[of ?s ?R θ]
by blast
have 1: "unlabel (dual⇩l⇩s⇩s⇩t ((B ⋅⇩l⇩s⇩s⇩t θ)@[(l,s) ⋅⇩l⇩s⇩s⇩t⇩p θ])) = unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))@[?s]"
using B(1) unlabel_append dual⇩l⇩s⇩s⇩t⇩p_subst dual⇩l⇩s⇩s⇩t_subst singleton_lst_proj(4)
dual⇩l⇩s⇩s⇩t_subst_snoc subst_lsst_append subst_lsst_singleton
by (metis (no_types, lifting) subst_apply_labeled_stateful_strand_step.simps)
have "strand_sem_stateful IK DB ?S' ℐ"
using ℐ strand_sem_append_stateful[of IK DB _ _ ℐ] transaction_dual_subst_unfold[of T θ]
by fastforce
hence "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))@[?s]) ℐ"
using B 1 strand_sem_append_stateful subst_lsst_append
unfolding prefix_def unlabel_def dual⇩l⇩s⇩s⇩t_def
by (metis (no_types) map_append)
hence s_sem: "negchecks_model ℐ (dbupd⇩s⇩s⇩t (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))) ℐ DB) X F G"
using strand_sem_append_stateful[of IK DB "unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))" "[?s]" ℐ]
by fastforce
have "∀a ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))). ?Q a"
proof
fix a assume a: "a ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ)))"
have "?P a" when a: "a ∈ set (unlabel ?R)" for a
using a wellformed_transaction_unlabel_cases(1,2,3)[OF T_valid]
unfolding unlabel_def by fastforce
hence "?P a" when a: "a ∈ set (unlabel (?R ⋅⇩l⇩s⇩s⇩t θ))" for a
using a stateful_strand_step_cases_subst(2,11)[of _ θ] subst_lsst_unlabel[of ?R θ]
unfolding subst_apply_stateful_strand_def by auto
hence B_P: "∀a ∈ set (unlabel (B ⋅⇩l⇩s⇩s⇩t θ)). ?P a"
using unlabel_mono[OF set_mono_prefix[OF append_prefixD[OF B(2)]]]
by blast
obtain l where "(l,a) ∈ set (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))"
using a by (meson unlabel_mem_has_label)
then obtain b where b: "(l,b) ∈ set (B ⋅⇩l⇩s⇩s⇩t θ)" "dual⇩l⇩s⇩s⇩t⇩p (l,b) = (l,a)"
using dual⇩l⇩s⇩s⇩t_memberD by blast
hence "?P b" using B_P unfolding unlabel_def by fastforce
thus "?Q a" using dual⇩l⇩s⇩s⇩t⇩p_inv[OF b(2)] by (cases b) auto
qed
hence "∀a ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))). ¬is_Insert a ∧ ¬is_Delete a" by fastforce
thus ?thesis using dbupd⇩s⇩s⇩t_no_upd[of "unlabel (dual⇩l⇩s⇩s⇩t (B ⋅⇩l⇩s⇩s⇩t θ))" ℐ DB] s_sem by simp
qed
lemma wellformed_transaction_sem_neg_checks':
assumes T_valid: "wellformed_transaction T"
and ℐ: "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) ℐ"
and c: "NegChecks X [] [(t,u)] ∈ set (unlabel (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ))"
shows "∀δ. subst_domain δ = set X ∧ ground (subst_range δ) ⟶ (t ⋅ δ ⋅ ℐ, u ⋅ δ ⋅ ℐ) ∉ DB" (is ?A)
and "X = [] ⟹ (t ⋅ ℐ, u ⋅ ℐ) ∉ DB" (is "?B ⟹ ?B'")
proof -
show ?A
using wellformed_transaction_sem_neg_checks[OF T_valid ℐ c]
unfolding negchecks_model_def by auto
moreover have "δ = Var" "t ⋅ δ = t"
when "subst_domain δ = set []" for t and δ::"('fun, 'atom, 'sets, 'lbl) prot_subst"
using that by auto
moreover have "subst_domain Var = set []" "range_vars Var = {}"
by simp_all
ultimately show "?B ⟹ ?B'" unfolding range_vars_alt_def by metis
qed
lemma wellformed_transaction_sem_iff:
fixes T θ
defines "A ≡ unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
and "rm ≡ λX. rm_vars (set X)"
assumes T: "wellformed_transaction T"
and I: " interpretation⇩s⇩u⇩b⇩s⇩t I" "wf⇩t⇩r⇩m⇩s (subst_range I)"
shows "strand_sem_stateful M D A I ⟷ (
(∀l ts. (l,receive⟨ts⟩) ∈ set (transaction_receive T) ⟶ (∀t ∈ set ts. M ⊢ t ⋅ θ ⋅ I)) ∧
(∀l ac t s. (l,⟨ac: t ≐ s⟩) ∈ set (transaction_checks T) ⟶ t ⋅ θ ⋅ I = s ⋅ θ ⋅ I) ∧
(∀l ac t s. (l,⟨ac: t ∈ s⟩) ∈ set (transaction_checks T) ⟶ (t ⋅ θ ⋅ I, s ⋅ θ ⋅ I) ∈ D) ∧
(∀l X F G. (l,∀X⟨∨≠: F ∨∉: G⟩) ∈ set (transaction_checks T) ⟶
(∀δ. subst_domain δ = set X ∧ ground (subst_range δ) ⟶
(∃(t,s) ∈ set F. t ⋅ rm X θ ⋅ δ ⋅ I ≠ s ⋅ rm X θ ⋅ δ ⋅ I) ∨
(∃(t,s) ∈ set G. (t ⋅ rm X θ ⋅ δ ⋅ I, s ⋅ rm X θ ⋅ δ ⋅ I) ∉ D))))"
(is "?A ⟷ ?B")
proof
note 0 = A_def transaction_dual_subst_unlabel_unfold
note 1 = wellformed_transaction_sem_receives[OF T, of M D θ I, unfolded A_def[symmetric]]
wellformed_transaction_sem_pos_checks[OF T, of M D θ I, unfolded A_def[symmetric]]
wellformed_transaction_sem_neg_checks[OF T, of M D θ I, unfolded A_def[symmetric]]
note 2 = stateful_strand_step_subst_inI[OF unlabel_in]
note 3 = unlabel_subst
note 4 = strand_sem_append_stateful[of M D _ _ I]
let ?C = "λT. unlabel (dual⇩l⇩s⇩s⇩t (T ⋅⇩l⇩s⇩s⇩t θ))"
let ?P = "λX δ. subst_domain δ = set X ∧ ground (subst_range δ)"
let ?sem = "λM D T. strand_sem_stateful M D (?C T) I"
let ?negchecks = "λX F G. ∀δ. ?P X δ ⟶
(∃(t,s) ∈ set F. t ⋅ rm X θ ⋅ δ ⋅ I ≠ s ⋅ rm X θ ⋅ δ ⋅ I) ∨
(∃(t,s) ∈ set G. (t ⋅ rm X θ ⋅ δ ⋅ I, s ⋅ rm X θ ⋅ δ ⋅ I) ∉ D)"
have "list_all is_Receive (unlabel (transaction_receive T))"
"list_all is_Check_or_Assignment (unlabel (transaction_checks T))"
"list_all is_Update (unlabel (transaction_updates T))"
"list_all is_Send (unlabel (transaction_send T))"
using T unfolding wellformed_transaction_def by (blast, blast, blast, blast)
hence 5: "list_all is_Send (?C (transaction_receive T))"
"list_all is_Check_or_Assignment (?C (transaction_checks T))"
"list_all is_Update (?C (transaction_updates T))"
"list_all is_Receive (?C (transaction_send T))"
by (metis (no_types) subst_sst_list_all(2) unlabel_subst dual⇩l⇩s⇩s⇩t_list_all(1),
metis (no_types) subst_sst_list_all(11) unlabel_subst dual⇩l⇩s⇩s⇩t_list_all(11),
metis (no_types) subst_sst_list_all(10) unlabel_subst dual⇩l⇩s⇩s⇩t_list_all(10),
metis (no_types) subst_sst_list_all(1) unlabel_subst dual⇩l⇩s⇩s⇩t_list_all(2))
have "∀a ∈ set (?C (transaction_receive T)). ¬is_Receive a ∧ ¬is_Insert a ∧ ¬is_Delete a"
"∀a ∈ set (?C (transaction_checks T)). ¬is_Receive a ∧ ¬is_Insert a ∧ ¬is_Delete a"
using 5(1,2) unfolding list_all_iff by (blast,blast)
hence 6:
"M ∪ (ik⇩s⇩s⇩t (?C (transaction_receive T)) ⋅⇩s⇩e⇩t I) = M"
"dbupd⇩s⇩s⇩t (?C (transaction_receive T)) I D = D"
"M ∪ (ik⇩s⇩s⇩t (?C (transaction_checks T)) ⋅⇩s⇩e⇩t I) = M"
"dbupd⇩s⇩s⇩t (?C (transaction_checks T)) I D = D"
by (metis ik⇩s⇩s⇩t_snoc_no_receive_empty sup_bot.right_neutral, metis dbupd⇩s⇩s⇩t_no_upd,
metis ik⇩s⇩s⇩t_snoc_no_receive_empty sup_bot.right_neutral, metis dbupd⇩s⇩s⇩t_no_upd)
have ?B when A: ?A
proof -
have "M ⊢ t ⋅ θ ⋅ I"
when "(l, receive⟨ts⟩) ∈ set (transaction_receive T)" "t ∈ set ts" for l ts t
using that(2) 1(1)[OF A, of "ts ⋅⇩l⇩i⇩s⇩t θ"] 2(2)[OF that(1)] unfolding 3 by auto
moreover have "t ⋅ θ ⋅ I = s ⋅ θ ⋅ I"
when "(l, ⟨ac: t ≐ s⟩) ∈ set (transaction_checks T)" for l ac t s
using 1(3)[OF A] 2(3)[OF that] unfolding 3 by blast
moreover have "(t ⋅ θ ⋅ I, s ⋅ θ ⋅ I) ∈ D"
when "(l, ⟨ac: t ∈ s⟩) ∈ set (transaction_checks T)" for l ac t s
using 1(2)[OF A] 2(6)[OF that] unfolding 3 by blast
moreover have "?negchecks X F G"
when "(l, ∀X⟨∨≠: F ∨∉: G⟩) ∈ set (transaction_checks T)" for l X F G
using 1(4)[OF A 2(7)[OF that, of θ, unfolded 3]]
unfolding negchecks_model_def rm_def subst_apply_pairs_def by fastforce
ultimately show ?B by blast
qed
thus "?A ⟹ ?B" by fast
have ?A when B: ?B
proof -
have 7: "∀t ∈ set ts. M ⊢ t ⋅ I" when ts: "send⟨ts⟩ ∈ set (?C (transaction_receive T))" for ts
proof -
obtain l ss where "(l,receive⟨ss⟩) ∈ set (transaction_receive T)" "ts = ss ⋅⇩l⇩i⇩s⇩t θ"
by (metis ts dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(2) subst_lsst_memD(1) unlabel_mem_has_label)
thus ?thesis using B by auto
qed
have 8: "t ⋅ I = s ⋅ I" when ts: "⟨ac: t ≐ s⟩ ∈ set (?C (transaction_checks T))" for ac t s
proof -
obtain l t' s' where "(l,⟨ac: t' ≐ s'⟩) ∈ set (transaction_checks T)" "t = t' ⋅ θ" "s = s' ⋅ θ"
by (metis ts dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(3) subst_lsst_memD(3) unlabel_mem_has_label)
thus ?thesis using B by auto
qed
have 9: "(t ⋅ I, s ⋅ I) ∈ D" when ts: "⟨ac: t ∈ s⟩ ∈ set (?C (transaction_checks T))" for ac t s
proof -
obtain l t' s' where "(l,⟨ac: t' ∈ s'⟩) ∈ set (transaction_checks T)" "t = t' ⋅ θ" "s = s' ⋅ θ"
by (metis ts dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(6) subst_lsst_memD(6) unlabel_mem_has_label)
thus ?thesis using B by auto
qed
have 10: "negchecks_model I D X F G"
when ts: "∀X⟨∨≠: F ∨∉: G⟩ ∈ set (?C (transaction_checks T))" for X F G
proof -
obtain l F' G' where *:
"(l,∀X⟨∨≠: F' ∨∉: G'⟩) ∈ set (transaction_checks T)"
"F = F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) θ" "G = G' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) θ"
using unlabel_mem_has_label[OF iffD2[OF dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(7) ts]]
subst_lsst_memD(7)[of _ X F G "transaction_checks T" θ]
by fast
have "?negchecks X F' G'" using *(1) B by blast
moreover have "∃(t,s) ∈ set F. t ⋅ δ ∘⇩s I ≠ s ⋅ δ ∘⇩s I"
when "(t,s) ∈ set F'" "t ⋅ rm X θ ⋅ δ ⋅ I ≠ s ⋅ rm X θ ⋅ δ ⋅ I" for δ t s
using that unfolding rm_def *(2) subst_apply_pairs_def by force
moreover have "∃(t,s) ∈ set G. (t,s) ⋅⇩p δ ∘⇩s I ∉ D"
when "(t,s) ∈ set G'" "(t ⋅ rm X θ ⋅ δ ⋅ I, s ⋅ rm X θ ⋅ δ ⋅ I) ∉ D" for δ t s
using that unfolding rm_def *(3) subst_apply_pairs_def by force
ultimately show ?thesis
unfolding negchecks_model_def by auto
qed
have "?sem M D (transaction_receive T)"
using 7 strand_sem_stateful_if_sends_deduct[OF 5(1)] by blast
moreover have "?sem M D (transaction_checks T)"
using 8 9 10 strand_sem_stateful_if_checks[OF 5(2)] by blast
moreover have "?sem M D (transaction_updates T)" for M D
using 5(3) strand_sem_stateful_if_no_send_or_check unfolding list_all_iff by blast
moreover have "?sem M D (transaction_send T)" for M D
using 5(4) strand_sem_stateful_if_no_send_or_check unfolding list_all_iff by blast
ultimately show ?thesis
using 4[of "?C (transaction_receive T)"
"?C (transaction_checks T)@?C (transaction_updates T)@?C (transaction_send T)"]
4[of "?C (transaction_checks T)" "?C (transaction_updates T)@?C (transaction_send T)"]
4[of "?C (transaction_updates T)" "?C (transaction_send T)"]
unfolding 0 6 by blast
qed
thus "?B ⟹ ?A" by fast
qed
lemma wellformed_transaction_unlabel_sem_iff:
fixes T θ
defines "A ≡ unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
and "rm ≡ λX. rm_vars (set X)"
assumes T: "wellformed_transaction T"
and I: " interpretation⇩s⇩u⇩b⇩s⇩t I" "wf⇩t⇩r⇩m⇩s (subst_range I)"
shows "strand_sem_stateful M D A I ⟷ (
(∀ts. receive⟨ts⟩ ∈ set (unlabel (transaction_receive T)) ⟶ (∀t ∈ set ts. M ⊢ t ⋅ θ ⋅ I)) ∧
(∀ac t s. ⟨ac: t ≐ s⟩ ∈ set (unlabel (transaction_checks T)) ⟶ t ⋅ θ ⋅ I = s ⋅ θ ⋅ I) ∧
(∀ac t s. ⟨ac: t ∈ s⟩ ∈ set (unlabel (transaction_checks T)) ⟶ (t ⋅ θ ⋅ I, s ⋅ θ ⋅ I) ∈ D) ∧
(∀X F G. ∀X⟨∨≠: F ∨∉: G⟩ ∈ set (unlabel (transaction_checks T)) ⟶
(∀δ. subst_domain δ = set X ∧ ground (subst_range δ) ⟶
(∃(t,s) ∈ set F. t ⋅ rm X θ ⋅ δ ⋅ I ≠ s ⋅ rm X θ ⋅ δ ⋅ I) ∨
(∃(t,s) ∈ set G. (t ⋅ rm X θ ⋅ δ ⋅ I, s ⋅ rm X θ ⋅ δ ⋅ I) ∉ D))))"
using wellformed_transaction_sem_iff[OF T I, of M D θ]
unlabel_in[of _ _ "transaction_receive T"] unlabel_mem_has_label[of _ "transaction_receive T"]
unlabel_in[of _ _ "transaction_checks T"] unlabel_mem_has_label[of _ "transaction_checks T"]
unfolding A_def[symmetric] rm_def by meson
lemma dual_transaction_ik_is_transaction_send'':
fixes δ ℐ::"('a,'b,'c,'d) prot_subst"
assumes "wellformed_transaction T"
shows "(ik⇩s⇩s⇩t (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t δ))) ⋅⇩s⇩e⇩t ℐ) ⋅⇩α⇩s⇩e⇩t a =
(trms⇩s⇩s⇩t (unlabel (transaction_send T)) ⋅⇩s⇩e⇩t δ ⋅⇩s⇩e⇩t ℐ) ⋅⇩α⇩s⇩e⇩t a" (is "?A = ?B")
using dual_transaction_ik_is_transaction_send[OF assms]
subst_lsst_unlabel[of "dual⇩l⇩s⇩s⇩t (transaction_strand T)" δ]
ik⇩s⇩s⇩t_subst[of "unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T))" δ]
dual⇩l⇩s⇩s⇩t_subst[of "transaction_strand T" δ]
by (auto simp add: abs_apply_terms_def)
lemma while_prot_terms_fun_mono:
"mono (λM'. M ∪ ⋃(subterms ` M') ∪ ⋃((set ∘ fst ∘ Ana) ` M'))"
unfolding mono_def by fast
lemma while_prot_terms_SMP_overapprox:
fixes M::"('fun,'atom,'sets,'lbl) prot_terms"
assumes N_supset: "M ∪ ⋃(subterms ` N) ∪ ⋃((set ∘ fst ∘ Ana) ` N) ⊆ N"
and Value_vars_only: "∀x ∈ fv⇩s⇩e⇩t N. Γ⇩v x = TAtom Value"
shows "SMP M ⊆ {a ⋅ δ | a δ. a ∈ N ∧ wt⇩s⇩u⇩b⇩s⇩t δ ∧ wf⇩t⇩r⇩m⇩s (subst_range δ)}"
proof -
define f where "f ≡ λM'. M ∪ ⋃(subterms ` M') ∪ ⋃((set ∘ fst ∘ Ana) ` M')"
define S where "S ≡ {a ⋅ δ | a δ. a ∈ N ∧ wt⇩s⇩u⇩b⇩s⇩t δ ∧ wf⇩t⇩r⇩m⇩s (subst_range δ)}"
note 0 = Value_vars_only
have "t ∈ S" when "t ∈ SMP M" for t
using that
proof (induction t rule: SMP.induct)
case (MP t)
hence "t ∈ N" "wt⇩s⇩u⇩b⇩s⇩t Var" "wf⇩t⇩r⇩m⇩s (subst_range Var)" using N_supset by auto
hence "t ⋅ Var ∈ S" unfolding S_def by blast
thus ?case by simp
next
case (Subterm t t')
then obtain δ a where a: "a ⋅ δ = t" "a ∈ N" "wt⇩s⇩u⇩b⇩s⇩t δ" "wf⇩t⇩r⇩m⇩s (subst_range δ)"
by (auto simp add: S_def)
hence "∀x ∈ fv a. ∃τ. Γ (Var x) = TAtom τ" using 0 by auto
hence *: "∀x ∈ fv a. (∃f. δ x = Fun f []) ∨ (∃y. δ x = Var y)"
using a(3) TAtom_term_cases[OF wf_trm_subst_rangeD[OF a(4)]]
by (metis wt⇩s⇩u⇩b⇩s⇩t_def)
obtain b where b: "b ⋅ δ = t'" "b ∈ subterms a"
using subterms_subst_subterm[OF *, of t'] Subterm.hyps(2) a(1)
by fast
hence "b ∈ N" using N_supset a(2) by blast
thus ?case using a b(1) unfolding S_def by blast
next
case (Substitution t θ)
then obtain δ a where a: "a ⋅ δ = t" "a ∈ N" "wt⇩s⇩u⇩b⇩s⇩t δ" "wf⇩t⇩r⇩m⇩s (subst_range δ)"
by (auto simp add: S_def)
have "wt⇩s⇩u⇩b⇩s⇩t (δ ∘⇩s θ)" "wf⇩t⇩r⇩m⇩s (subst_range (δ ∘⇩s θ))"
by (fact wt_subst_compose[OF a(3) Substitution.hyps(2)],
fact wf_trms_subst_compose[OF a(4) Substitution.hyps(3)])
moreover have "t ⋅ θ = a ⋅ δ ∘⇩s θ" using a(1) subst_subst_compose[of a δ θ] by simp
ultimately show ?case using a(2) unfolding S_def by blast
next
case (Ana t K T k)
then obtain δ a where a: "a ⋅ δ = t" "a ∈ N" "wt⇩s⇩u⇩b⇩s⇩t δ" "wf⇩t⇩r⇩m⇩s (subst_range δ)"
by (auto simp add: S_def)
obtain Ka Ta where a': "Ana a = (Ka,Ta)" by force
have *: "K = Ka ⋅⇩l⇩i⇩s⇩t δ"
proof (cases a)
case (Var x)
then obtain g U where gU: "t = Fun g U"
using a(1) Ana.hyps(2,3) Ana_var
by (cases t) simp_all
have "Γ (Var x) = TAtom Value" using Var a(2) 0 by auto
hence "Γ (Fun g U) = TAtom Value"
using a(1,3) Var gU wt_subst_trm''[OF a(3), of a]
by argo
thus ?thesis using gU Fun_Value_type_inv Ana.hyps(2,3) by fastforce
next
case (Fun g U) thus ?thesis using a(1) a' Ana.hyps(2) Ana_subst'[of g U] by simp
qed
then obtain ka where ka: "k = ka ⋅ δ" "ka ∈ set Ka" using Ana.hyps(3) by auto
have "ka ∈ set ((fst ∘ Ana) a)" using ka(2) a' by simp
hence "ka ∈ N" using a(2) N_supset by auto
thus ?case using ka a(3,4) unfolding S_def by blast
qed
thus ?thesis unfolding S_def by blast
qed
subsection ‹Admissible Transactions›
definition admissible_transaction_checks where
"admissible_transaction_checks T ≡
∀x ∈ set (unlabel (transaction_checks T)).
(is_InSet x ⟶
is_Var (the_elem_term x) ∧ is_Fun_Set (the_set_term x) ∧
fst (the_Var (the_elem_term x)) = TAtom Value) ∧
(is_NegChecks x ⟶
bvars⇩s⇩s⇩t⇩p x = [] ∧
((the_eqs x = [] ∧ length (the_ins x) = 1) ∨
(the_ins x = [] ∧ length (the_eqs x) = 1))) ∧
(is_NegChecks x ∧ the_eqs x = [] ⟶ (let h = hd (the_ins x) in
is_Var (fst h) ∧ is_Fun_Set (snd h) ∧
fst (the_Var (fst h)) = TAtom Value))"
definition admissible_transaction_updates where
"admissible_transaction_updates T ≡
∀x ∈ set (unlabel (transaction_updates T)).
is_Update x ∧ is_Var (the_elem_term x) ∧ is_Fun_Set (the_set_term x) ∧
fst (the_Var (the_elem_term x)) = TAtom Value"
definition admissible_transaction_terms where
"admissible_transaction_terms T ≡
wf⇩t⇩r⇩m⇩s' arity (trms⇩l⇩s⇩s⇩t (transaction_strand T)) ∧
(∀f ∈ ⋃(funs_term ` trms_transaction T).
¬is_Val f ∧ ¬is_Abs f ∧ ¬is_PubConst f ∧ f ≠ Pair) ∧
(∀r ∈ set (unlabel (transaction_strand T)).
(∃f ∈ ⋃(funs_term ` (trms⇩s⇩s⇩t⇩p r)). is_Attack f) ⟶
transaction_fresh T = [] ∧
is_Send r ∧ length (the_msgs r) = 1 ∧ is_Fun_Attack (hd (the_msgs r)))"
definition admissible_transaction_send_occurs_form where
"admissible_transaction_send_occurs_form T ≡ (
let snds = transaction_send T;
frsh = transaction_fresh T
in ∀t ∈ trms⇩l⇩s⇩s⇩t snds. OccursFact ∈ funs_term t ∨ OccursSec ∈ funs_term t ⟶
(∃x ∈ set frsh. t = occurs (Var x))
)"
definition admissible_transaction_occurs_checks where
"admissible_transaction_occurs_checks T ≡ (
let occ_in = λx S. occurs (Var x) ∈ set (the_msgs (hd (unlabel S)));
rcvs = transaction_receive T;
snds = transaction_send T;
frsh = transaction_fresh T;
fvs = fv_transaction T
in admissible_transaction_send_occurs_form T ∧
((∃x ∈ fvs - set frsh. fst x = TAtom Value) ⟶ (
rcvs ≠ [] ∧ is_Receive (hd (unlabel rcvs)) ∧
(∀x ∈ fvs - set frsh. fst x = TAtom Value ⟶ occ_in x rcvs))) ∧
(frsh ≠ [] ⟶ (
snds ≠ [] ∧ is_Send (hd (unlabel snds)) ∧
(∀x ∈ set frsh. occ_in x snds)))
)"
definition admissible_transaction_no_occurs_msgs where
"admissible_transaction_no_occurs_msgs T ≡ (
let no_occ = λt. is_Fun t ⟶ the_Fun t ≠ OccursFact;
rcvs = transaction_receive T;
snds = transaction_send T
in list_all (λa. is_Receive (snd a) ⟶ list_all no_occ (the_msgs (snd a))) rcvs ∧
list_all (λa. is_Send (snd a) ⟶ list_all no_occ (the_msgs (snd a))) snds
)"
definition admissible_transaction' where
"admissible_transaction' T ≡ (
wellformed_transaction T ∧
transaction_decl T () = [] ∧
list_all (λx. fst x = TAtom Value) (transaction_fresh T) ∧
(∀x ∈ vars_transaction T. is_Var (fst x) ∧ (the_Var (fst x) = Value)) ∧
bvars⇩l⇩s⇩s⇩t (transaction_strand T) = {} ∧
set (transaction_fresh T) ⊆
fv⇩l⇩s⇩s⇩t (filter (is_Insert ∘ snd) (transaction_updates T)) ∪ fv⇩l⇩s⇩s⇩t (transaction_send T) ∧
(∀x ∈ fv_transaction T - set (transaction_fresh T).
∀y ∈ fv_transaction T - set (transaction_fresh T).
x ≠ y ⟶ ⟨Var x != Var y⟩ ∈ set (unlabel (transaction_checks T)) ∨
⟨Var y != Var x⟩ ∈ set (unlabel (transaction_checks T))) ∧
fv⇩l⇩s⇩s⇩t (transaction_updates T) ∪ fv⇩l⇩s⇩s⇩t (transaction_send T) - set (transaction_fresh T)
⊆ fv⇩l⇩s⇩s⇩t (transaction_receive T) ∪ fv⇩l⇩s⇩s⇩t (transaction_checks T) ∧
(∀r ∈ set (unlabel (transaction_checks T)).
is_Equality r ⟶ fv (the_rhs r) ⊆ fv⇩l⇩s⇩s⇩t (transaction_receive T)) ∧
fv⇩l⇩s⇩s⇩t (transaction_checks T) ⊆
fv⇩l⇩s⇩s⇩t (transaction_receive T) ∪
fv⇩l⇩s⇩s⇩t (filter (λs. is_InSet (snd s) ∧ the_check (snd s) = Assign) (transaction_checks T)) ∧
list_all (λa. is_Receive (snd a) ⟶ the_msgs (snd a) ≠ []) (transaction_receive T) ∧
list_all (λa. is_Send (snd a) ⟶ the_msgs (snd a) ≠ []) (transaction_send T) ∧
admissible_transaction_checks T ∧
admissible_transaction_updates T ∧
admissible_transaction_terms T ∧
admissible_transaction_send_occurs_form T
)"
definition admissible_transaction where
"admissible_transaction T ≡
admissible_transaction' T ∧
admissible_transaction_no_occurs_msgs T"
definition has_initial_value_producing_transaction where
"has_initial_value_producing_transaction P ≡
let f = λs.
list_all (λT. list_all (λa. ((is_Delete a ∨ is_InSet a) ⟶ the_set_term a ≠ ⟨s⟩⇩s) ∧
(is_NegChecks a ⟶ list_all (λ(_,t). t ≠ ⟨s⟩⇩s) (the_ins a)))
(unlabel (transaction_checks T@transaction_updates T)))
P
in list_ex (λT.
length (transaction_fresh T) = 1 ∧ transaction_receive T = [] ∧
transaction_checks T = [] ∧ length (transaction_send T) = 1 ∧
(let x = hd (transaction_fresh T); a = hd (transaction_send T); u = transaction_updates T
in is_Send (snd a) ∧ Var x ∈ set (the_msgs (snd a)) ∧
fv⇩s⇩e⇩t (set (the_msgs (snd a))) = {x} ∧
(u ≠ [] ⟶ (
let b = hd u; c = snd b
in tl u = [] ∧ is_Insert c ∧ the_elem_term c = Var x ∧
is_Fun_Set (the_set_term c) ∧ f (the_Set (the_Fun (the_set_term c))))))
) P"
lemma admissible_transaction_is_wellformed_transaction:
assumes "admissible_transaction' T"
shows "wellformed_transaction T"
and "admissible_transaction_checks T"
and "admissible_transaction_updates T"
and "admissible_transaction_terms T"
and "admissible_transaction_send_occurs_form T"
using assms unfolding admissible_transaction'_def by blast+
lemma admissible_transaction_no_occurs_msgsE:
assumes T: "admissible_transaction' T" "admissible_transaction_no_occurs_msgs T"
shows "∀ts. send⟨ts⟩ ∈ set (unlabel (transaction_strand T)) ∨
receive⟨ts⟩ ∈ set (unlabel (transaction_strand T)) ⟶
(∀t s. t ∈ set ts ⟶ t ≠ occurs s)"
proof -
note 1 = admissible_transaction_is_wellformed_transaction(1)[OF T(1)]
have 2: "send⟨ts⟩ ∈ set (unlabel (transaction_send T))"
when "send⟨ts⟩ ∈ set (unlabel (transaction_strand T))" for ts
using wellformed_transaction_strand_unlabel_memberD(8)[OF 1 that] by fast
have 3: "receive⟨ts⟩ ∈ set (unlabel (transaction_receive T))"
when "receive⟨ts⟩ ∈ set (unlabel (transaction_strand T))" for ts
using wellformed_transaction_strand_unlabel_memberD(1)[OF 1 that] by fast
show ?thesis
using T(2) 2 3 wellformed_transaction_unlabel_cases(1,4)[OF 1]
unfolding admissible_transaction_no_occurs_msgs_def Let_def list_all_iff
by (metis sndI stateful_strand_step.discI(1,2) stateful_strand_step.sel(1,2)
term.discI(2) term.sel(2) unlabel_mem_has_label)
qed
lemma admissible_transactionE:
assumes T: "admissible_transaction' T"
shows "transaction_decl T () = []" (is ?A)
and "∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value" (is ?B)
and "∀x ∈ vars⇩l⇩s⇩s⇩t (transaction_strand T). Γ⇩v x = TAtom Value" (is ?C)
and "bvars⇩l⇩s⇩s⇩t (transaction_strand T) = {}" (is ?D1)
and "fv_transaction T ∩ bvars_transaction T = {}" (is ?D2)
and "set (transaction_fresh T) ⊆
fv⇩l⇩s⇩s⇩t (filter (is_Insert ∘ snd) (transaction_updates T)) ∪ fv⇩l⇩s⇩s⇩t (transaction_send T)"
(is ?E)
and "set (transaction_fresh T) ⊆ fv⇩l⇩s⇩s⇩t (transaction_updates T) ∪ fv⇩l⇩s⇩s⇩t (transaction_send T)"
(is ?F)
and "∀x ∈ fv_transaction T - set (transaction_fresh T).
∀y ∈ fv_transaction T - set (transaction_fresh T).
x ≠ y ⟶ ⟨Var x != Var y⟩ ∈ set (unlabel (transaction_checks T)) ∨
⟨Var y != Var x⟩ ∈ set (unlabel (transaction_checks T))"
(is ?G)
and "∀x ∈ fv⇩l⇩s⇩s⇩t (transaction_checks T).
x ∈ fv⇩l⇩s⇩s⇩t (transaction_receive T) ∨
(∃t s. select⟨t,s⟩ ∈ set (unlabel (transaction_checks T)) ∧ x ∈ fv t ∪ fv s)"
(is ?H)
and "fv⇩l⇩s⇩s⇩t (transaction_updates T) ∪ fv⇩l⇩s⇩s⇩t (transaction_send T) - set (transaction_fresh T) ⊆
fv⇩l⇩s⇩s⇩t (transaction_receive T) ∪ fv⇩l⇩s⇩s⇩t (transaction_checks T)"
(is ?I)
and "∀x ∈ set (unlabel (transaction_checks T)).
is_Equality x ⟶ fv (the_rhs x) ⊆ fv⇩l⇩s⇩s⇩t (transaction_receive T)"
(is ?J)
and "set (transaction_fresh T) ∩ fv⇩l⇩s⇩s⇩t (transaction_receive T) = {}" (is ?K1)
and "set (transaction_fresh T) ∩ fv⇩l⇩s⇩s⇩t (transaction_checks T) = {}" (is ?K2)
and "list_all (λx. fst x = Var Value) (transaction_fresh T)" (is ?K3)
and "∀x ∈ vars_transaction T. ¬TAtom AttackType ⊑ Γ⇩v x" (is ?K4)
and "∀l ts. (l,receive⟨ts⟩) ∈ set (transaction_receive T) ⟶ ts ≠ []" (is ?L1)
and "∀l ts. (l,send⟨ts⟩) ∈ set (transaction_send T) ⟶ ts ≠ []" (is ?L2)
proof -
show ?A ?D1 ?D2 ?G ?I ?J ?K3
using T unfolding admissible_transaction'_def
by (blast, blast, blast, blast, blast, blast, blast)
have "list_all (λa. is_Receive (snd a) ⟶ the_msgs (snd a) ≠ []) (transaction_receive T)"
"list_all (λa. is_Send (snd a) ⟶ the_msgs (snd a) ≠ []) (transaction_send T)"
using T unfolding admissible_transaction'_def by auto
thus ?L1 ?L2 unfolding list_all_iff by (force,force)
have "list_all (λx. fst x = Var Value) (transaction_fresh T)"
"∀x∈vars_transaction T. is_Var (fst x) ∧ the_Var (fst x) = Value"
using T unfolding admissible_transaction'_def by (blast, blast)
thus ?B ?C ?K4 using Γ⇩v_TAtom''(2) unfolding list_all_iff by (blast, force, force)
show ?E using T unfolding admissible_transaction'_def by argo
thus ?F unfolding unlabel_def by auto
show ?K1 ?K2
using T unfolding admissible_transaction'_def wellformed_transaction_def by (argo, argo)
let ?selects = "filter (λs. is_InSet (snd s) ∧ the_check (snd s) = Assign) (transaction_checks T)"
show ?H
proof
fix x assume "x ∈ fv⇩l⇩s⇩s⇩t (transaction_checks T)"
hence "x ∈ fv⇩l⇩s⇩s⇩t (transaction_receive T) ∨ x ∈ fv⇩l⇩s⇩s⇩t ?selects"
using T unfolding admissible_transaction'_def by blast
thus "x ∈ fv⇩l⇩s⇩s⇩t (transaction_receive T) ∨
(∃t s. select⟨t,s⟩ ∈ set (unlabel (transaction_checks T)) ∧ x ∈ fv t ∪ fv s)"
proof
assume "x ∈ fv⇩l⇩s⇩s⇩t ?selects"
then obtain r where r: "x ∈ fv⇩s⇩s⇩t⇩p r" "r ∈ set (unlabel (transaction_checks T))"
"is_InSet r" "the_check r = Assign"
unfolding unlabel_def by force
thus ?thesis by (cases r) auto
qed simp
qed
qed
lemma admissible_transactionE':
assumes T: "admissible_transaction T"
shows "admissible_transaction' T" (is ?A)
and "admissible_transaction_no_occurs_msgs T" (is ?B)
and "∀ts. send⟨ts⟩ ∈ set (unlabel (transaction_strand T)) ∨
receive⟨ts⟩ ∈ set (unlabel (transaction_strand T)) ⟶
(∀t s. t ∈ set ts ⟶ t ≠ occurs s)"
(is ?C)
proof -
show 0: ?A ?B using T unfolding admissible_transaction_def by (blast, blast)
show ?C using admissible_transaction_no_occurs_msgsE[OF 0] by blast
qed
lemma transaction_inserts_are_Value_vars:
assumes T_valid: "wellformed_transaction T"
and "admissible_transaction_updates T"
and "insert⟨t,s⟩ ∈ set (unlabel (transaction_strand T))"
shows "∃n. t = Var (TAtom Value, n)"
and "∃u. s = Fun (Set u) []"
proof -
let ?x = "insert⟨t,s⟩"
have "?x ∈ set (unlabel (transaction_updates T))"
using assms(3) wellformed_transaction_unlabel_cases[OF T_valid, of ?x]
by (auto simp add: transaction_strand_def unlabel_def)
hence *: "is_Var (the_elem_term ?x)" "fst (the_Var (the_elem_term ?x)) = TAtom Value"
"is_Fun (the_set_term ?x)" "args (the_set_term ?x) = []"
"is_Set (the_Fun (the_set_term ?x))"
using assms(2) unfolding admissible_transaction_updates_def is_Fun_Set_def by fastforce+
show "∃n. t = Var (TAtom Value, n)" using *(1,2) by (cases t) auto
show "∃u. s = Fun (Set u) []" using *(3,4,5) unfolding is_Set_def by (cases s) auto
qed
lemma transaction_deletes_are_Value_vars:
assumes T_valid: "wellformed_transaction T"
and "admissible_transaction_updates T"
and "delete⟨t,s⟩ ∈ set (unlabel (transaction_strand T))"
shows "∃n. t = Var (TAtom Value, n)"
and "∃u. s = Fun (Set u) []"
proof -
let ?x = "delete⟨t,s⟩"
have "?x ∈ set (unlabel (transaction_updates T))"
using assms(3) wellformed_transaction_unlabel_cases[OF T_valid, of ?x]
by (auto simp add: transaction_strand_def unlabel_def)
hence *: "is_Var (the_elem_term ?x)" "fst (the_Var (the_elem_term ?x)) = TAtom Value"
"is_Fun (the_set_term ?x)" "args (the_set_term ?x) = []"
"is_Set (the_Fun (the_set_term ?x))"
using assms(2) unfolding admissible_transaction_updates_def is_Fun_Set_def by fastforce+
show "∃n. t = Var (TAtom Value, n)" using *(1,2) by (cases t) auto
show "∃u. s = Fun (Set u) []" using *(3,4,5) unfolding is_Set_def by (cases s) auto
qed
lemma transaction_selects_are_Value_vars:
assumes T_valid: "wellformed_transaction T"
and "admissible_transaction_checks T"
and "select⟨t,s⟩ ∈ set (unlabel (transaction_strand T))"
shows "∃n. t = Var (TAtom Value, n) ∧ (TAtom Value, n) ∉ set (transaction_fresh T)" (is ?A)
and "∃u. s = Fun (Set u) []" (is ?B)
proof -
let ?x = "select⟨t,s⟩"
have *: "?x ∈ set (unlabel (transaction_checks T))"
using assms(3) wellformed_transaction_unlabel_cases[OF T_valid, of ?x]
by (auto simp add: transaction_strand_def unlabel_def)
have **: "is_Var (the_elem_term ?x)" "fst (the_Var (the_elem_term ?x)) = TAtom Value"
"is_Fun (the_set_term ?x)" "args (the_set_term ?x) = []"
"is_Set (the_Fun (the_set_term ?x))"
using * assms(2) unfolding admissible_transaction_checks_def is_Fun_Set_def by fastforce+
have "fv⇩s⇩s⇩t⇩p ?x ⊆ fv⇩l⇩s⇩s⇩t (transaction_checks T)"
using * by force
hence ***: "fv⇩s⇩s⇩t⇩p ?x ∩ set (transaction_fresh T) = {}"
using T_valid unfolding wellformed_transaction_def by fast
show ?A using **(1,2) *** by (cases t) auto
show ?B using **(3,4,5) unfolding is_Set_def by (cases s) auto
qed
lemma transaction_inset_checks_are_Value_vars:
assumes T_valid: "admissible_transaction' T"
and t: "⟨t in s⟩ ∈ set (unlabel (transaction_strand T))"
shows "∃n. t = Var (TAtom Value, n) ∧ (TAtom Value, n) ∉ set (transaction_fresh T)" (is ?A)
and "∃u. s = Fun (Set u) []" (is ?B)
proof -
let ?x = "⟨t in s⟩"
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_valid]
note T_adm_checks = admissible_transaction_is_wellformed_transaction(2)[OF T_valid]
have *: "?x ∈ set (unlabel (transaction_checks T))"
using t wellformed_transaction_unlabel_cases[OF T_wf, of ?x]
unfolding transaction_strand_def unlabel_def by fastforce
have **: "is_Var (the_elem_term ?x)" "fst (the_Var (the_elem_term ?x)) = TAtom Value"
"is_Fun (the_set_term ?x)" "args (the_set_term ?x) = []"
"is_Set (the_Fun (the_set_term ?x))"
using * T_adm_checks unfolding admissible_transaction_checks_def is_Fun_Set_def by fastforce+
have "fv⇩s⇩s⇩t⇩p ?x ⊆ fv⇩l⇩s⇩s⇩t (transaction_checks T)"
using * by force
hence ***: "fv⇩s⇩s⇩t⇩p ?x ∩ set (transaction_fresh T) = {}"
using T_wf unfolding wellformed_transaction_def by fast
show ?A using **(1,2) *** by (cases t) auto
show ?B using **(3,4,5) unfolding is_Set_def by (cases s) auto
qed
lemma transaction_notinset_checks_are_Value_vars:
assumes T_adm: "admissible_transaction' T"
and FG: "∀X⟨∨≠: F ∨∉: G⟩ ∈ set (unlabel (transaction_strand T))"
and t: "(t,s) ∈ set G"
shows "∃n. t = Var (TAtom Value, n) ∧ (TAtom Value, n) ∉ set (transaction_fresh T)" (is ?A)
and "∃u. s = Fun (Set u) []" (is ?B)
and "F = []" (is ?C)
and "G = [(t,s)]" (is ?D)
proof -
let ?x = "∀X⟨∨≠: F ∨∉: G⟩"
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_adm]
note T_adm_checks = admissible_transaction_is_wellformed_transaction(2)[OF T_adm]
have 0: "?x ∈ set (unlabel (transaction_checks T))"
using FG wellformed_transaction_unlabel_cases[OF T_wf, of ?x]
by (auto simp add: transaction_strand_def unlabel_def)
hence 1: "F = [] ∧ length G = 1"
using T_adm_checks t unfolding admissible_transaction_checks_def by fastforce
hence "hd G = (t,s)" using t by (cases "the_ins ?x") auto
hence **: "is_Var t" "fst (the_Var t) = TAtom Value" "is_Fun s" "args s = []" "is_Set (the_Fun s)"
using 1 Set.bspec[OF T_adm_checks[unfolded admissible_transaction_checks_def] 0]
unfolding is_Fun_Set_def by auto
show ?C using 1 by blast
show ?D using 1 t by force
have "fv⇩s⇩s⇩t⇩p ?x ⊆ fv⇩l⇩s⇩s⇩t (transaction_checks T)"
"set (bvars⇩s⇩s⇩t⇩p ?x) ⊆ bvars⇩l⇩s⇩s⇩t (transaction_checks T)"
using 0 by force+
moreover have
"set (transaction_fresh T) ∩ fv⇩l⇩s⇩s⇩t (transaction_receive T) = {}"
"set (transaction_fresh T) ∩ fv⇩l⇩s⇩s⇩t (transaction_checks T) = {}"
using T_wf unfolding wellformed_transaction_def by fast+
ultimately have
"fv⇩s⇩s⇩t⇩p ?x ∩ set (transaction_fresh T) = {}"
"set (bvars⇩s⇩s⇩t⇩p ?x) ∩ set (transaction_fresh T) = {}"
using admissible_transactionE(7)[OF T_adm]
wellformed_transaction_wf⇩s⇩s⇩t(2)[OF T_wf]
fv_transaction_unfold[of T] bvars_transaction_unfold[of T]
by (blast, blast)
hence ***: "fv t ∩ set (transaction_fresh T) = {}"
using t by auto
show ?A using **(1,2) *** by (cases t) auto
show ?B using **(3,4,5) unfolding is_Set_def by (cases s) auto
qed
lemma transaction_noteqs_checks_case:
assumes T_adm: "admissible_transaction' T"
and FG: "∀X⟨∨≠: F ∨∉: G⟩ ∈ set (unlabel (transaction_strand T))"
and G: "G = []"
shows "∃t s. F = [(t,s)]" (is ?A)
proof -
let ?x = "∀X⟨∨≠: F ∨∉: G⟩"
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_adm]
note T_adm_checks = admissible_transaction_is_wellformed_transaction(2)[OF T_adm]
have "?x ∈ set (unlabel (transaction_checks T))"
using FG wellformed_transaction_unlabel_cases[OF T_wf, of ?x]
by (auto simp add: transaction_strand_def unlabel_def)
hence "length F = 1"
using T_adm_checks unfolding admissible_transaction_checks_def G by fastforce
thus ?thesis by fast
qed
lemma admissible_transaction_fresh_vars_notin:
assumes T: "admissible_transaction' T"
and x: "x ∈ set (transaction_fresh T)"
shows "x ∉ fv⇩l⇩s⇩s⇩t (transaction_receive T)" (is ?A)
and "x ∉ fv⇩l⇩s⇩s⇩t (transaction_checks T)" (is ?B)
and "x ∉ vars⇩l⇩s⇩s⇩t (transaction_receive T)" (is ?C)
and "x ∉ vars⇩l⇩s⇩s⇩t (transaction_checks T)" (is ?D)
and "x ∉ bvars⇩l⇩s⇩s⇩t (transaction_receive T)" (is ?E)
and "x ∉ bvars⇩l⇩s⇩s⇩t (transaction_checks T)" (is ?F)
proof -
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T]
have 0:
"set (transaction_fresh T) ⊆ fv⇩l⇩s⇩s⇩t (transaction_updates T) ∪ fv⇩l⇩s⇩s⇩t (transaction_send T)"
"set (transaction_fresh T) ∩ fv⇩l⇩s⇩s⇩t (transaction_receive T) = {}"
"set (transaction_fresh T) ∩ fv⇩l⇩s⇩s⇩t (transaction_checks T) = {}"
"fv_transaction T ∩ bvars_transaction T = {}"
using admissible_transactionE[OF T] by argo+
have 1: "set (transaction_fresh T) ∩ bvars⇩l⇩s⇩s⇩t (transaction_checks T) = {}"
using 0(1,4) fv_transaction_unfold[of T] bvars_transaction_unfold[of T] by blast
have 2:
"vars⇩l⇩s⇩s⇩t (transaction_receive T) = fv⇩l⇩s⇩s⇩t (transaction_receive T)"
"bvars⇩l⇩s⇩s⇩t (transaction_receive T) = {}"
using bvars_wellformed_transaction_unfold[OF T_wf]
vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel (transaction_receive T)"]
by blast+
show ?A ?B ?C ?E ?F using 0 1 2 x by (fast, fast, fast, fast, fast)
show ?D using 0(3) 1 x vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel (transaction_checks T)"] by fast
qed
lemma admissible_transaction_fv_in_receives_or_selects:
assumes T: "admissible_transaction' T"
and x: "x ∈ fv_transaction T" "x ∉ set (transaction_fresh T)"
shows "x ∈ fv⇩l⇩s⇩s⇩t (transaction_receive T) ∨
(x ∈ fv⇩l⇩s⇩s⇩t (transaction_checks T) ∧
(∃t s. select⟨t,s⟩ ∈ set (unlabel (transaction_checks T)) ∧ x ∈ fv t ∪ fv s))"
proof -
have "x ∈ fv⇩l⇩s⇩s⇩t (transaction_receive T) ∪ fv⇩l⇩s⇩s⇩t (transaction_checks T) ∪
fv⇩l⇩s⇩s⇩t (transaction_updates T) ∪ fv⇩l⇩s⇩s⇩t (transaction_send T)"
using x(1) fv⇩s⇩s⇩t_append unlabel_append
by (metis transaction_strand_def append_assoc)
thus ?thesis using x(2) admissible_transactionE(9,10)[OF T] by blast
qed
lemma admissible_transaction_fv_in_receives_or_selects':
assumes T: "admissible_transaction' T"
and x: "x ∈ fv_transaction T" "x ∉ set (transaction_fresh T)"
shows "(∃ts. receive⟨ts⟩ ∈ set (unlabel (transaction_receive T)) ∧ x ∈ fv⇩s⇩e⇩t (set ts)) ∨
(∃s. select⟨Var x, s⟩ ∈ set (unlabel (transaction_checks T)))"
proof (cases "x ∈ fv⇩l⇩s⇩s⇩t (transaction_receive T)")
case True thus ?thesis
using wellformed_transaction_unlabel_cases(1)[
OF admissible_transaction_is_wellformed_transaction(1)[OF T]]
by force
next
case False
then obtain t s where t: "select⟨t,s⟩ ∈ set (unlabel (transaction_checks T))" "x ∈ fv t ∪ fv s"
using admissible_transaction_fv_in_receives_or_selects[OF T x] by blast
have t': "select⟨t,s⟩ ∈ set (unlabel (transaction_strand T))"
using t(1) unfolding transaction_strand_def by simp
show ?thesis
using t transaction_selects_are_Value_vars[
OF admissible_transaction_is_wellformed_transaction(1,2)[OF T] t']
by force
qed
lemma admissible_transaction_fv_in_receives_or_selects_subst:
assumes T: "admissible_transaction' T"
and x: "x ∈ fv_transaction T" "x ∉ set (transaction_fresh T)"
shows "(∃ts. receive⟨ts⟩ ∈ set (unlabel (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)) ∧ θ x ⊑⇩s⇩e⇩t set ts) ∨
(∃s. select⟨θ x, s⟩ ∈ set (unlabel (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ)))"
proof -
note 0 = admissible_transaction_fv_in_receives_or_selects'[OF T x]
have 1: "θ x ⊑⇩s⇩e⇩t set (ts ⋅⇩l⇩i⇩s⇩t θ)" when ts: "x ∈ fv⇩s⇩e⇩t (set ts)" for ts
using that subst_mono_fv[of x _ θ] by auto
have 2: "receive⟨ts ⋅⇩l⇩i⇩s⇩t θ⟩ ∈ set (A ⋅⇩s⇩s⇩t θ)" when "receive⟨ts⟩ ∈ set A" for ts A
using that by fast
have 3: "select⟨t ⋅ θ,s ⋅ θ⟩ ∈ set (A ⋅⇩s⇩s⇩t θ)" when "select⟨t,s⟩ ∈ set A" for t s A
using that by fast
show ?thesis
using 0 1 2[of _ "unlabel (transaction_receive T)"]
3[of _ _ "unlabel (transaction_checks T)"]
unfolding unlabel_subst by (metis eval_term.simps(1))
qed
lemma admissible_transaction_fv_in_receives_or_selects_dual_subst:
defines "f ≡ λS. unlabel (dual⇩l⇩s⇩s⇩t S)"
assumes T: "admissible_transaction' T"
and x: "x ∈ fv_transaction T" "x ∉ set (transaction_fresh T)"
shows "(∃ts. send⟨ts⟩ ∈ set (f (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)) ∧ θ x ⊑⇩s⇩e⇩t set ts) ∨
(∃s. select⟨θ x, s⟩ ∈ set (f (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ)))"
using admissible_transaction_fv_in_receives_or_selects_subst[OF T x, of θ]
by (metis (no_types, lifting) f_def dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(2) dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(6))
lemma admissible_transaction_decl_subst_empty':
assumes T: "transaction_decl T () = []"
and ξ: "transaction_decl_subst ξ T"
shows "ξ = Var"
proof -
have "subst_domain ξ = {}"
using ξ T unfolding transaction_decl_subst_def by auto
thus ?thesis by auto
qed
lemma admissible_transaction_decl_subst_empty:
assumes T: "admissible_transaction' T"
and ξ: "transaction_decl_subst ξ T"
shows "ξ = Var"
by (rule admissible_transaction_decl_subst_empty'[OF admissible_transactionE(1)[OF T] ξ])
lemma admissible_transaction_no_bvars:
assumes "admissible_transaction' T"
shows "fv_transaction T = vars_transaction T"
and "bvars_transaction T = {}"
using admissible_transactionE(4)[OF assms]
bvars_wellformed_transaction_unfold vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t
by (fast, fast)
lemma admissible_transactions_fv_bvars_disj:
assumes "∀T ∈ set P. admissible_transaction' T"
shows "(⋃T ∈ set P. fv_transaction T) ∩ (⋃T ∈ set P. bvars_transaction T) = {}"
using assms admissible_transaction_no_bvars(2) by fast
lemma admissible_transaction_occurs_fv_types:
assumes "admissible_transaction' T"
and "x ∈ vars_transaction T"
shows "∃a. Γ (Var x) = TAtom a ∧ Γ (Var x) ≠ TAtom OccursSecType"
proof -
have "is_Var (fst x)" "the_Var (fst x) = Value"
using assms unfolding admissible_transaction'_def by blast+
thus ?thesis using Γ⇩v_TAtom''(2)[of x] by force
qed
lemma admissible_transaction_Value_vars_are_fv:
assumes "admissible_transaction' T"
and "x ∈ vars_transaction T"
and "Γ⇩v x = TAtom Value"
shows "x ∈ fv_transaction T"
using assms(2,3) Γ⇩v_TAtom''(2)[of x] vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel (transaction_strand T)"]
admissible_transactionE(4)[OF assms(1)]
by fast
lemma transaction_receive_deduct:
assumes T_wf: "wellformed_transaction T"
and ℐ: "constraint_model ℐ (A@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
and ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T M"
and α: "transaction_renaming_subst α P X"
and t: "receive⟨ts⟩ ∈ set (unlabel (transaction_receive T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
shows "∀t ∈ set ts. ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t ℐ ⊢ t ⋅ ℐ"
proof -
define θ where "θ ≡ ξ ∘⇩s σ ∘⇩s α"
have t': "send⟨ts⟩ ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)))"
using t dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(2) unfolding θ_def by blast
then obtain T1 T2 where T: "unlabel (dual⇩l⇩s⇩s⇩t (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)) = T1@send⟨ts⟩#T2"
using t' by (meson split_list)
have "constr_sem_stateful ℐ (unlabel A@unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)))"
using ℐ unlabel_append[of A] unfolding constraint_model_def θ_def by simp
hence "constr_sem_stateful ℐ (unlabel A@T1@[send⟨ts⟩])"
using strand_sem_append_stateful[of "{}" "{}" "unlabel A@T1@[send⟨ts⟩]" _ ℐ]
transaction_dual_subst_unlabel_unfold[of T θ] T
by (metis append.assoc append_Cons append_Nil)
hence "∀t ∈ set ts. ik⇩s⇩s⇩t (unlabel A@T1) ⋅⇩s⇩e⇩t ℐ ⊢ t ⋅ ℐ"
using strand_sem_append_stateful[of "{}" "{}" "unlabel A@T1" "[send⟨ts⟩]" ℐ] T
by force
moreover have "¬is_Receive x"
when x: "x ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)))" for x
proof -
have *: "is_Receive a" when "a ∈ set (unlabel (transaction_receive T))" for a
using T_wf Ball_set[of "unlabel (transaction_receive T)" is_Receive] that
unfolding wellformed_transaction_def
by blast
obtain l where l: "(l,x) ∈ set (dual⇩l⇩s⇩s⇩t (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ))"
using x unfolding unlabel_def by fastforce
then obtain ly where ly: "ly ∈ set (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)" "(l,x) = dual⇩l⇩s⇩s⇩t⇩p ly"
unfolding dual⇩l⇩s⇩s⇩t_def by auto
obtain j y where j: "ly = (j,y)" by (metis surj_pair)
hence "j = l" using ly(2) by (cases y) auto
hence y: "(l,y) ∈ set (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)" "(l,x) = dual⇩l⇩s⇩s⇩t⇩p (l,y)"
by (metis j ly(1), metis j ly(2))
obtain z where z:
"z ∈ set (unlabel (transaction_receive T))"
"(l,z) ∈ set (transaction_receive T)"
"(l,y) = (l,z) ⋅⇩l⇩s⇩s⇩t⇩p θ"
using y(1) unfolding subst_apply_labeled_stateful_strand_def unlabel_def by force
have "is_Receive y" using *[OF z(1)] z(3) by (cases z) auto
thus "¬is_Receive x" using l y by (cases y) auto
qed
hence "¬is_Receive x" when "x ∈ set T1" for x using T that by simp
hence "ik⇩s⇩s⇩t T1 = {}" unfolding ik⇩s⇩s⇩t_def is_Receive_def by fast
hence "ik⇩s⇩s⇩t (unlabel A@T1) = ik⇩l⇩s⇩s⇩t A" using ik⇩s⇩s⇩t_append[of "unlabel A" T1] by simp
ultimately show ?thesis by (simp add: θ_def)
qed
lemma transaction_checks_db:
assumes T: "admissible_transaction' T"
and ℐ: "constraint_model ℐ (A@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
and ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T M"
and α: "transaction_renaming_subst α P X"
shows "⟨Var (TAtom Value, n) in Fun (Set s) []⟩ ∈ set (unlabel (transaction_checks T))
⟹ (α (TAtom Value, n) ⋅ ℐ, Fun (Set s) []) ∈ set (db⇩l⇩s⇩s⇩t A ℐ)"
(is "?A ⟹ ?B")
and "⟨Var (TAtom Value, n) not in Fun (Set s) []⟩ ∈ set (unlabel (transaction_checks T))
⟹ (α (TAtom Value, n) ⋅ ℐ, Fun (Set s) []) ∉ set (db⇩l⇩s⇩s⇩t A ℐ)"
(is "?C ⟹ ?D")
proof -
let ?x = "λn. (TAtom Value, n)"
let ?s = "Fun (Set s) []"
let ?T = "transaction_receive T@transaction_checks T"
let ?T' = "?T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
let ?S = "λS. transaction_receive T@S"
let ?S' = "λS. ?S S ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
note ξ_empty = admissible_transaction_decl_subst_empty[OF T ξ]
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T]
have "constr_sem_stateful ℐ (unlabel (A@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)))"
using ℐ unfolding constraint_model_def by simp
moreover have
"dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t δ) =
dual⇩l⇩s⇩s⇩t (?S (T1@[c]) ⋅⇩l⇩s⇩s⇩t δ)@
dual⇩l⇩s⇩s⇩t (T2@transaction_updates T@transaction_send T ⋅⇩l⇩s⇩s⇩t δ)"
when "transaction_checks T = T1@c#T2" for T1 T2 c δ
using that dual⇩l⇩s⇩s⇩t_append subst_lsst_append
unfolding transaction_strand_def
by (metis append.assoc append_Cons append_Nil)
ultimately have T'_model: "constr_sem_stateful ℐ (unlabel (A@dual⇩l⇩s⇩s⇩t (?S' (T1@[(l,c)]))))"
when "transaction_checks T = T1@(l,c)#T2" for T1 T2 l c
using strand_sem_append_stateful[of _ _ _ _ ℐ]
by (simp add: that transaction_strand_def)
show "?A ⟹ ?B"
proof -
assume a: ?A
hence *: "⟨Var (?x n) in ?s⟩ ∈ set (unlabel ?T)"
unfolding transaction_strand_def unlabel_def by simp
then obtain l T1 T2 where T1: "transaction_checks T = T1@(l,⟨Var (?x n) in ?s⟩)#T2"
by (metis a split_list unlabel_mem_has_label)
have "?x n ∈ fv⇩l⇩s⇩s⇩t (transaction_checks T)"
using a by force
hence "?x n ∉ set (transaction_fresh T)"
using a admissible_transaction_fresh_vars_notin[OF T] by fast
hence "unlabel (A@dual⇩l⇩s⇩s⇩t (?S' (T1@[(l,⟨Var (?x n) in ?s⟩)]))) =
unlabel (A@dual⇩l⇩s⇩s⇩t (?S' T1))@[⟨α (?x n) in ?s⟩]"
using T a σ dual⇩l⇩s⇩s⇩t_append subst_lsst_append unlabel_append ξ_empty
by (fastforce simp add: transaction_fresh_subst_def unlabel_def dual⇩l⇩s⇩s⇩t_def
subst_apply_labeled_stateful_strand_def subst_compose)
moreover have "db⇩s⇩s⇩t (unlabel A) = db⇩s⇩s⇩t (unlabel (A@dual⇩l⇩s⇩s⇩t (?S' T1)))"
by (simp add: T1 db⇩s⇩s⇩t_transaction_prefix_eq[OF T_wf] del: unlabel_append)
ultimately have "∃M. strand_sem_stateful M (set (db⇩s⇩s⇩t (unlabel A) ℐ)) [⟨α (?x n) in ?s⟩] ℐ"
using T'_model[OF T1] db⇩s⇩s⇩t_set_is_dbupd⇩s⇩s⇩t[of _ ℐ] strand_sem_append_stateful[of _ _ _ _ ℐ]
by (simp add: db⇩s⇩s⇩t_def del: unlabel_append)
thus ?B by simp
qed
show "?C ⟹ ?D"
proof -
assume a: ?C
hence *: "⟨Var (?x n) not in ?s⟩ ∈ set (unlabel ?T)"
unfolding transaction_strand_def unlabel_def by simp
then obtain l T1 T2 where T1: "transaction_checks T = T1@(l,⟨Var (?x n) not in ?s⟩)#T2"
by (metis a split_list unlabel_mem_has_label)
have "?x n ∈ vars⇩s⇩s⇩t⇩p ⟨Var (?x n) not in ?s⟩"
using vars⇩s⇩s⇩t⇩p_cases(9)[of "[]" "Var (?x n)" ?s] by auto
hence "?x n ∈ vars⇩l⇩s⇩s⇩t (transaction_checks T)"
using a unfolding vars⇩s⇩s⇩t_def by force
hence "?x n ∉ set (transaction_fresh T)"
using a admissible_transaction_fresh_vars_notin[OF T] by fast
hence "unlabel (A@dual⇩l⇩s⇩s⇩t (?S' (T1@[(l,⟨Var (?x n) not in ?s⟩)]))) =
unlabel (A@dual⇩l⇩s⇩s⇩t (?S' T1))@[⟨α (?x n) not in ?s⟩]"
using T a σ dual⇩l⇩s⇩s⇩t_append subst_lsst_append unlabel_append ξ_empty
by (fastforce simp add: transaction_fresh_subst_def unlabel_def dual⇩l⇩s⇩s⇩t_def
subst_apply_labeled_stateful_strand_def subst_compose)
moreover have "db⇩s⇩s⇩t (unlabel A) = db⇩s⇩s⇩t (unlabel (A@dual⇩l⇩s⇩s⇩t (?S' T1)))"
by (simp add: T1 db⇩s⇩s⇩t_transaction_prefix_eq[OF T_wf] del: unlabel_append)
ultimately have "∃M. strand_sem_stateful M (set (db⇩s⇩s⇩t (unlabel A) ℐ)) [⟨α (?x n) not in ?s⟩] ℐ"
using T'_model[OF T1] db⇩s⇩s⇩t_set_is_dbupd⇩s⇩s⇩t[of _ ℐ] strand_sem_append_stateful[of _ _ _ _ ℐ]
by (simp add: db⇩s⇩s⇩t_def del: unlabel_append)
thus ?D using stateful_strand_sem_NegChecks_no_bvars(1)[of _ _ _ ?s ℐ] by simp
qed
qed
lemma transaction_selects_db:
assumes T: "admissible_transaction' T"
and ℐ: "constraint_model ℐ (A@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
and ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T M"
and α: "transaction_renaming_subst α P X"
shows "select⟨Var (TAtom Value, n), Fun (Set s) []⟩ ∈ set (unlabel (transaction_checks T))
⟹ (α (TAtom Value, n) ⋅ ℐ, Fun (Set s) []) ∈ set (db⇩l⇩s⇩s⇩t A ℐ)"
(is "?A ⟹ ?B")
proof -
let ?x = "λn. (TAtom Value, n)"
let ?s = "Fun (Set s) []"
let ?T = "transaction_receive T@transaction_checks T"
let ?T' = "?T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
let ?S = "λS. transaction_receive T@S"
let ?S' = "λS. ?S S ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
note ξ_empty = admissible_transaction_decl_subst_empty[OF T ξ]
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T]
have "constr_sem_stateful ℐ (unlabel (A@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)))"
using ℐ unfolding constraint_model_def by simp
moreover have
"dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t δ) =
dual⇩l⇩s⇩s⇩t (?S (T1@[c]) ⋅⇩l⇩s⇩s⇩t δ)@
dual⇩l⇩s⇩s⇩t (T2@transaction_updates T@transaction_send T ⋅⇩l⇩s⇩s⇩t δ)"
when "transaction_checks T = T1@c#T2" for T1 T2 c δ
using that dual⇩l⇩s⇩s⇩t_append subst_lsst_append
unfolding transaction_strand_def by (metis append.assoc append_Cons append_Nil)
ultimately have T'_model: "constr_sem_stateful ℐ (unlabel (A@dual⇩l⇩s⇩s⇩t (?S' (T1@[(l,c)]))))"
when "transaction_checks T = T1@(l,c)#T2" for T1 T2 l c
using strand_sem_append_stateful[of _ _ _ _ ℐ]
by (simp add: that transaction_strand_def)
show "?A ⟹ ?B"
proof -
assume a: ?A
hence *: "select⟨Var (?x n), ?s⟩ ∈ set (unlabel ?T)"
unfolding transaction_strand_def unlabel_def by simp
then obtain l T1 T2 where T1: "transaction_checks T = T1@(l,select⟨Var (?x n), ?s⟩)#T2"
by (metis a split_list unlabel_mem_has_label)
have "?x n ∈ fv⇩l⇩s⇩s⇩t (transaction_checks T)"
using a by force
hence "?x n ∉ set (transaction_fresh T)"
using a admissible_transaction_fresh_vars_notin[OF T] by fast
hence "unlabel (A@dual⇩l⇩s⇩s⇩t (?S' (T1@[(l,select⟨Var (?x n), ?s⟩)]))) =
unlabel (A@dual⇩l⇩s⇩s⇩t (?S' T1))@[select⟨α (?x n), ?s⟩]"
using T a σ dual⇩l⇩s⇩s⇩t_append subst_lsst_append unlabel_append ξ_empty
by (fastforce simp add: transaction_fresh_subst_def unlabel_def dual⇩l⇩s⇩s⇩t_def
subst_apply_labeled_stateful_strand_def subst_compose)
moreover have "db⇩s⇩s⇩t (unlabel A) = db⇩s⇩s⇩t (unlabel (A@dual⇩l⇩s⇩s⇩t (?S' T1)))"
by (simp add: T1 db⇩s⇩s⇩t_transaction_prefix_eq[OF T_wf] del: unlabel_append)
ultimately have "∃M. strand_sem_stateful M (set (db⇩s⇩s⇩t (unlabel A) ℐ)) [⟨α (?x n) in ?s⟩] ℐ"
using T'_model[OF T1] db⇩s⇩s⇩t_set_is_dbupd⇩s⇩s⇩t[of _ ℐ] strand_sem_append_stateful[of _ _ _ _ ℐ]
by (simp add: db⇩s⇩s⇩t_def del: unlabel_append)
thus ?B by simp
qed
qed
lemma admissible_transaction_terms_no_Value_consts:
assumes "admissible_transaction_terms T"
and "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_strand T))"
shows "∄a T. t = Fun (Val a) T" (is ?A)
and "∄a T. t = Fun (Abs a) T" (is ?B)
and "∄a T. t = Fun (PubConst Value a) T" (is ?C)
proof -
have "¬is_Val f" "¬is_Abs f" "¬is_PubConstValue f"
when "f ∈ ⋃(funs_term ` (trms_transaction T))" for f
using that assms(1)[unfolded admissible_transaction_terms_def]
unfolding is_PubConstValue_def by (blast,blast,blast)
moreover have "f ∈ ⋃(funs_term ` (trms_transaction T))"
when "f ∈ funs_term t" for f
using that assms(2) funs_term_subterms_eq(2)[of "trms_transaction T"] by blast+
ultimately have *: "¬is_Val f" "¬is_Abs f" "¬is_PubConstValue f"
when "f ∈ funs_term t" for f
using that by presburger+
show ?A using *(1) by force
show ?B using *(2) by force
show ?C using *(3) unfolding is_PubConstValue_def by force
qed
lemma admissible_transactions_no_Value_consts:
assumes "admissible_transaction' T"
and "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_strand T))"
shows "∄a T. t = Fun (Val a) T" (is ?A)
and "∄a T. t = Fun (Abs a) T" (is ?B)
and "∄a T. t = Fun (PubConst Value a) T" (is ?C)
using admissible_transaction_terms_no_Value_consts[OF
admissible_transaction_is_wellformed_transaction(4)[OF assms(1)] assms(2)]
by auto
lemma admissible_transactions_no_Value_consts':
assumes "admissible_transaction' T"
and "t ∈ trms⇩l⇩s⇩s⇩t (transaction_strand T)"
shows "∄a T. Fun (Val a) T ∈ subterms t"
and "∄a T. Fun (Abs a) T ∈ subterms t"
using admissible_transactions_no_Value_consts[OF assms(1)] assms(2) by fast+
lemma admissible_transactions_no_Value_consts'':
assumes "admissible_transaction' T"
shows "∀n. PubConst Value n ∉ ⋃(funs_term ` trms_transaction T)"
and "∀n. Abs n ∉ ⋃(funs_term ` trms_transaction T)"
using assms
unfolding admissible_transaction'_def admissible_transaction_terms_def
by (meson prot_fun.discI(6), meson prot_fun.discI(4))
lemma admissible_transactions_no_PubConsts:
assumes "admissible_transaction' T"
and "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_strand T))"
shows "∄a n T. t = Fun (PubConst a n) T"
proof -
have "¬is_PubConst f"
when "f ∈ ⋃(funs_term ` (trms_transaction T))" for f
using that conjunct1[OF conjunct2[OF admissible_transaction_is_wellformed_transaction(4)[
OF assms(1), unfolded admissible_transaction_terms_def]]]
by blast
moreover have "f ∈ ⋃(funs_term ` (trms_transaction T))"
when "f ∈ funs_term t" for f
using that assms(2) funs_term_subterms_eq(2)[of "trms_transaction T"] by blast+
ultimately have *: "¬is_PubConst f"
when "f ∈ funs_term t" for f
using that by presburger+
show ?thesis using * by force
qed
lemma admissible_transactions_no_PubConsts':
assumes "admissible_transaction' T"
and "t ∈ trms⇩l⇩s⇩s⇩t (transaction_strand T)"
shows "∄a n T. Fun (PubConst a n) T ∈ subterms t"
using admissible_transactions_no_PubConsts[OF assms(1)] assms(2) by fast+
lemma admissible_transaction_strand_step_cases:
assumes T_adm: "admissible_transaction' T"
shows "r ∈ set (unlabel (transaction_receive T)) ⟹ ∃t. r = receive⟨t⟩"
(is "?A ⟹ ?A'")
and "r ∈ set (unlabel (transaction_checks T)) ⟹
(∃x s. (r = ⟨Var x in Fun (Set s) []⟩ ∨ r = select⟨Var x, Fun (Set s) []⟩ ∨
r = ⟨Var x not in Fun (Set s) []⟩) ∧
fst x = TAtom Value ∧ x ∈ fv_transaction T - set (transaction_fresh T)) ∨
(∃s t. r = ⟨s == t⟩ ∨ r = ⟨s := t⟩ ∨ r = ⟨s != t⟩)"
(is "?B ⟹ ?B'")
and "r ∈ set (unlabel (transaction_updates T)) ⟹
∃x s. (r = insert⟨Var x, Fun (Set s) []⟩ ∨ r = delete⟨Var x, Fun (Set s) []⟩) ∧
fst x = TAtom Value"
(is "?C ⟹ ?C'")
and "r ∈ set (unlabel (transaction_send T)) ⟹ ∃t. r = send⟨t⟩"
(is "?D ⟹ ?D'")
proof -
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_adm]
show "?A ⟹ ?A'"
using T_wf Ball_set[of "unlabel (transaction_receive T)" is_Receive]
unfolding wellformed_transaction_def is_Receive_def
by blast
show "?D ⟹ ?D'"
using T_wf Ball_set[of "unlabel (transaction_send T)" is_Send]
unfolding wellformed_transaction_def is_Send_def
by blast
show "?B ⟹ ?B'"
proof -
assume r: ?B
note adm_checks = admissible_transaction_is_wellformed_transaction(1,2)[OF T_adm]
have fv_r1: "fv⇩s⇩s⇩t⇩p r ⊆ fv_transaction T"
using r fv_transaction_unfold[of T] by auto
have fv_r2: "fv⇩s⇩s⇩t⇩p r ∩ set (transaction_fresh T) = {}"
using r T_wf unfolding wellformed_transaction_def by fastforce
have "list_all is_Check_or_Assignment (unlabel (transaction_checks T))"
using adm_checks(1) unfolding wellformed_transaction_def by blast
hence "is_InSet r ∨ is_Equality r ∨ is_NegChecks r"
using r unfolding list_all_iff by blast
thus ?B'
proof (elim disjE conjE)
assume *: "is_InSet r"
hence **: "is_Var (the_elem_term r)" "is_Fun (the_set_term r)"
"is_Set (the_Fun (the_set_term r))" "args (the_set_term r) = []"
"fst (the_Var (the_elem_term r)) = TAtom Value"
using r adm_checks unfolding admissible_transaction_checks_def is_Fun_Set_def
by fast+
obtain ac rt rs where r': "r = ⟨ac: rt ∈ rs⟩" using * by (cases r) auto
obtain x where x: "rt = Var x" "fst x = TAtom Value" using **(1,5) r' by auto
obtain f S where fS: "rs = Fun f S" using **(2) r' by auto
obtain s where s: "f = Set s" using **(3) fS r' by (cases f) auto
hence S: "S = []" using **(4) fS r' by auto
show ?B' using r' x fS s S fv_r1 fv_r2 by (cases ac) simp_all
next
assume *: "is_NegChecks r"
hence **: "bvars⇩s⇩s⇩t⇩p r = []"
"(the_eqs r = [] ∧ length (the_ins r) = 1) ∨
(the_ins r = [] ∧ length (the_eqs r) = 1)"
using r adm_checks unfolding admissible_transaction_checks_def by fast+
show ?B' using **(2)
proof (elim disjE conjE)
assume ***: "the_eqs r = []" "length (the_ins r) = 1"
then obtain t s where ts: "the_ins r = [(t,s)]" by (cases "the_ins r") auto
hence "hd (the_ins r) = (t,s)" by simp
hence ****: "is_Var (fst (t,s))" "is_Fun (snd (t,s))"
"is_Set (the_Fun (snd (t,s)))" "args (snd (t,s)) = []"
"fst (the_Var (fst (t,s))) = TAtom Value"
using * ***(1) Set.bspec[OF adm_checks(2)[unfolded admissible_transaction_checks_def] r]
unfolding is_Fun_Set_def by simp_all
obtain x where x: "t = Var x" "fst x = TAtom Value" using ts ****(1,5) by (cases t) simp_all
obtain f S where fS: "s = Fun f S" using ts ****(2) by (cases s) simp_all
obtain ss where ss: "f = Set ss" using fS ****(3) by (cases f) simp_all
have S: "S = []" using ts fS ss ****(4) by simp
show ?B' using ts x fS ss S *** **(1) * fv_r1 fv_r2 by (cases r) auto
next
assume ***: "the_ins r = []" "length (the_eqs r) = 1"
then obtain t s where "the_eqs r = [(t,s)]" by (cases "the_eqs r") auto
thus ?B' using *** **(1) * by (cases r) auto
qed
qed (auto simp add: is_Equality_def the_check_def intro: poscheckvariant.exhaust)
qed
show "?C ⟹ ?C'"
proof -
assume r: ?C
note adm_upds = admissible_transaction_is_wellformed_transaction(3)[OF T_adm]
have *: "is_Update r" "is_Var (the_elem_term r)" "is_Fun (the_set_term r)"
"is_Set (the_Fun (the_set_term r))" "args (the_set_term r) = []"
"fst (the_Var (the_elem_term r)) = TAtom Value"
using r adm_upds unfolding admissible_transaction_updates_def is_Fun_Set_def by fast+
obtain t s where ts: "r = insert⟨t,s⟩ ∨ r = delete⟨t,s⟩" using *(1) by (cases r) auto
obtain x where x: "t = Var x" "fst x = TAtom Value" using ts *(2,6) by (cases t) auto
obtain f T where fT: "s = Fun f T" using ts *(3) by (cases s) auto
obtain ss where ss: "f = Set ss" using ts fT *(4) by (cases f) fastforce+
have T: "T = []" using ts fT *(5) ss by (cases T) auto
show ?C'
using ts x fT ss T by blast
qed
qed
lemma protocol_transaction_vars_TAtom_typed:
assumes T_adm: "admissible_transaction' T"
shows "∀x ∈ vars_transaction T. Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
and "∀x ∈ fv_transaction T. Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
and "∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value"
proof -
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_adm]
show "∀x ∈ vars_transaction T. Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
using admissible_transactionE(3)[OF T_adm] by fast
thus "∀x ∈ fv_transaction T. Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
using vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t by fast
show "∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value"
using admissible_transactionE(2)[OF T_adm] by argo
qed
lemma protocol_transactions_no_pubconsts:
assumes "admissible_transaction' T"
shows "Fun (Val n) S ∉ subterms⇩s⇩e⇩t (trms_transaction T)"
and "Fun (PubConst Value n) S ∉ subterms⇩s⇩e⇩t (trms_transaction T)"
using assms admissible_transactions_no_Value_consts(1,3) by (blast, blast)
lemma protocol_transactions_no_abss:
assumes "admissible_transaction' T"
shows "Fun (Abs n) S ∉ subterms⇩s⇩e⇩t (trms_transaction T)"
using assms admissible_transactions_no_Value_consts(2)
by fast
lemma admissible_transaction_strand_sem_fv_ineq:
assumes T_adm: "admissible_transaction' T"
and ℐ: "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) ℐ"
and x: "x ∈ fv_transaction T - set (transaction_fresh T)"
and y: "y ∈ fv_transaction T - set (transaction_fresh T)"
and x_not_y: "x ≠ y"
shows "θ x ⋅ ℐ ≠ θ y ⋅ ℐ"
proof -
have "⟨Var x != Var y⟩ ∈ set (unlabel (transaction_checks T)) ∨
⟨Var y != Var x⟩ ∈ set (unlabel (transaction_checks T))"
using x y x_not_y admissible_transactionE(8)[OF T_adm] by auto
hence "⟨Var x != Var y⟩ ∈ set (unlabel (transaction_strand T)) ∨
⟨Var y != Var x⟩ ∈ set (unlabel (transaction_strand T))"
unfolding transaction_strand_def unlabel_def by auto
hence "⟨θ x != θ y⟩ ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) ∨
⟨θ y != θ x⟩ ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)))"
using stateful_strand_step_subst_inI(8)[of _ _ "unlabel (transaction_strand T)" θ]
subst_lsst_unlabel[of "transaction_strand T" θ]
dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(7)[of "[]" _ "[]"]
by force
then obtain B where B:
"prefix (B@[⟨θ x != θ y⟩]) (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) ∨
prefix (B@[⟨θ y != θ x⟩]) (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)))"
unfolding prefix_def
by (metis (no_types, opaque_lifting) append.assoc append_Cons append_Nil split_list)
thus ?thesis
using ℐ strand_sem_append_stateful[of IK DB _ _ ℐ]
stateful_strand_sem_NegChecks_no_bvars(2)
unfolding prefix_def
by metis
qed
lemma admissible_transaction_sem_iff:
fixes θ and T::"('fun,'atom,'sets,'lbl) prot_transaction"
defines "A ≡ unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
assumes T: "admissible_transaction' T"
and I: " interpretation⇩s⇩u⇩b⇩s⇩t I" "wf⇩t⇩r⇩m⇩s (subst_range I)"
shows "strand_sem_stateful M D A I ⟷ (
(∀l ts. (l,receive⟨ts⟩) ∈ set (transaction_receive T) ⟶ (∀t ∈ set ts. M ⊢ t ⋅ θ ⋅ I)) ∧
(∀l ac t s. (l,⟨ac: t ≐ s⟩) ∈ set (transaction_checks T) ⟶ t ⋅ θ ⋅ I = s ⋅ θ ⋅ I) ∧
(∀l ac t s. (l,⟨ac: t ∈ s⟩) ∈ set (transaction_checks T) ⟶ (t ⋅ θ ⋅ I, s ⋅ θ ⋅ I) ∈ D) ∧
(∀l t s. (l,⟨t != s⟩) ∈ set (transaction_checks T) ⟶ t ⋅ θ ⋅ I ≠ s ⋅ θ ⋅ I) ∧
(∀l t s. (l,⟨t not in s⟩) ∈ set (transaction_checks T) ⟶ (t ⋅ θ ⋅ I, s ⋅ θ ⋅ I) ∉ D))"
(is "?A ⟷ ?B")
proof -
define P where "P ≡
λX. λδ::('fun,'atom,'sets,'lbl) prot_subst. subst_domain δ = set X ∧ ground (subst_range δ)"
define rm where "rm ≡ λX. λδ::('fun,'atom,'sets,'lbl) prot_subst. rm_vars (set X) δ"
define chks where "chks ≡ transaction_checks T"
define q1 where "q1 ≡ λt X δ. t ⋅ rm X θ ⋅ δ ⋅ I"
define q2 where "q2 ≡ λt. t ⋅ θ ⋅ I"
note 0 = admissible_transaction_is_wellformed_transaction[OF T]
note 1 = wellformed_transaction_sem_iff[OF 0(1) I, of M D θ, unfolded A_def[symmetric]]
note 2 = admissible_transactionE[OF T]
have 3: "rm X θ = θ" when "X = []" for X using that unfolding rm_def by auto
have 4: "P X δ ⟷ δ = Var" when "X = []" for X and δ
using that unfolding P_def by auto
have 5: "∃t s. ∀X⟨∨≠: F ∨∉: G⟩ = ⟨t != s⟩ ∨ ∀X⟨∨≠: F ∨∉: G⟩ = ⟨t not in s⟩"
when X: "(l, ∀X⟨∨≠: F ∨∉: G⟩) ∈ set chks" for l X F G
proof -
have *: "∀X⟨∨≠: F ∨∉: G⟩ ∈ set (unlabel (transaction_strand T))"
using X transaction_strand_subsets(2)[of T] unlabel_in unfolding chks_def by fast
hence **: "X = []" using 2(4) by auto
note *** = transaction_notinset_checks_are_Value_vars(3,4)[OF T *]
transaction_noteqs_checks_case[OF T *]
show ?thesis
proof (cases "G = []")
case True thus ?thesis using ** ***(3) by blast
next
case False
then obtain t s where g: "(t,s) ∈ set G" by (cases G) auto
show ?thesis using ** ***(1,2)[OF g] by blast
qed
qed
have 6: "q1 t X δ = q2 t" when "P X δ" "X = []" for X δ t
using that 3 4 unfolding q1_def q2_def by simp
let ?negcheck_sem = "λX F G. ∀δ. P X δ ⟶
(∃(t,s) ∈ set F. q1 t X δ ≠ q1 s X δ) ∨
(∃(t,s) ∈ set G. (q1 t X δ, q1 s X δ) ∉ D)"
have "(∀l X F G. (l,∀X⟨∨≠: F ∨∉: G⟩) ∈ set chks ⟶ ?negcheck_sem X F G) ⟷
((∀l t s. (l,⟨t != s⟩) ∈ set chks ⟶ q2 t ≠ q2 s) ∧
(∀l t s. (l,⟨t not in s⟩) ∈ set chks ⟶ (q2 t, q2 s) ∉ D))"
(is "?A ⟷ ?B")
proof
have "q2 t ≠ q2 s" when t: "(l,⟨t != s⟩) ∈ set chks" ?A for l t s
proof -
have "?negcheck_sem [] [(t,s)] []" using t by blast
thus ?thesis using 4[of "[]"] 6[of "[]"] by force
qed
moreover have "(q2 t, q2 s) ∉ D" when t: "(l,⟨t not in s⟩) ∈ set chks" ?A for l t s
proof -
have "?negcheck_sem [] [] [(t,s)]" using t by blast
thus ?thesis using 4[of "[]"] 6[of "[]"] by force
qed
ultimately show "?A ⟹ ?B" by blast
have "?negcheck_sem X F G"
when t: "(l,∀X⟨∨≠: F ∨∉: G⟩) ∈ set chks" ?B for l X F G
proof -
obtain t s where ts: "(X = [] ∧ F = [(t,s)] ∧ G = []) ∨ (X = [] ∧ F = [] ∧ G = [(t,s)])"
using 5[OF t(1)] by blast
hence "(X = [] ∧ F = [(t,s)] ∧ G = [] ∧ q2 t ≠ q2 s) ∨
(X = [] ∧ F = [] ∧ G = [(t,s)] ∧ (q2 t, q2 s) ∉ D)" using t by blast
thus ?thesis using 4[of "[]"] 6[of "[]"] by fastforce
qed
thus "?B ⟹ ?A" by simp
qed
thus ?thesis using 1 unfolding rm_def chks_def P_def q1_def q2_def by simp
qed
lemma admissible_transaction_terms_wf⇩t⇩r⇩m⇩s:
assumes "admissible_transaction_terms T"
shows "wf⇩t⇩r⇩m⇩s (trms_transaction T)"
by (rule conjunct1[OF assms[unfolded admissible_transaction_terms_def wf⇩t⇩r⇩m⇩s_code[symmetric]]])
lemma admissible_transactions_wf⇩t⇩r⇩m⇩s:
assumes "admissible_transaction' T"
shows "wf⇩t⇩r⇩m⇩s (trms_transaction T)"
proof -
have "admissible_transaction_terms T" using assms[unfolded admissible_transaction'_def] by fast
thus ?thesis by (metis admissible_transaction_terms_wf⇩t⇩r⇩m⇩s)
qed
lemma admissible_transaction_no_Ana_Attack:
assumes "admissible_transaction_terms T"
and "t ∈ subterms⇩s⇩e⇩t (trms_transaction T)"
shows "attack⟨n⟩ ∉ set (snd (Ana t))"
proof -
obtain r where r: "r ∈ set (unlabel (transaction_strand T))" "t ∈ subterms⇩s⇩e⇩t (trms⇩s⇩s⇩t⇩p r)"
using assms(2) by force
obtain K M where t: "Ana t = (K, M)"
by (metis surj_pair)
show ?thesis
proof
assume n: "attack⟨n⟩ ∈ set (snd (Ana t))"
hence "attack⟨n⟩ ∈ set M" using t by simp
hence n': "attack⟨n⟩ ∈ subterms⇩s⇩e⇩t (trms⇩s⇩s⇩t⇩p r)"
using Ana_subterm[OF t] r(2) subterms_subset by fast
hence "∃f ∈ ⋃(funs_term ` trms⇩s⇩s⇩t⇩p r). is_Attack f"
using funs_term_Fun_subterm' unfolding is_Attack_def by fast
hence "is_Send r" "length (the_msgs r) = 1" "is_Fun (hd (the_msgs r))"
"is_Attack (the_Fun (hd (the_msgs r)))" "args (hd (the_msgs r)) = []"
using assms(1) r(1) unfolding admissible_transaction_terms_def is_Fun_Attack_def by metis+
hence "t = attack⟨n⟩"
using n' r(2) unfolding is_Send_def is_Attack_def by (cases "the_msgs r") auto
thus False using n by fastforce
qed
qed
lemma admissible_transaction_Value_vars:
assumes T: "admissible_transaction' T"
and x: "x ∈ fv_transaction T"
shows "Γ⇩v x = TAtom Value"
proof -
have "x ∈ vars_transaction T"
using x vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel (transaction_strand T)"]
by blast
thus "Γ⇩v x = TAtom Value"
using admissible_transactionE(3)[OF T] by simp
qed
lemma admissible_transaction_occurs_checksE1:
assumes T: "admissible_transaction_occurs_checks T"
and x: "x ∈ fv_transaction T - set (transaction_fresh T)" "Γ⇩v x = TAtom Value"
obtains l ts S where
"transaction_receive T = (l,receive⟨ts⟩)#S" "occurs (Var x) ∈ set ts"
proof -
let ?rcvs = "transaction_receive T"
let ?frsh = "transaction_fresh T"
let ?fvs = "fv_transaction T"
have *: "?rcvs ≠ []" "is_Receive (hd (unlabel ?rcvs))"
"∀x ∈ ?fvs - set ?frsh. Γ⇩v x = TAtom Value ⟶
occurs (Var x) ∈ set (the_msgs (hd (unlabel ?rcvs)))"
using T x unfolding admissible_transaction_occurs_checks_def Γ⇩v_TAtom''(2) by meson+
obtain r S where S: "?rcvs = r#S"
using *(1) by (cases ?rcvs) auto
obtain l ts where r: "r = (l,receive⟨ts⟩)"
by (metis *(1,2) S list.map_sel(1) list.sel(1) prod.collapse is_Receive_def unlabel_def)
have 0: "occurs (Var x) ∈ set ts" using *(3) x S r by fastforce
show ?thesis using that[unfolded S r, of l ts S] 0 by blast
qed
lemma admissible_transaction_occurs_checksE2:
assumes T: "admissible_transaction_occurs_checks T"
and x: "x ∈ set (transaction_fresh T)"
obtains l ts S where
"transaction_send T = (l,send⟨ts⟩)#S" "occurs (Var x) ∈ set ts"
proof -
let ?snds = "transaction_send T"
let ?frsh = "transaction_fresh T"
let ?fvs = "fv_transaction T"
define ts where "ts ≡ the_msgs (hd (unlabel ?snds))"
let ?P = "∀x ∈ set ?frsh. occurs (Var x) ∈ set ts"
have "?frsh ≠ []" using x by auto
hence *: "?snds ≠ []" "is_Send (hd (unlabel ?snds))" "?P"
using T x unfolding admissible_transaction_occurs_checks_def ts_def by meson+
obtain r S where S: "?snds = r#S"
using *(1) by (cases ?snds) auto
obtain l where r: "r = (l,send⟨ts⟩)"
by (metis *(1,2) S list.map_sel(1) list.sel(1) prod.collapse unlabel_def ts_def
stateful_strand_step.collapse(1))
have ts: "occurs (Var x) ∈ set ts"
using x *(3) unfolding S by auto
show ?thesis using that[unfolded S r, of l ts S] ts by blast
qed
lemma admissible_transaction_occurs_checksE3:
assumes T: "admissible_transaction_occurs_checks T"
and t: "OccursFact ∈ funs_term t ∨ OccursSec ∈ funs_term t" "t ∈ set ts"
and ts: "send⟨ts⟩ ∈ set (unlabel (transaction_send T))"
obtains x where "t = occurs (Var x)" "x ∈ set (transaction_fresh T)"
proof -
let ?P = "λt. ∃x ∈ set (transaction_fresh T). t = occurs (Var x)"
have "?P t"
when "t ∈ trms⇩l⇩s⇩s⇩t (transaction_send T)" "OccursFact ∈ funs_term t ∨ OccursSec ∈ funs_term t"
for t
using assms that
unfolding admissible_transaction_occurs_checks_def
admissible_transaction_send_occurs_form_def
by metis
moreover have "t ∈ trms⇩l⇩s⇩s⇩t (transaction_send T)"
using t(2) ts unfolding trms⇩s⇩s⇩t_def by fastforce
ultimately have "?P t" using t(1) by blast
thus thesis using that by blast
qed
lemma admissible_transaction_occurs_checksE4:
assumes T: "admissible_transaction_occurs_checks T"
and ts: "send⟨ts⟩ ∈ set (unlabel (transaction_send T))"
and t: "occurs t ∈ set ts"
obtains x where "t = Var x" "x ∈ set (transaction_fresh T)"
using admissible_transaction_occurs_checksE3[OF T _ t ts] by auto
lemma admissible_transaction_occurs_checksE5:
assumes T: "admissible_transaction_occurs_checks T"
shows "Fun OccursSec [] ∉ trms⇩l⇩s⇩s⇩t (transaction_send T)"
proof -
have "∃x ∈ set (transaction_fresh T). t = occurs (Var x)"
when "t ∈ trms⇩l⇩s⇩s⇩t (transaction_send T)" "OccursFact ∈ funs_term t ∨ OccursSec ∈ funs_term t"
for t
using assms that
unfolding admissible_transaction_occurs_checks_def
admissible_transaction_send_occurs_form_def
by metis
thus ?thesis by fastforce
qed
lemma admissible_transaction_occurs_checksE6:
assumes T: "admissible_transaction_occurs_checks T"
and t: "t ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t (transaction_send T)"
shows "Fun OccursSec [] ∉ set (snd (Ana t))" (is ?A)
and "occurs k ∉ set (snd (Ana t))" (is ?B)
proof -
obtain t' where t': "t' ∈ trms⇩l⇩s⇩s⇩t (transaction_send T)" "t ⊑ t'" using t by blast
have "?A ∧ ?B"
proof (rule ccontr)
assume *: "¬(?A ∧ ?B)"
hence "OccursSec ∈ funs_term t' ∨ OccursFact ∈ funs_term t'"
by (meson t'(2) Ana_subterm' funs_term_Fun_subterm' term.order.trans)
then obtain x where x: "x ∈ set (transaction_fresh T)" "t' = occurs (Var x)"
using t'(1) T
unfolding admissible_transaction_occurs_checks_def
admissible_transaction_send_occurs_form_def
by metis
have "t = occurs (Var x) ∨ t = Var x ∨ t = Fun OccursSec []" using x(2) t'(2) by auto
thus False using * by fastforce
qed
thus ?A ?B by simp_all
qed
lemma has_initial_value_producing_transactionE:
fixes P::"('fun,'atom,'sets,'lbl) prot"
assumes P: "has_initial_value_producing_transaction P"
and P_adm: "∀T ∈ set P. admissible_transaction' T"
obtains T x s ts upds l l' where
"Γ⇩v x = TAtom Value" "Var x ∈ set ts" "fv⇩s⇩e⇩t (set ts) = {x}"
"∀n. ¬(Fun (Val n) [] ⊑⇩s⇩e⇩t set ts)" "T ∈ set P"
"T = Transaction (λ(). []) [x] [] [] upds [(l, send⟨ts⟩)]"
"upds = [] ∨ (upds = [(l', insert⟨Var x, ⟨s⟩⇩s⟩)] ∧
(∀T ∈ set P. ∀(l,a) ∈ set (transaction_strand T). ∀t.
a ≠ select⟨t, ⟨s⟩⇩s⟩ ∧ a ≠ ⟨t in ⟨s⟩⇩s⟩ ∧ a ≠ ⟨t not in ⟨s⟩⇩s⟩ ∧ a ≠ delete⟨t, ⟨s⟩⇩s⟩)) ∨
T = Transaction (λ(). []) [x] [] [] [] [(l, send⟨ts⟩)]"
proof -
define f where "f ≡ λs.
list_all (λT. list_all (λa. ((is_Delete a ∨ is_InSet a) ⟶ the_set_term a ≠ ⟨s⟩⇩s) ∧
(is_NegChecks a ⟶ list_all (λ(_,t). t ≠ ⟨s⟩⇩s) (the_ins a)))
(unlabel (transaction_checks T@transaction_updates T)))
P"
obtain T where T0:
"T ∈ set P"
"length (transaction_fresh T) = 1" "transaction_receive T = []"
"transaction_checks T = []" "length (transaction_send T) = 1"
"let x = hd (transaction_fresh T); a = hd (transaction_send T); u = transaction_updates T
in is_Send (snd a) ∧ Var x ∈ set (the_msgs (snd a)) ∧
fv⇩s⇩e⇩t (set (the_msgs (snd a))) = {x} ∧
(u ≠ [] ⟶ (
let b = hd u; c = snd b
in tl u = [] ∧ is_Insert c ∧ the_elem_term c = Var x ∧
is_Fun_Set (the_set_term c) ∧ f (the_Set (the_Fun (the_set_term c)))))"
using P unfolding has_initial_value_producing_transaction_def Let_def list_ex_iff f_def by blast
obtain x upds ts h s l l' where T1:
"T = Transaction h [x] [] [] upds [(l, send⟨ts⟩)]"
"Var x ∈ set ts" "fv⇩s⇩e⇩t (set ts) = {x}"
"upds = [] ∨ (upds = [(l', insert⟨Var x, ⟨s⟩⇩s⟩)] ∧ f s)"
proof (cases T)
case T: (Transaction A B C D E F)
obtain x where B: "B = [x]" using T0(2) unfolding T by (cases B) auto
have C: "C = []" using T0(3) unfolding T by simp
have D: "D = []" using T0(4) unfolding T by simp
obtain l a where F: "F = [(l,a)]" using T0(5) unfolding T by fastforce
obtain ts where ts: "a = send⟨ts⟩" using T0(6) unfolding T F by (cases a) auto
obtain k u where E: "E = [] ∨ E = [(k,u)]" using T0(6) unfolding T by (cases E) fastforce+
have x: "Var x ∈ set ts" "fv⇩s⇩e⇩t (set ts) = {x}" using T0(6) unfolding T B F ts by auto
from E show ?thesis
proof
assume E': "E = [(k,u)]"
obtain t t' where u: "u = insert⟨t,t'⟩" using T0(6) unfolding T E' by (cases u) auto
have t: "t = Var x" using T0(6) unfolding T B E' u Let_def by simp
obtain s where t': "t' = ⟨s⟩⇩s" and s: "f s" using T0(6) unfolding T B E' u Let_def by auto
show ?thesis using that[OF T[unfolded B C D F ts E' u t t'] x] s by blast
qed (use that[OF T[unfolded B C D F ts] x] in blast)
qed
note T_adm = bspec[OF P_adm T0(1)]
have "x ∈ set (transaction_fresh T)" using T1(1) by fastforce
hence x: "Γ⇩v x = TAtom Value" using admissible_transactionE(2)[OF T_adm] by fast
have "set ts ⊆ trms_transaction T" unfolding T1(1) trms_transaction_unfold by simp
hence ts: "∀n. ¬(Fun (Val n) [] ⊑⇩s⇩e⇩t set ts)"
using admissible_transactions_no_Value_consts[OF T_adm] by blast
have "a ≠ select⟨t, ⟨s⟩⇩s⟩ ∧ a ≠ ⟨t in ⟨s⟩⇩s⟩ ∧ a ≠ ⟨t not in ⟨s⟩⇩s⟩ ∧ a ≠ delete⟨t, ⟨s⟩⇩s⟩"
when upds: "upds = [(k, insert⟨Var x,⟨s⟩⇩s⟩)]"
and T': "T' ∈ set P" and la: "(l,a) ∈ set (transaction_strand T')"
for T' l k a t
proof -
note T'_wf = admissible_transaction_is_wellformed_transaction(1)[OF bspec[OF P_adm T']]
have "a ∈ set (unlabel (transaction_checks T'@transaction_updates T'))"
when a': "is_Check_or_Assignment a ∨ is_Update a"
using that wellformed_transaction_strand_unlabel_memberD[OF T'_wf unlabel_in[OF la]]
by (cases a) auto
note 0 = this T1(4) T'
note 1 = upds f_def list_all_iff
show ?thesis
proof (cases a)
case (Delete t' s') thus ?thesis using 0 unfolding 1 by fastforce
next
case (InSet ac t' s') thus ?thesis using 0 unfolding 1 by fastforce
next
case (NegChecks X F G) thus ?thesis using 0 unfolding 1 by fastforce
qed auto
qed
hence s: "∀T ∈ set P. ∀(l,a) ∈ set (transaction_strand T). ∀t.
a ≠ select⟨t, ⟨s⟩⇩s⟩ ∧ a ≠ ⟨t in ⟨s⟩⇩s⟩ ∧ a ≠ ⟨t not in ⟨s⟩⇩s⟩ ∧ a ≠ delete⟨t, ⟨s⟩⇩s⟩"
when upds: "upds = [(k, insert⟨Var x,⟨s⟩⇩s⟩)]" for k
using upds by force
have h: "h = (λ(). [])"
proof -
have "transaction_decl T = h" using T1(1) by fastforce
hence "h a = []" for a using admissible_transactionE(1)[OF T_adm] by simp
thus ?thesis using ext[of h "λ(). []"] by (metis case_unit_Unity)
qed
show ?thesis using that[OF x T1(2,3) ts T0(1)] T1(1,4) s unfolding h by auto
qed
lemma has_initial_value_producing_transaction_update_send_ex_filter:
fixes P::"('a,'b,'c,'d) prot"
defines "f ≡ λT. transaction_fresh T = [] ⟶
list_ex (λa. is_Update (snd a) ∨ is_Send (snd a)) (transaction_strand T)"
assumes P: "has_initial_value_producing_transaction P"
shows "has_initial_value_producing_transaction (filter f P)"
proof -
define g where "g ≡ λP::('a,'b,'c,'d) prot. λs.
list_all (λT. list_all (λa. ((is_Delete a ∨ is_InSet a) ⟶ the_set_term a ≠ ⟨s⟩⇩s) ∧
(is_NegChecks a ⟶ list_all (λ(_,t). t ≠ ⟨s⟩⇩s) (the_ins a)))
(unlabel (transaction_checks T@transaction_updates T)))
P"
let ?Q = "λP T.
let x = hd (transaction_fresh T); a = hd (transaction_send T); u = transaction_updates T
in is_Send (snd a) ∧ Var x ∈ set (the_msgs (snd a)) ∧
fv⇩s⇩e⇩t (set (the_msgs (snd a))) = {x} ∧
(u ≠ [] ⟶ (
let b = hd u; c = snd b
in tl u = [] ∧ is_Insert c ∧ the_elem_term c = Var x ∧
is_Fun_Set (the_set_term c) ∧ g P (the_Set (the_Fun (the_set_term c)))))"
have "set (filter f P) ⊆ set P" by simp
hence "list_all h P ⟹ list_all h (filter f P)" for h unfolding list_all_iff by blast
hence g_f_subset: "g P s ⟹ g (filter f P) s" for s unfolding g_def by blast
obtain T where T:
"T ∈ set P" "length (transaction_fresh T) = 1" "transaction_receive T = []"
"transaction_checks T = []" "length (transaction_send T) = 1" "?Q P T"
using P unfolding has_initial_value_producing_transaction_def Let_def list_ex_iff g_def by blast
obtain x where x: "transaction_fresh T = [x]" using T(2) by blast
obtain a where a: "transaction_send T = [a]" using T(5) by blast
obtain l b where b: "a = (l,b)" by (cases a) auto
obtain ts where ts: "b = send⟨ts⟩" using T(6) unfolding Let_def a b by (cases b) auto
have "T ∈ set (filter f P)" using T(1) x a unfolding b ts f_def by auto
moreover have "?Q (filter f P) T" using T(6) g_f_subset by meson
ultimately show ?thesis
using T(2-5)
unfolding has_initial_value_producing_transaction_def Let_def list_ex_iff g_def
by blast
qed
subsection ‹Lemmata: Renaming, Declaration, and Fresh Substitutions›
lemma transaction_decl_subst_empty_inv:
assumes "transaction_decl_subst Var T"
shows "transaction_decl T () = []"
using assms unfolding transaction_decl_subst_def subst_domain_Var by blast
lemma transaction_decl_subst_domain:
fixes ξ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_decl_subst ξ T"
shows "subst_domain ξ = fst ` set (transaction_decl T ())"
using assms unfolding transaction_decl_subst_def by argo
lemma transaction_decl_subst_grounds_domain:
fixes ξ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_decl_subst ξ T"
and "x ∈ fst ` set (transaction_decl T ())"
shows "fv (ξ x) = {}"
proof -
obtain c where "ξ x = Fun c []"
using assms unfolding transaction_decl_subst_def by force
thus ?thesis by simp
qed
lemma transaction_decl_subst_range_vars_empty:
fixes ξ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_decl_subst ξ T"
shows "range_vars ξ = {}"
using assms unfolding transaction_decl_subst_def range_vars_def by auto
lemma transaction_decl_subst_wt:
fixes ξ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_decl_subst ξ T"
shows "wt⇩s⇩u⇩b⇩s⇩t ξ"
using assms unfolding transaction_decl_subst_def by blast
lemma transaction_decl_subst_is_wf_trm:
fixes ξ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_decl_subst ξ P"
shows "wf⇩t⇩r⇩m (ξ v)"
proof (cases "v ∈ subst_domain ξ")
case True thus ?thesis using assms unfolding transaction_decl_subst_def by fastforce
qed auto
lemma transaction_decl_subst_range_wf_trms:
fixes ξ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_decl_subst ξ P"
shows "wf⇩t⇩r⇩m⇩s (subst_range ξ)"
by (metis transaction_decl_subst_is_wf_trm[OF assms] wf_trm_subst_range_iff)
lemma transaction_renaming_subst_is_renaming:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes α: "transaction_renaming_subst α P A"
shows "∃m. ∀τ n. α (τ,n) = Var (τ,n+Suc m)" (is ?A)
and "∃y. α x = Var y" (is ?B)
and "α x ≠ Var x" (is ?C)
and "subst_domain α = UNIV" (is ?D)
and "subst_range α ⊆ range Var" (is ?E)
and "fv (t ⋅ α) ⊆ range_vars α" (is ?F)
proof -
show 0: ?A using α unfolding transaction_renaming_subst_def var_rename_def by force
show ?B using α unfolding transaction_renaming_subst_def var_rename_def by blast
show ?C using 0 by (cases x) auto
show 1: ?D using 0 by fastforce
show ?E using 0 by auto
show ?F by (induct t) (auto simp add: 1 subst_dom_vars_in_subst subst_fv_imgI)
qed
lemma transaction_renaming_subst_is_injective:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_renaming_subst α P A"
shows "inj α"
proof (intro injI)
fix x y::"('fun,'atom,'sets,'lbl) prot_var"
obtain τx nx where x: "x = (τx,nx)" by (metis surj_pair)
obtain τy ny where y: "y = (τy,ny)" by (metis surj_pair)
obtain m where m: "∀τ. ∀n. α (τ, n) = Var (τ, n + Suc m)"
using transaction_renaming_subst_is_renaming(1)[OF assms] by blast
assume "α x = α y"
hence "τx = τy" "nx = ny" using x y m by simp_all
thus "x = y" using x y by argo
qed
lemma transaction_renaming_subst_vars_disj:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
shows "fv⇩s⇩e⇩t (α ` (⋃(vars_transaction ` set P))) ∩ (⋃(vars_transaction ` set P)) = {}" (is ?A)
and "fv⇩s⇩e⇩t (α ` vars⇩l⇩s⇩s⇩t A) ∩ vars⇩l⇩s⇩s⇩t A = {}" (is ?B)
and "T ∈ set P ⟹ vars_transaction T ∩ range_vars α = {}" (is "T ∈ set P ⟹ ?C1")
and "T ∈ set P ⟹ bvars_transaction T ∩ range_vars α = {}" (is "T ∈ set P ⟹ ?C2")
and "T ∈ set P ⟹ fv_transaction T ∩ range_vars α = {}" (is "T ∈ set P ⟹ ?C3")
and "vars⇩l⇩s⇩s⇩t A ∩ range_vars α = {}" (is ?D1)
and "bvars⇩l⇩s⇩s⇩t A ∩ range_vars α = {}" (is ?D2)
and "fv⇩l⇩s⇩s⇩t A ∩ range_vars α = {}" (is ?D3)
proof -
define X where "X ≡ ⋃(vars_transaction ` set P) ∪ vars⇩l⇩s⇩s⇩t A"
have 1: "finite X" by (simp add: X_def)
obtain n where n: "n ≥ max_var_set X" "α = var_rename n"
using assms unfolding transaction_renaming_subst_def X_def by force
hence 2: "∀x ∈ X. snd x < Suc n"
using less_Suc_max_var_set[OF _ 1] unfolding var_rename_def by fastforce
have 3: "x ∉ fv⇩s⇩e⇩t (α ` X)" "fv (α x) ∩ X = {}" "x ∉ range_vars α" when x: "x ∈ X" for x
using 2 x n unfolding var_rename_def by force+
show ?A ?B using 3(1,2) unfolding X_def by auto
show ?C1 when T: "T ∈ set P" using T 3(3) unfolding X_def by blast
thus ?C2 ?C3 when T: "T ∈ set P"
using T by (simp_all add: disjoint_iff_not_equal vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t)
show ?D1 using 3(3) unfolding X_def by auto
thus ?D2 ?D3 by (simp_all add: disjoint_iff_not_equal vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t)
qed
lemma transaction_renaming_subst_wt:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_renaming_subst α P X"
shows "wt⇩s⇩u⇩b⇩s⇩t α"
proof -
{ fix x::"('fun,'atom,'sets,'lbl) prot_var"
obtain τ n where x: "x = (τ,n)" by force
then obtain m where m: "α x = Var (τ,m)"
using assms transaction_renaming_subst_is_renaming(1) by force
hence "Γ (α x) = Γ⇩v x" using x by (simp add: Γ⇩v_def)
} thus ?thesis by (simp add: wt⇩s⇩u⇩b⇩s⇩t_def)
qed
lemma transaction_renaming_subst_is_wf_trm:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_renaming_subst α P X"
shows "wf⇩t⇩r⇩m (α v)"
proof -
obtain τ n where "v = (τ, n)" by force
then obtain m where "α v = Var (τ, n + Suc m)"
using transaction_renaming_subst_is_renaming(1)[OF assms]
by force
thus ?thesis by (metis wf_trm_Var)
qed
lemma transaction_renaming_subst_range_wf_trms:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_renaming_subst α P X"
shows "wf⇩t⇩r⇩m⇩s (subst_range α)"
by (metis transaction_renaming_subst_is_wf_trm[OF assms] wf_trm_subst_range_iff)
lemma transaction_renaming_subst_range_notin_vars:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
shows "∃y. α x = Var y ∧ y ∉ ⋃(vars_transaction ` set P) ∪ vars⇩l⇩s⇩s⇩t A"
proof -
obtain τ n where x: "x = (τ,n)" by (metis surj_pair)
define y where "y ≡ λm. (τ,n+Suc m)"
have "∃m ≥ max_var_set (⋃(vars_transaction ` set P) ∪ vars⇩l⇩s⇩s⇩t A). α x = Var (y m)"
using assms x by (auto simp add: y_def transaction_renaming_subst_def var_rename_def)
moreover have "finite (⋃(vars_transaction ` set P) ∪ vars⇩l⇩s⇩s⇩t A)" by auto
ultimately show ?thesis using x unfolding y_def by force
qed
lemma transaction_renaming_subst_var_obtain:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes α: "transaction_renaming_subst α P X"
shows "x ∈ fv⇩s⇩s⇩t (S ⋅⇩s⇩s⇩t α) ⟹ ∃y. α y = Var x" (is "?A1 ⟹ ?B1")
and "x ∈ fv (t ⋅ α) ⟹ ∃y ∈ fv t. α y = Var x" (is "?A2 ⟹ ?B2")
proof -
assume x: ?A1
obtain y where y: "y ∈ fv⇩s⇩s⇩t S" "x ∈ fv (α y)" using fv⇩s⇩s⇩t_subst_obtain_var[OF x] by force
thus ?B1 using transaction_renaming_subst_is_renaming(2)[OF α, of y] by fastforce
next
assume x: ?A2
obtain y where y: "y ∈ fv t" "x ∈ fv (α y)" using fv_subst_obtain_var[OF x] by force
thus ?B2 using transaction_renaming_subst_is_renaming(2)[OF α, of y] by fastforce
qed
lemma transaction_renaming_subst_set_eq:
assumes "set P1 = set P2"
shows "transaction_renaming_subst α P1 X = transaction_renaming_subst α P2 X" (is "?A = ?B")
using assms unfolding transaction_renaming_subst_def by presburger
lemma transaction_renaming_subst_vars_transaction_neq:
assumes T: "T ∈ set P"
and α: "transaction_renaming_subst α P vars"
and vars:"finite vars"
and x: "x ∈ vars_transaction T"
shows "α y ≠ Var x"
proof -
have "∃n. α = var_rename n ∧ n ≥ max_var_set (⋃(vars_transaction ` set P))"
using T α vars x unfolding transaction_renaming_subst_def by auto
then obtain n where n_p: "α = var_rename n" "n ≥ max_var_set (⋃(vars_transaction ` set P))"
by blast
moreover
have "⋃(vars_transaction ` set P) ⊇ vars_transaction T"
using T by blast
ultimately
have n_gt: "n ≥ max_var_set (vars_transaction T)"
by auto
obtain a b where ab: "x = (a,b)"
by (cases x) auto
obtain c d where cd: "y = (c,d)"
by (cases y) auto
have nb: "n ≥ b"
using n_gt x ab
by auto
have "α y = α (c, d)"
using cd by auto
moreover
have "... = Var (c, Suc (d + n))"
unfolding n_p(1) unfolding var_rename_def by simp
moreover
have "... ≠ Var x"
using nb ab by auto
ultimately
show ?thesis
by auto
qed
lemma transaction_renaming_subst_fv_disj:
fixes α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
shows "fv⇩s⇩e⇩t (α ` fv⇩l⇩s⇩s⇩t A) ∩ fv⇩l⇩s⇩s⇩t A = {}"
proof -
have "fv⇩s⇩e⇩t (α ` vars⇩l⇩s⇩s⇩t A) ∩ vars⇩l⇩s⇩s⇩t A = {}"
using assms transaction_renaming_subst_vars_disj(2) by blast
moreover
have "fv⇩l⇩s⇩s⇩t A ⊆ vars⇩l⇩s⇩s⇩t A"
by (simp add: vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t)
ultimately
show ?thesis
by auto
qed
lemma transaction_fresh_subst_is_wf_trm:
fixes σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_fresh_subst σ T X"
shows "wf⇩t⇩r⇩m (σ v)"
proof (cases "v ∈ subst_domain σ")
case True
then obtain c where "σ v = Fun c []" "arity c = 0"
using assms unfolding transaction_fresh_subst_def
by force
thus ?thesis by auto
qed auto
lemma transaction_fresh_subst_wt:
fixes σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_fresh_subst σ T X"
shows "wt⇩s⇩u⇩b⇩s⇩t σ"
using assms unfolding transaction_fresh_subst_def by blast
lemma transaction_fresh_subst_domain:
fixes σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_fresh_subst σ T X"
shows "subst_domain σ = set (transaction_fresh T)"
using assms unfolding transaction_fresh_subst_def by fast
lemma transaction_fresh_subst_range_wf_trms:
fixes σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_fresh_subst σ T X"
shows "wf⇩t⇩r⇩m⇩s (subst_range σ)"
by (metis transaction_fresh_subst_is_wf_trm[OF assms] wf_trm_subst_range_iff)
lemma transaction_fresh_subst_range_fresh:
fixes σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_fresh_subst σ T M"
shows "∀t ∈ subst_range σ. t ∉ subterms⇩s⇩e⇩t M"
and "∀t ∈ subst_range σ. t ∉ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_strand T))"
using assms unfolding transaction_fresh_subst_def by meson+
lemma transaction_fresh_subst_sends_to_val:
fixes σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes σ: "transaction_fresh_subst σ T X"
and y: "y ∈ set (transaction_fresh T)" "Γ⇩v y = TAtom Value"
obtains n where "σ y = Fun (Val n) []" "Fun (Val n) [] ∈ subst_range σ"
proof -
have "σ y ∈ subst_range σ" using assms unfolding transaction_fresh_subst_def by simp
obtain c where c: "σ y = Fun c []" "¬public c" "arity c = 0"
using σ y(1) unfolding transaction_fresh_subst_def by fastforce
have "Γ (σ y) = TAtom Value"
using σ y(2) Γ⇩v_TAtom''(2)[of y] wt_subst_trm''[of σ "Var y"]
unfolding transaction_fresh_subst_def by simp
then obtain n where "c = Val n"
using c by (cases c) (auto split: option.splits)
thus ?thesis
using c that unfolding transaction_fresh_subst_def
by fastforce
qed
lemma transaction_fresh_subst_sends_to_val':
fixes σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_fresh_subst σ T X"
and "y ∈ set (transaction_fresh T)" "Γ⇩v y = TAtom Value"
obtains n where "(σ ∘⇩s α) y ⋅ ℐ = Fun (Val n) []" "Fun (Val n) [] ∈ subst_range σ"
proof -
obtain n where "σ y = Fun (Val n) []" "Fun (Val n) [] ∈ subst_range σ"
using transaction_fresh_subst_sends_to_val[OF assms] by force
thus ?thesis using that by (fastforce simp add: subst_compose_def)
qed
lemma transaction_fresh_subst_grounds_domain:
fixes σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_fresh_subst σ T X"
and "y ∈ set (transaction_fresh T)"
shows "fv (σ y) = {}"
proof -
obtain c where "σ y = Fun c []"
using assms unfolding transaction_fresh_subst_def by force
thus ?thesis by simp
qed
lemma transaction_fresh_subst_range_vars_empty:
fixes σ::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_fresh_subst σ T X"
shows "range_vars σ = {}"
proof -
have "fv t = {}" when "t ∈ subst_range σ" for t
using assms that unfolding transaction_fresh_subst_def by fastforce
thus ?thesis unfolding range_vars_def by blast
qed
lemma transaction_decl_fresh_renaming_substs_range:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T M"
and α: "transaction_renaming_subst α P X"
shows "x ∈ fst ` set (transaction_decl T ()) ⟹
∃c. (ξ ∘⇩s σ ∘⇩s α) x = Fun c [] ∧ arity c = 0"
and "x ∉ fst ` set (transaction_decl T ()) ⟹
x ∈ set (transaction_fresh T) ⟹
∃c. (ξ ∘⇩s σ ∘⇩s α) x = Fun c [] ∧ ¬public c ∧ arity c = 0"
and "x ∉ fst ` set (transaction_decl T ()) ⟹
x ∈ set (transaction_fresh T) ⟹
fst x = TAtom Value ⟹
∃n. (ξ ∘⇩s σ ∘⇩s α) x = Fun (Val n) []"
and "x ∉ fst ` set (transaction_decl T ()) ⟹
x ∉ set (transaction_fresh T) ⟹
∃y. (ξ ∘⇩s σ ∘⇩s α) x = Var y"
proof -
assume "x ∈ fst ` set (transaction_decl T ())"
then obtain c where c: "ξ x = Fun c []" "arity c = 0"
using ξ unfolding transaction_decl_subst_def by fastforce
thus "∃c. (ξ ∘⇩s σ ∘⇩s α) x = Fun c [] ∧ arity c = 0"
using subst_compose[of "ξ ∘⇩s σ" α x] subst_compose[of ξ σ x] by simp
next
assume x: "x ∉ fst ` set (transaction_decl T ())"
"x ∈ set (transaction_fresh T)"
have *: "(ξ ∘⇩s σ) x = σ x"
using x(1) ξ unfolding transaction_decl_subst_def
by (metis (no_types, opaque_lifting) subst_comp_notin_dom_eq)
then obtain c where c: "(ξ ∘⇩s σ) x = Fun c []" "¬public c" "arity c = 0"
using σ x(2) unfolding transaction_fresh_subst_def by fastforce
thus "∃c. (ξ ∘⇩s σ ∘⇩s α) x = Fun c [] ∧ ¬public c ∧ arity c = 0"
using subst_compose[of "ξ ∘⇩s σ" α x] subst_compose[of ξ σ x] by simp
assume "fst x = TAtom Value"
hence "Γ ((ξ ∘⇩s σ) x) = TAtom Value"
using * σ Γ⇩v_TAtom''(2)[of x] wt_subst_trm''[of σ "Var x"]
unfolding transaction_fresh_subst_def by simp
then obtain n where "c = Val n"
using c by (cases c) (auto split: option.splits)
thus "∃n. (ξ ∘⇩sσ ∘⇩s α) x = Fun (Val n) []"
using c subst_compose[of "ξ ∘⇩s σ" α x] subst_compose[of ξ σ x] by simp
next
assume "x ∉ fst ` set (transaction_decl T ())"
"x ∉ set (transaction_fresh T)"
hence "(ξ ∘⇩s σ) x = Var x"
using ξ σ
unfolding transaction_decl_subst_def transaction_fresh_subst_def
by (metis (no_types, opaque_lifting) subst_comp_notin_dom_eq subst_domI)
thus "∃y. (ξ ∘⇩s σ ∘⇩s α) x = Var y"
using transaction_renaming_subst_is_renaming(1)[OF α]
subst_compose[of "ξ ∘⇩s σ" α x] subst_compose[of ξ σ x]
by (cases x) force
qed
lemma transaction_decl_fresh_renaming_substs_range':
fixes σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T M"
and α: "transaction_renaming_subst α P X"
and t: "t ∈ subst_range (ξ ∘⇩s σ ∘⇩s α)"
shows "(∃c. t = Fun c [] ∧ arity c = 0) ∨ (∃x. t = Var x)"
and "ξ = Var ⟹ (∃c. t = Fun c [] ∧ ¬public c ∧ arity c = 0) ∨ (∃x. t = Var x)"
and "ξ = Var ⟹ ∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value ⟹
(∃n. t = Fun (Val n) []) ∨ (∃x. t = Var x)"
and "ξ = Var ⟹ is_Fun t ⟹ t ∈ subst_range σ"
proof -
obtain x where x: "x ∈ subst_domain (ξ ∘⇩s σ ∘⇩s α)" "(ξ ∘⇩s σ ∘⇩s α) x = t"
using t by auto
note 0 = x transaction_decl_fresh_renaming_substs_range[OF ξ σ α, of x]
show "(∃c. t = Fun c [] ∧ arity c = 0) ∨ (∃x. t = Var x)"
using 0 unfolding Γ⇩v_TAtom'' by auto
assume 1: "ξ = Var"
note 2 = transaction_decl_subst_empty_inv[OF ξ[unfolded 1]]
show 3: "(∃c. t = Fun c [] ∧ ¬public c ∧ arity c = 0) ∨ (∃x. t = Var x)"
using 0 2 unfolding Γ⇩v_TAtom'' by auto
show "(∃n. t = Fun (Val n) []) ∨ (∃x. t = Var x)"
when "∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value"
using 0 2 that unfolding Γ⇩v_TAtom'' by auto
show "t ∈ subst_range σ" when t': "is_Fun t"
proof -
obtain x where x: "(σ ∘⇩s α) x = t" using t 1 by auto
show ?thesis
proof (cases "x ∈ subst_domain σ")
case True thus ?thesis
by (metis subst_dom_vars_in_subst subst_ground_ident_compose(1) subst_imgI x
transaction_fresh_subst_grounds_domain[OF σ]
transaction_fresh_subst_domain[OF σ])
next
case False thus ?thesis
by (metis (no_types, lifting) subst_compose_def subst_domI term.disc(1) that
transaction_renaming_subst_is_renaming(5)[OF α] var_renaming_is_Fun_iff x)
qed
qed
qed
lemma transaction_decl_fresh_renaming_substs_range'':
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
and y: "y ∈ fv ((ξ ∘⇩s σ ∘⇩s α) x)"
shows "ξ x = Var x"
and "σ x = Var x"
and "α x = Var y"
and "(ξ ∘⇩s σ ∘⇩s α) x = Var y"
proof -
have "∃z. z ∈ fv (ξ x)" by (metis y subst_compose_fv')
hence "x ∉ subst_domain ξ"
using y transaction_decl_subst_domain[OF ξ]
transaction_decl_subst_grounds_domain[OF ξ, of x]
by blast
thus 0: "ξ x = Var x" by blast
hence "y ∈ fv ((σ ∘⇩s α) x)" using y by (simp add: subst_compose)
hence "∃z. z ∈ fv (σ x)" by (metis subst_compose_fv')
hence "x ∉ subst_domain σ"
using y transaction_fresh_subst_domain[OF σ]
transaction_fresh_subst_grounds_domain[OF σ, of x]
by blast
thus 1: "σ x = Var x" by blast
show "α x = Var y" "(ξ ∘⇩s σ ∘⇩s α) x = Var y"
using 0 1 y transaction_renaming_subst_is_renaming(2)[OF α, of x]
unfolding subst_compose_def by (fastforce,fastforce)
qed
lemma transaction_decl_fresh_renaming_substs_vars_subset:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
shows "⋃(fv_transaction ` set P) ⊆ subst_domain (ξ ∘⇩s σ ∘⇩s α)" (is ?A)
and "fv⇩l⇩s⇩s⇩t 𝒜 ⊆ subst_domain (ξ ∘⇩s σ ∘⇩s α)" (is ?B)
and "T' ∈ set P ⟹ fv_transaction T' ⊆ subst_domain (ξ ∘⇩s σ ∘⇩s α)" (is "T' ∈ set P ⟹ ?C")
and "T' ∈ set P ⟹ fv⇩l⇩s⇩s⇩t (transaction_strand T' ⋅⇩l⇩s⇩s⇩t (ξ ∘⇩s σ ∘⇩s α)) ⊆ range_vars (ξ ∘⇩s σ ∘⇩s α)"
(is "T' ∈ set P ⟹ ?D")
proof -
have *: "x ∈ subst_domain (ξ ∘⇩s σ ∘⇩s α)" for x
proof (cases "x ∈ subst_domain ξ")
case True thus ?thesis
using transaction_decl_subst_domain[OF ξ] transaction_decl_subst_grounds_domain[OF ξ]
by (simp add: subst_domI subst_dom_vars_in_subst subst_ground_ident_compose(1))
next
case False
hence ξ_x_eq: "(ξ ∘⇩s σ ∘⇩s α) x = (σ ∘⇩s α) x" by (auto simp add: subst_compose)
show ?thesis
proof (cases "x ∈ subst_domain σ")
case True
hence "x ∉ {x. ∃y. σ x = Var y ∧ α y = Var x}"
using transaction_fresh_subst_domain[OF σ]
transaction_fresh_subst_grounds_domain[OF σ, of x]
by auto
hence "x ∈ subst_domain (σ ∘⇩s α)" using subst_domain_subst_compose[of σ α] by blast
thus ?thesis using ξ_x_eq subst_dom_vars_in_subst by fastforce
next
case False
hence "(σ ∘⇩s α) x = α x" unfolding subst_compose_def by fastforce
moreover have "α x ≠ Var x"
using transaction_renaming_subst_is_renaming(1)[OF α] by (cases x) auto
ultimately show ?thesis using ξ_x_eq by fastforce
qed
qed
show ?A ?B using * by blast+
show ?C when T: "T' ∈ set P" using T * by blast
hence "fv⇩s⇩s⇩t (unlabel (transaction_strand T') ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α) ⊆ range_vars (ξ ∘⇩s σ ∘⇩s α)"
when T: "T' ∈ set P"
using T fv⇩s⇩s⇩t_subst_subset_range_vars_if_subset_domain by blast
thus ?D when T: "T' ∈ set P" by (metis T unlabel_subst)
qed
lemma transaction_decl_fresh_renaming_substs_vars_disj:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
shows "fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` (⋃(vars_transaction ` set P))) ∩ (⋃(vars_transaction ` set P)) = {}"
(is ?A)
and "x ∈ ⋃(vars_transaction ` set P) ⟹ fv ((ξ ∘⇩s σ ∘⇩s α) x) ∩ (⋃(vars_transaction ` set P)) = {}"
(is "?B' ⟹ ?B")
and "T' ∈ set P ⟹ vars_transaction T' ∩ range_vars (ξ ∘⇩s σ ∘⇩s α) = {}" (is "T' ∈ set P ⟹ ?C1")
and "T' ∈ set P ⟹ bvars_transaction T' ∩ range_vars (ξ ∘⇩s σ ∘⇩s α) = {}" (is "T' ∈ set P ⟹ ?C2")
and "T' ∈ set P ⟹ fv_transaction T' ∩ range_vars (ξ ∘⇩s σ ∘⇩s α) = {}" (is "T' ∈ set P ⟹ ?C3")
and "vars⇩l⇩s⇩s⇩t 𝒜 ∩ range_vars (ξ ∘⇩s σ ∘⇩s α) = {}" (is ?D1)
and "bvars⇩l⇩s⇩s⇩t 𝒜 ∩ range_vars (ξ ∘⇩s σ ∘⇩s α) = {}" (is ?D2)
and "fv⇩l⇩s⇩s⇩t 𝒜 ∩ range_vars (ξ ∘⇩s σ ∘⇩s α) = {}" (is ?D3)
and "range_vars ξ = {}" (is ?E1)
and "range_vars σ = {}" (is ?E2)
and "range_vars (ξ ∘⇩s σ ∘⇩s α) ⊆ range_vars α" (is ?E3)
proof -
note 0 = transaction_renaming_subst_vars_disj[OF α]
show ?A
proof (cases "fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` (⋃(vars_transaction ` set P))) = {}")
case False
hence "∀x ∈ (⋃(vars_transaction ` set P)). (ξ ∘⇩s σ ∘⇩s α) x = α x ∨ fv ((ξ ∘⇩s σ ∘⇩s α) x) = {}"
using transaction_decl_fresh_renaming_substs_range''[OF ξ σ α] by auto
thus ?thesis using 0(1) by force
qed blast
thus "?B' ⟹ ?B" by auto
show ?E1 ?E2
using transaction_fresh_subst_grounds_domain[OF σ]
transaction_decl_subst_grounds_domain[OF ξ]
unfolding transaction_fresh_subst_domain[OF σ, symmetric]
transaction_decl_subst_domain[OF ξ, symmetric]
by (fastforce, fastforce)
thus 1: ?E3
using range_vars_subst_compose_subset[of ξ σ]
range_vars_subst_compose_subset[of "ξ ∘⇩s σ" α]
by blast
show ?C1 ?C2 ?C3 when T: "T' ∈ set P" using T 1 0(3,4,5)[of T'] by blast+
show ?D1 ?D2 ?D3 using 1 0(6,7,8) by blast+
qed
lemma transaction_decl_fresh_renaming_substs_trms:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
and "bvars⇩l⇩s⇩s⇩t S ∩ subst_domain ξ = {}"
and "bvars⇩l⇩s⇩s⇩t S ∩ subst_domain σ = {}"
and "bvars⇩l⇩s⇩s⇩t S ∩ subst_domain α = {}"
shows "subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (S ⋅⇩l⇩s⇩s⇩t (ξ ∘⇩s σ ∘⇩s α))) = subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t S) ⋅⇩s⇩e⇩t (ξ ∘⇩s σ ∘⇩s α)"
proof -
have 1: "∀x ∈ fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t S). (∃f. (ξ ∘⇩s σ ∘⇩s α) x = Fun f []) ∨ (∃y. (ξ ∘⇩s σ ∘⇩s α) x = Var y)"
using transaction_decl_fresh_renaming_substs_range'[OF ξ σ α] by blast
have 2: "bvars⇩l⇩s⇩s⇩t S ∩ subst_domain (ξ ∘⇩s σ ∘⇩s α) = {}"
using assms(4-6) subst_domain_compose[of ξ σ] subst_domain_compose[of "ξ ∘⇩s σ" α] by blast
show ?thesis using subterms_subst_lsst[OF 1 2] by simp
qed
lemma transaction_decl_fresh_renaming_substs_wt:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_decl_subst ξ T" "transaction_fresh_subst σ T M"
"transaction_renaming_subst α P X"
shows "wt⇩s⇩u⇩b⇩s⇩t (ξ ∘⇩s σ ∘⇩s α)"
using transaction_renaming_subst_wt[OF assms(3)]
transaction_fresh_subst_wt[OF assms(2)]
transaction_decl_subst_wt[OF assms(1)]
by (metis wt_subst_compose)
lemma transaction_decl_fresh_renaming_substs_range_wf_trms:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes "transaction_decl_subst ξ T" "transaction_fresh_subst σ T M"
"transaction_renaming_subst α P X"
shows "wf⇩t⇩r⇩m⇩s (subst_range (ξ ∘⇩s σ ∘⇩s α))"
using transaction_renaming_subst_range_wf_trms[OF assms(3)]
transaction_fresh_subst_range_wf_trms[OF assms(2)]
transaction_decl_subst_range_wf_trms[OF assms(1)]
wf_trms_subst_compose[of ξ σ]
wf_trms_subst_compose[of "ξ ∘⇩s σ" α]
by metis
lemma transaction_decl_fresh_renaming_substs_fv:
fixes σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T M"
and α: "transaction_renaming_subst α P X"
and x: "x ∈ fv⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
shows "∃y ∈ fv_transaction T - set (transaction_fresh T). (ξ ∘⇩s σ ∘⇩s α) y = Var x"
proof -
have "x ∈ fv⇩s⇩s⇩t (unlabel (transaction_strand T) ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using x fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
by argo
then obtain y where "y ∈ fv_transaction T" "x ∈ fv ((ξ ∘⇩s σ ∘⇩s α) y)"
by (metis fv⇩s⇩s⇩t_subst_obtain_var)
thus ?thesis
using transaction_decl_fresh_renaming_substs_range[OF ξ σ α, of y]
by (cases "y ∈ set (transaction_fresh T)") force+
qed
lemma transaction_decl_fresh_renaming_substs_range_no_attack_const:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T M"
and α: "transaction_renaming_subst α P X"
and T: "∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
and t: "t ∈ subst_range (ξ ∘⇩s σ ∘⇩s α)"
shows "∄n. t = attack⟨n⟩"
proof -
note ξσα_wt = transaction_decl_fresh_renaming_substs_wt[OF ξ σ α]
obtain x where x: "(ξ ∘⇩s σ ∘⇩s α) x = t" using t by auto
have x_type: "Γ (Var x) = Γ (Var x ⋅ ξ)" "Γ (Var x) = Γ (Var x ⋅ ξ ∘⇩s σ ∘⇩s α)"
using ξ wt_subst_trm''[of ξ "Var x"] wt_subst_trm''[OF ξσα_wt, of "Var x"]
unfolding transaction_decl_subst_def by (blast, blast)
show ?thesis
proof (cases t)
case (Fun f S)
hence "x ∈ set (transaction_fresh T) ∨ x ∈ fst ` set (transaction_decl T ())"
using transaction_decl_fresh_renaming_substs_range[OF ξ σ α, of x] x by force
thus ?thesis
proof
assume "x ∈ set (transaction_fresh T)"
hence "Γ t = TAtom Value ∨ (∃a. Γ t = TAtom (Atom a))"
using T x_type(2) x by (metis Γ.simps(1) eval_term.simps(1))
thus ?thesis by auto
next
assume "x ∈ fst ` set (transaction_decl T ())"
then obtain c where c: "ξ x = Fun (Fu c) []" "arity⇩f c = 0"
using ξ unfolding transaction_decl_subst_def by auto
have "Γ t = TAtom Bottom ∨ (∃a. Γ t = TAtom (Atom a))"
using c(1) Γ_consts_simps(1)[OF c(2)] x x_type
eval_term.simps(1)[of _ x ξ] eval_term.simps(1)[of _ x "ξ ∘⇩s σ ∘⇩s α"]
by (cases "Γ⇩f c") simp_all
thus ?thesis by auto
qed
qed simp
qed
lemma transaction_decl_fresh_renaming_substs_occurs_fact_send_receive:
fixes t::"('fun,'atom,'sets,'lbl) prot_term"
assumes ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T M"
and α: "transaction_renaming_subst α P X"
and T: "admissible_transaction' T"
and t: "occurs t ∈ set ts"
shows "send⟨ts⟩ ∈ set (unlabel (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))
⟹ ∃ts' s. send⟨ts'⟩ ∈ set (unlabel (transaction_send T)) ∧
occurs s ∈ set ts' ∧ t = s ⋅ ξ ∘⇩s σ ∘⇩s α"
(is "?A ⟹ ?A'")
and "receive⟨ts⟩ ∈ set (unlabel (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))
⟹ ∃ts' s. receive⟨ts'⟩ ∈ set (unlabel (transaction_receive T)) ∧
occurs s ∈ set ts' ∧ t = s ⋅ ξ ∘⇩s σ ∘⇩s α"
(is "?B ⟹ ?B'")
proof -
assume ?A
then obtain s ts' where s:
"s ∈ set ts'" "send⟨ts'⟩ ∈ set (unlabel (transaction_strand T))" "occurs t = s ⋅ ξ ∘⇩s σ ∘⇩s α"
using t stateful_strand_step_mem_substD(1)[
of ts "unlabel (transaction_strand T)" "ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
by auto
note ξ_empty = admissible_transaction_decl_subst_empty[OF T ξ]
have T_decl_notin: "x ∉ fst ` set (transaction_decl T ())" for x
using transaction_decl_subst_empty_inv[OF ξ[unfolded ξ_empty]] by simp
note 0 = s(3) transaction_decl_fresh_renaming_substs_range[OF ξ σ α]
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T]
note T_fresh = admissible_transactionE(14)[OF T]
have "∃u. s = occurs u"
proof (cases s)
case (Var x)
hence "(∃c. s ⋅ ξ ∘⇩s σ ∘⇩s α = Fun c []) ∨ (∃y. s ⋅ ξ ∘⇩s σ ∘⇩s α = Var y)"
using 0(2-5)[of x] ξ_empty by (auto simp del: subst_subst_compose)
thus ?thesis
using 0(1) by simp
next
case (Fun f T)
hence 1: "f = OccursFact" "length T = 2" "T ! 0 ⋅ ξ ∘⇩s σ ∘⇩s α = Fun OccursSec []"
"T ! 1 ⋅ ξ ∘⇩s σ ∘⇩s α = t"
using 0(1) by auto
have "T ! 0 = Fun OccursSec []"
proof (cases "T ! 0")
case (Var x) thus ?thesis
using 0(2-5)[of x] 1(3) T_fresh T_decl_notin
unfolding list_all_iff by (auto simp del: subst_subst_compose)
qed (use 1(3) in simp)
thus ?thesis using Fun 1 0(1) by (auto simp del: subst_subst_compose)
qed
then obtain u where u: "s = occurs u" by force
hence "t = u ⋅ ξ ∘⇩s σ ∘⇩s α" using s(3) by fastforce
thus ?A' using s u wellformed_transaction_strand_unlabel_memberD(8)[OF T_wf] by metis
next
assume ?B
then obtain s ts' where s:
"s ∈ set ts'" "receive⟨ts'⟩ ∈ set (unlabel (transaction_strand T))" "occurs t = s ⋅ ξ ∘⇩s σ ∘⇩s α"
using t stateful_strand_step_mem_substD(2)[
of ts "unlabel (transaction_strand T)" "ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
by auto
note ξ_empty = admissible_transaction_decl_subst_empty[OF T ξ]
have T_decl_notin: "x ∉ fst ` set (transaction_decl T ())" for x
using transaction_decl_subst_empty_inv[OF ξ[unfolded ξ_empty]] by simp
note 0 = s(3) transaction_decl_fresh_renaming_substs_range[OF ξ σ α]
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T]
note T_fresh = admissible_transactionE(14)[OF T]
have "∃u. s = occurs u"
proof (cases s)
case (Var x)
hence "(∃c. s ⋅ ξ ∘⇩s σ ∘⇩s α = Fun c []) ∨ (∃y. s ⋅ ξ ∘⇩s σ ∘⇩s α = Var y)"
using 0(2-5)[of x] ξ_empty by (auto simp del: subst_subst_compose)
thus ?thesis
using 0(1) by simp
next
case (Fun f T)
hence 1: "f = OccursFact" "length T = 2" "T ! 0 ⋅ ξ ∘⇩s σ ∘⇩s α = Fun OccursSec []"
"T ! 1 ⋅ ξ ∘⇩s σ ∘⇩s α = t"
using 0(1) by auto
have "T ! 0 = Fun OccursSec []"
proof (cases "T ! 0")
case (Var x) thus ?thesis
using 0(2-5)[of x] 1(3) T_fresh T_decl_notin
unfolding list_all_iff by (auto simp del: subst_subst_compose)
qed (use 1(3) in simp)
thus ?thesis using Fun 1 0(1) by (auto simp del: subst_subst_compose)
qed
then obtain u where u: "s = occurs u" by force
hence "t = u ⋅ ξ ∘⇩s σ ∘⇩s α" using s(3) by fastforce
thus ?B' using s u wellformed_transaction_strand_unlabel_memberD(1)[OF T_wf] by metis
qed
lemma transaction_decl_subst_proj:
assumes "transaction_decl_subst ξ T"
shows "transaction_decl_subst ξ (transaction_proj n T)"
using assms transaction_proj_decl_eq[of n T]
unfolding transaction_decl_subst_def by presburger
lemma transaction_fresh_subst_proj:
assumes "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t A)"
shows "transaction_fresh_subst σ (transaction_proj n T) (trms⇩l⇩s⇩s⇩t (proj n A))"
using assms transaction_proj_fresh_eq[of n T]
contra_subsetD[OF subterms⇩s⇩e⇩t_mono[OF transaction_proj_trms_subset[of n T]]]
contra_subsetD[OF subterms⇩s⇩e⇩t_mono[OF trms⇩s⇩s⇩t_proj_subset(1)[of n A]]]
unfolding transaction_fresh_subst_def by metis
lemma transaction_renaming_subst_proj:
assumes "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
shows "transaction_renaming_subst α (map (transaction_proj n) P) (vars⇩l⇩s⇩s⇩t (proj n A))"
proof -
let ?X = "λP A. ⋃(vars_transaction ` set P) ∪ vars⇩l⇩s⇩s⇩t A"
define Y where "Y ≡ ?X (map (transaction_proj n) P) (proj n A)"
define Z where "Z ≡ ?X P A"
have "Y ⊆ Z"
using sst_vars_proj_subset(3)[of n A] transaction_proj_vars_subset[of n]
unfolding Y_def Z_def by fastforce
hence "insert 0 (snd ` Y) ⊆ insert 0 (snd ` Z)" by blast
moreover have "finite (insert 0 (snd ` Z))" "finite (insert 0 (snd ` Y))"
unfolding Y_def Z_def by auto
ultimately have 0: "max_var_set Y ≤ max_var_set Z" using Max_mono by blast
have "∃n≥max_var_set Z. α = var_rename n"
using assms unfolding transaction_renaming_subst_def Z_def by blast
hence "∃n≥max_var_set Y. α = var_rename n" using 0 le_trans by fast
thus ?thesis unfolding transaction_renaming_subst_def Y_def by blast
qed
lemma transaction_decl_fresh_renaming_substs_wf_sst:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
assumes T: "wf'⇩s⇩s⇩t (fst ` set (transaction_decl T ()) ∪ set (transaction_fresh T))
(unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T)))"
and ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
shows "wf'⇩s⇩s⇩t {} (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)))"
proof -
have 0: "range_vars ξ ∩ bvars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T)) = {}"
"range_vars σ ∩ bvars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T) ⋅⇩l⇩s⇩s⇩t ξ) = {}"
"ground (ξ ` (fst ` set (transaction_decl T ())))"
"ground (σ ` set (transaction_fresh T))"
"ground (α ` {})"
using transaction_decl_subst_domain[OF ξ]
transaction_decl_subst_grounds_domain[OF ξ]
transaction_decl_subst_range_vars_empty[OF ξ]
transaction_fresh_subst_range_vars_empty[OF σ]
transaction_fresh_subst_domain[OF σ]
transaction_fresh_subst_grounds_domain[OF σ]
by (simp, simp, simp, simp, simp)
have 1: "fv⇩s⇩e⇩t (ξ ` set (transaction_fresh T)) ⊆ set (transaction_fresh T)" (is "?A ⊆ ?B")
proof
fix x assume x: "x ∈ ?A"
then obtain y where y: "y ∈ set (transaction_fresh T)" "x ∈ fv (ξ y)" by auto
hence "y ∉ subst_domain ξ"
using transaction_decl_subst_domain[OF ξ]
transaction_decl_subst_grounds_domain[OF ξ]
by fast
thus "x ∈ ?B" using x y by auto
qed
let ?X = "fst ` set (transaction_decl T ()) ∪ set (transaction_fresh T)"
have "fv⇩s⇩e⇩t (α ` fv⇩s⇩e⇩t (σ ` fv⇩s⇩e⇩t (ξ ` ?X))) = {}" using 0(3-5) 1 by auto
hence "wf'⇩s⇩s⇩t {} (((unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T)) ⋅⇩s⇩s⇩t ξ) ⋅⇩s⇩s⇩t σ) ⋅⇩s⇩s⇩t α)"
by (metis wf⇩s⇩s⇩t_subst_apply[OF wf⇩s⇩s⇩t_subst_apply[OF wf⇩s⇩s⇩t_subst_apply[OF T]]])
thus ?thesis
using dual⇩l⇩s⇩s⇩t_subst unlabel_subst
labeled_stateful_strand_subst_comp[OF 0(1), of "σ ∘⇩s α"]
labeled_stateful_strand_subst_comp[OF 0(2), of α]
subst_compose_assoc[of ξ σ α]
by metis
qed
lemma admissible_transaction_decl_fresh_renaming_subst_not_occurs:
fixes ξ σ α
defines "θ ≡ ξ ∘⇩s σ ∘⇩s α"
assumes T_adm: "admissible_transaction' T"
and ξσα:
"transaction_decl_subst ξ T"
"transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
shows "∄t. θ x = occurs t"
and "θ x ≠ Fun OccursSec []"
proof -
note ξ_empty = admissible_transaction_decl_subst_empty[OF T_adm ξσα(1)]
note T_fresh_val = admissible_transactionE(2)[OF T_adm]
show "∄t. θ x = occurs t" for x
using transaction_decl_fresh_renaming_substs_range'(1)[OF ξσα]
unfolding θ_def[symmetric] by (cases "x ∈ subst_domain θ") (force,force)
show "θ x ≠ Fun OccursSec []" for x
using transaction_decl_fresh_renaming_substs_range'(3)[
OF ξσα _ ξ_empty T_fresh_val, of "θ x"]
unfolding θ_def[symmetric] by (cases "x ∈ subst_domain θ") auto
qed
subsection ‹Lemmata: Reachable Constraints›
lemma reachable_constraints_as_transaction_lists:
fixes f
defines "f ≡ λ(T,ξ,σ,α). dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
and "g ≡ concat ∘ map f"
assumes A: "A ∈ reachable_constraints P"
obtains Ts where "A = g Ts"
and "∀B. prefix B Ts ⟶ g B ∈ reachable_constraints P"
and "∀B T ξ σ α. prefix (B@[(T,ξ,σ,α)]) Ts ⟶
T ∈ set P ∧ transaction_decl_subst ξ T ∧
transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (g B)) ∧
transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (g B))"
proof -
let ?P1 = "λA Ts. A = g Ts"
let ?P2 = "λTs. ∀B. prefix B Ts ⟶ g B ∈ reachable_constraints P"
let ?P3 = "λTs. ∀B T ξ σ α. prefix (B@[(T,ξ,σ,α)]) Ts ⟶
T ∈ set P ∧ transaction_decl_subst ξ T ∧
transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (g B)) ∧
transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (g B))"
have "∃Ts. ?P1 A Ts ∧ ?P2 Ts ∧ ?P3 Ts" using A
proof (induction A rule: reachable_constraints.induct)
case init
have "?P1 [] []" "?P2 []" "?P3 []" unfolding g_def f_def by simp_all
thus ?case by blast
next
case (step A T ξ σ α)
let ?A' = "A@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
obtain Ts where Ts: "?P1 A Ts" "?P2 Ts" "?P3 Ts" using step.IH by blast
have 1: "?P1 ?A' (Ts@[(T,ξ,σ,α)])"
using Ts(1) unfolding g_def f_def by simp
have 2: "?P2 (Ts@[(T,ξ,σ,α)])"
proof (intro allI impI)
fix B assume "prefix B (Ts@[(T,ξ,σ,α)])"
hence "prefix B Ts ∨ B = Ts@[(T,ξ,σ,α)]" by fastforce
thus "g B ∈ reachable_constraints P "
using Ts(1,2) reachable_constraints.step[OF step.hyps]
unfolding g_def f_def by auto
qed
have 3: "?P3 (Ts@[(T,ξ,σ,α)])"
using Ts(1,3) step.hyps(2-5) unfolding g_def f_def by auto
show ?case using 1 2 3 by blast
qed
thus thesis using that by blast
qed
lemma reachable_constraints_transaction_action_obtain:
assumes A: "A ∈ reachable_constraints P"
and a: "a ∈ set A"
obtains T b B α σ ξ
where "prefix (B@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) A"
and "T ∈ set P" "transaction_decl_subst ξ T" "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t B)"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t B)"
and "b ∈ set (transaction_strand T)" "a = dual⇩l⇩s⇩s⇩t⇩p b ⋅⇩l⇩s⇩s⇩t⇩p ξ ∘⇩s σ ∘⇩s α" "fst a = fst b"
proof -
define f where "f ≡ λ(T,ξ,σ::('fun,'atom,'sets,'lbl) prot_subst,α).
dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
define g where "g ≡ concat ∘ map f"
obtain Ts where Ts:
"A = g Ts" "∀B. prefix B Ts ⟶ g B ∈ reachable_constraints P"
"∀B T ξ σ α. prefix (B@[(T,ξ,σ,α)]) Ts ⟶
T ∈ set P ∧ transaction_decl_subst ξ T ∧
transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (g B)) ∧
transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (g B))"
using reachable_constraints_as_transaction_lists[OF A] unfolding g_def f_def by blast
obtain T α ξ σ where T: "(T,ξ,σ,α) ∈ set Ts" "a ∈ set (f (T,ξ,σ,α))"
using Ts(1) a unfolding g_def by auto
obtain B where B: "prefix (B@[(T,ξ,σ,α)]) Ts"
using T(1) by (meson prefix_snoc_in_iff)
obtain b where b:
"b ∈ set (transaction_strand T)" "a = dual⇩l⇩s⇩s⇩t⇩p b ⋅⇩l⇩s⇩s⇩t⇩p ξ ∘⇩s σ ∘⇩s α" "fst a = fst b"
using T(2) dual⇩l⇩s⇩s⇩t_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
dual⇩l⇩s⇩s⇩t_memberD'[of a "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α" thesis]
unfolding f_def by simp
have 0: "prefix (g B@f (T, ξ, σ, α)) A"
using concat_map_mono_prefix[OF B, of f] unfolding g_def Ts(1) by simp
have 1: "T ∈ set P" "transaction_decl_subst ξ T" "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (g B))"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (g B))"
using B Ts(3) by (blast,blast,blast,blast)
show thesis using 0[unfolded f_def] that[OF _ 1 b] by fast
qed
lemma reachable_constraints_unlabel_eq:
defines "transaction_unlabel_eq ≡ λT1 T2.
transaction_decl T1 = transaction_decl T2 ∧
transaction_fresh T1 = transaction_fresh T2 ∧
unlabel (transaction_receive T1) = unlabel (transaction_receive T2) ∧
unlabel (transaction_checks T1) = unlabel (transaction_checks T2) ∧
unlabel (transaction_updates T1) = unlabel (transaction_updates T2) ∧
unlabel (transaction_send T1) = unlabel (transaction_send T2)"
assumes Peq: "list_all2 transaction_unlabel_eq P1 P2"
shows "unlabel ` reachable_constraints P1 = unlabel ` reachable_constraints P2" (is "?A = ?B")
proof (intro antisym subsetI)
have "transaction_unlabel_eq T2 T1 = transaction_unlabel_eq T1 T2" for T1 T2
unfolding transaction_unlabel_eq_def by argo
hence Peq': "list_all2 transaction_unlabel_eq P2 P1"
using Peq list_all2_sym by metis
have 0: "unlabel (transaction_strand T1) = unlabel (transaction_strand T2)"
when "transaction_unlabel_eq T1 T2" for T1 T2
using that unfolding transaction_unlabel_eq_def transaction_strand_def by force
have "vars_transaction T1 = vars_transaction T2" when "transaction_unlabel_eq T1 T2" for T1 T2
using 0[OF that] by simp
hence "vars_transaction (P1 ! i) = vars_transaction (P2 ! i)" when "i < length P1" for i
using that Peq list_all2_conv_all_nth by blast
moreover have "length P1 = length P2" using Peq unfolding list_all2_iff by argo
ultimately have 1: "⋃(vars_transaction ` set P1) = ⋃(vars_transaction ` set P2)"
using in_set_conv_nth[of _ P1] in_set_conv_nth[of _ P2] by fastforce
have 2:
"transaction_decl_subst ξ T1 ⟹ transaction_decl_subst ξ T2" (is "?A1 ⟹ ?A2")
"transaction_fresh_subst σ T1 (trms⇩l⇩s⇩s⇩t 𝒜) ⟹ transaction_fresh_subst σ T2 (trms⇩l⇩s⇩s⇩t ℬ)"
(is "?B1 ⟹ ?B2")
"transaction_renaming_subst α P1 (vars⇩l⇩s⇩s⇩t 𝒜) ⟹ transaction_renaming_subst α P2 (vars⇩l⇩s⇩s⇩t ℬ)"
(is "?C1 ⟹ ?C2")
"transaction_renaming_subst α P2 (vars⇩l⇩s⇩s⇩t 𝒜) ⟹ transaction_renaming_subst α P1 (vars⇩l⇩s⇩s⇩t ℬ)"
(is "?D1 ⟹ ?D2")
when "transaction_unlabel_eq T1 T2" "unlabel 𝒜 = unlabel ℬ"
for T1 T2::"('fun,'atom,'sets,'lbl) prot_transaction"
and 𝒜 ℬ::"('fun,'atom,'sets,'lbl) prot_strand"
and ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
proof -
have *: "transaction_decl T1 = transaction_decl T2"
"transaction_fresh T1 = transaction_fresh T2"
"trms_transaction T1 = trms_transaction T2"
using that unfolding transaction_unlabel_eq_def transaction_strand_def by force+
show "?A1 ⟹ ?A2" using *(1) unfolding transaction_decl_subst_def by argo
show "?B1 ⟹ ?B2" using that(2) *(2,3) unfolding transaction_fresh_subst_def by force
show "?C1 ⟹ ?C2" using that(2) 1 unfolding transaction_renaming_subst_def by metis
show "?D1 ⟹ ?D2" using that(2) 1 unfolding transaction_renaming_subst_def by metis
qed
have 3: "unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T1 ⋅⇩l⇩s⇩s⇩t θ)) =
unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T2 ⋅⇩l⇩s⇩s⇩t θ))"
when "transaction_unlabel_eq T1 T2" for T1 T2 θ
using 0[OF that] unlabel_subst[of _ θ] dual⇩l⇩s⇩s⇩t_unlabel_cong by metis
have "∃ℬ ∈ reachable_constraints P2. unlabel 𝒜 = unlabel ℬ"
when "𝒜 ∈ reachable_constraints P1" for 𝒜 using that
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
obtain ℬ where IH: "ℬ ∈ reachable_constraints P2" "unlabel 𝒜 = unlabel ℬ"
by (meson step.IH)
obtain T' where T': "T' ∈ set P2" "transaction_unlabel_eq T T'"
using list_all2_in_set_ex[OF Peq step.hyps(2)] by auto
show ?case
using 3[OF T'(2), of "ξ ∘⇩s σ ∘⇩s α"] IH(2) reachable_constraints.step[OF IH(1) T'(1)]
2[OF T'(2) IH(2)] step.hyps(3-5)
by (metis unlabel_append[of 𝒜] unlabel_append[of ℬ])
qed (simp add: unlabel_def)
thus "𝒜 ∈ ?A ⟹ 𝒜 ∈ ?B" for 𝒜 by fast
have "∃ℬ ∈ reachable_constraints P1. unlabel 𝒜 = unlabel ℬ"
when "𝒜 ∈ reachable_constraints P2" for 𝒜 using that
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
obtain ℬ where IH: "ℬ ∈ reachable_constraints P1" "unlabel 𝒜 = unlabel ℬ"
by (meson step.IH)
obtain T' where T': "T' ∈ set P1" "transaction_unlabel_eq T T'"
using list_all2_in_set_ex[OF Peq' step.hyps(2)] by auto
show ?case
using 3[OF T'(2), of "ξ ∘⇩s σ ∘⇩s α"] IH(2) reachable_constraints.step[OF IH(1) T'(1)]
2[OF T'(2) IH(2)] step.hyps(3-5)
by (metis unlabel_append[of 𝒜] unlabel_append[of ℬ])
qed (simp add: unlabel_def)
thus "𝒜 ∈ ?B ⟹ 𝒜 ∈ ?A" for 𝒜 by fast
qed
lemma reachable_constraints_set_eq:
assumes "set P1 = set P2"
shows "reachable_constraints P1 = reachable_constraints P2" (is "?A = ?B")
proof (intro antisym subsetI)
note 0 = assms transaction_renaming_subst_set_eq[OF assms]
note 1 = reachable_constraints.intros
show "𝒜 ∈ ?A ⟹ 𝒜 ∈ ?B" for 𝒜
by (induct 𝒜 rule: reachable_constraints.induct) (auto simp add: 0 intro: 1)
show "𝒜 ∈ ?B ⟹ 𝒜 ∈ ?A" for 𝒜
by (induct 𝒜 rule: reachable_constraints.induct) (auto simp add: 0 intro: 1)
qed
lemma reachable_constraints_set_subst:
assumes "set P1 = set P2"
and "Q (reachable_constraints P1)"
shows "Q (reachable_constraints P2)"
by (rule subst[of _ _ Q, OF reachable_constraints_set_eq[OF assms(1)] assms(2)])
lemma reachable_constraints_wf⇩t⇩r⇩m⇩s:
assumes "∀T ∈ set P. wf⇩t⇩r⇩m⇩s (trms_transaction T)"
and "𝒜 ∈ reachable_constraints P"
shows "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t 𝒜)"
using assms(2)
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
have "wf⇩t⇩r⇩m⇩s (trms_transaction T)"
using assms(1) step.hyps(2) by blast
hence "wf⇩t⇩r⇩m⇩s (trms_transaction T ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α)"
using transaction_decl_fresh_renaming_substs_range_wf_trms[OF step.hyps(3-5)]
by (metis wf_trms_subst)
hence "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using wf⇩t⇩r⇩m⇩s_trms⇩s⇩s⇩t_subst unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"] by metis
hence "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)))"
using trms⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq by blast
thus ?case using step.IH unlabel_append[of 𝒜] trms⇩s⇩s⇩t_append[of "unlabel 𝒜"] by auto
qed simp
lemma reachable_constraints_var_types_in_transactions:
fixes 𝒜::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. ∀x ∈ set (transaction_fresh T).
Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
shows "Γ⇩v ` fv⇩l⇩s⇩s⇩t 𝒜 ⊆ (⋃T ∈ set P. Γ⇩v ` fv_transaction T)" (is "?A 𝒜")
and "Γ⇩v ` bvars⇩l⇩s⇩s⇩t 𝒜 ⊆ (⋃T ∈ set P. Γ⇩v ` bvars_transaction T)" (is "?B 𝒜")
and "Γ⇩v ` vars⇩l⇩s⇩s⇩t 𝒜 ⊆ (⋃T ∈ set P. Γ⇩v ` vars_transaction T)" (is "?C 𝒜")
using 𝒜
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
define T' where "T' ≡ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
note 2 = transaction_decl_fresh_renaming_substs_wt[OF step.hyps(3-5)]
have 3: "∀t ∈ subst_range (ξ ∘⇩s σ ∘⇩s α). fv t = {} ∨ (∃x. t = Var x)"
using transaction_decl_fresh_renaming_substs_range'(1)[OF step.hyps(3-5)]
by fastforce
have "fv⇩l⇩s⇩s⇩t T' = fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
"bvars⇩l⇩s⇩s⇩t T' = bvars⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
"vars⇩l⇩s⇩s⇩t T' = vars⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
unfolding T'_def
by (metis fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq,
metis bvars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq,
metis vars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq)
hence "Γ ` Var ` fv⇩l⇩s⇩s⇩t T' ⊆ Γ ` Var ` fv_transaction T"
"Γ ` Var ` bvars⇩l⇩s⇩s⇩t T' = Γ ` Var ` bvars_transaction T"
"Γ ` Var ` vars⇩l⇩s⇩s⇩t T' ⊆ Γ ` Var ` vars_transaction T"
using wt_subst_lsst_vars_type_subset[OF 2 3, of "transaction_strand T"]
by argo+
hence "Γ⇩v ` fv⇩l⇩s⇩s⇩t T' ⊆ Γ⇩v ` fv_transaction T"
"Γ⇩v ` bvars⇩l⇩s⇩s⇩t T' = Γ⇩v ` bvars_transaction T"
"Γ⇩v ` vars⇩l⇩s⇩s⇩t T' ⊆ Γ⇩v ` vars_transaction T"
by (metis Γ⇩v_Var_image)+
hence 4: "Γ⇩v ` fv⇩l⇩s⇩s⇩t T' ⊆ (⋃T ∈ set P. Γ⇩v ` fv_transaction T)"
"Γ⇩v ` bvars⇩l⇩s⇩s⇩t T' ⊆ (⋃T ∈ set P. Γ⇩v ` bvars_transaction T)"
"Γ⇩v ` vars⇩l⇩s⇩s⇩t T' ⊆ (⋃T ∈ set P. Γ⇩v ` vars_transaction T)"
using step.hyps(2) by fast+
have 5: "Γ⇩v ` fv⇩l⇩s⇩s⇩t (𝒜 @ T') = (Γ⇩v ` fv⇩l⇩s⇩s⇩t 𝒜) ∪ (Γ⇩v ` fv⇩l⇩s⇩s⇩t T')"
"Γ⇩v ` bvars⇩l⇩s⇩s⇩t (𝒜 @ T') = (Γ⇩v ` bvars⇩l⇩s⇩s⇩t 𝒜) ∪ (Γ⇩v ` bvars⇩l⇩s⇩s⇩t T')"
"Γ⇩v ` vars⇩l⇩s⇩s⇩t (𝒜 @ T') = (Γ⇩v ` vars⇩l⇩s⇩s⇩t 𝒜) ∪ (Γ⇩v ` vars⇩l⇩s⇩s⇩t T')"
using unlabel_append[of 𝒜 T']
fv⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel T'"]
bvars⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel T'"]
vars⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel T'"]
by auto
{ case 1 thus ?case
using step.IH(1) 4(1) 5(1)
unfolding T'_def by (simp del: subst_subst_compose fv⇩s⇩s⇩t_def)
}
{ case 2 thus ?case
using step.IH(2) 4(2) 5(2)
unfolding T'_def by (simp del: subst_subst_compose bvars⇩s⇩s⇩t_def)
}
{ case 3 thus ?case
using step.IH(3) 4(3) 5(3)
unfolding T'_def by (simp del: subst_subst_compose)
}
qed simp_all
lemma reachable_constraints_no_bvars:
assumes 𝒜: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. bvars⇩l⇩s⇩s⇩t (transaction_strand T) = {}"
shows "bvars⇩l⇩s⇩s⇩t 𝒜 = {}"
using assms proof (induction)
case init
then show ?case
unfolding unlabel_def by auto
next
case (step 𝒜 T ξ σ α)
then have "bvars⇩l⇩s⇩s⇩t 𝒜 = {}"
by metis
moreover
have "bvars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) = {}"
using step by (metis bvars⇩l⇩s⇩s⇩t_subst bvars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq)
ultimately
show ?case
using bvars⇩s⇩s⇩t_append unlabel_append by (metis sup_bot.left_neutral)
qed
lemma reachable_constraints_fv_bvars_disj:
fixes 𝒜::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and P: "∀S ∈ set P. admissible_transaction' S"
shows "fv⇩l⇩s⇩s⇩t 𝒜 ∩ bvars⇩l⇩s⇩s⇩t 𝒜 = {}"
proof -
let ?X = "⋃T ∈ set P. bvars_transaction T"
note 0 = admissible_transactions_fv_bvars_disj[OF P]
have 1: "bvars⇩l⇩s⇩s⇩t 𝒜 ⊆ ?X" using 𝒜_reach
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
have "bvars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) = bvars_transaction T"
using bvars⇩s⇩s⇩t_subst[of "unlabel (transaction_strand T)" "ξ ∘⇩s σ ∘⇩s α"]
bvars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
dual⇩l⇩s⇩s⇩t_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
by argo
hence "bvars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) ⊆ ?X"
using step.hyps(2)
by blast
thus ?case
using step.IH bvars⇩s⇩s⇩t_append
by auto
qed (simp add: unlabel_def)
have 2: "fv⇩l⇩s⇩s⇩t 𝒜 ∩ ?X = {}" using 𝒜_reach
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
have "x ≠ y" when x: "x ∈ ?X" and y: "y ∈ fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)" for x y
proof -
obtain y' where y': "y' ∈ fv_transaction T" "y ∈ fv ((ξ ∘⇩s σ ∘⇩s α) y')"
using y unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
by (metis fv⇩s⇩s⇩t_subst_obtain_var)
have "y ∉ ⋃(vars_transaction ` set P)"
using transaction_decl_fresh_renaming_substs_range''[OF step.hyps(3-5) y'(2)]
transaction_renaming_subst_range_notin_vars[OF step.hyps(5), of y']
by auto
thus ?thesis using x vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t by fast
qed
hence "fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α) ∩ ?X = {}"
by blast
thus ?case
using step.IH
fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
dual⇩l⇩s⇩s⇩t_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
fv⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"]
unlabel_append[of 𝒜 "transaction_strand T"]
by force
qed (simp add: unlabel_def)
show ?thesis using 0 1 2 by blast
qed
lemma reachable_constraints_vars_TAtom_typed:
fixes 𝒜::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and x: "x ∈ vars⇩l⇩s⇩s⇩t 𝒜"
shows "Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
proof -
have 𝒜_wf⇩t⇩r⇩m⇩s: "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t 𝒜)"
by (metis reachable_constraints_wf⇩t⇩r⇩m⇩s admissible_transactions_wf⇩t⇩r⇩m⇩s P 𝒜_reach)
have T_adm: "admissible_transaction' T" when "T ∈ set P" for T
by (meson that Ball_set P)
have "∀T∈set P. ∀x∈set (transaction_fresh T). Γ⇩v x = TAtom Value"
using protocol_transaction_vars_TAtom_typed(3) P by blast
hence *: "Γ⇩v ` vars⇩l⇩s⇩s⇩t 𝒜 ⊆ (⋃T∈set P. Γ⇩v ` vars_transaction T)"
using reachable_constraints_var_types_in_transactions[of 𝒜 P, OF 𝒜_reach] by auto
have "Γ⇩v ` vars⇩l⇩s⇩s⇩t 𝒜 ⊆ TAtom ` insert Value (range Atom)"
proof -
have "Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
when "T ∈ set P" "x ∈ vars_transaction T" for T x
using that protocol_transaction_vars_TAtom_typed(1)[of T] P
admissible_transactionE(5)
by blast
hence "(⋃T∈set P. Γ⇩v ` vars_transaction T) ⊆ TAtom ` insert Value (range Atom)"
using P by blast
thus "Γ⇩v ` vars⇩l⇩s⇩s⇩t 𝒜 ⊆ TAtom ` insert Value (range Atom)"
using * by auto
qed
thus ?thesis using x by auto
qed
lemma reachable_constraints_vars_not_attack_typed:
fixes 𝒜::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. ∀x ∈ set (transaction_fresh T).
Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
"∀T ∈ set P. ∀x ∈ vars_transaction T. ¬TAtom AttackType ⊑ Γ⇩v x"
and x: "x ∈ vars⇩l⇩s⇩s⇩t 𝒜"
shows "¬TAtom AttackType ⊑ Γ⇩v x"
using reachable_constraints_var_types_in_transactions(3)[OF 𝒜_reach P(1)] P(2) x by fastforce
lemma reachable_constraints_Value_vars_are_fv:
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and x: "x ∈ vars⇩l⇩s⇩s⇩t 𝒜"
and "Γ⇩v x = TAtom Value"
shows "x ∈ fv⇩l⇩s⇩s⇩t 𝒜"
proof -
have "∀T∈set P. bvars_transaction T = {}"
using P admissible_transactionE(4) by metis
hence 𝒜_no_bvars: "bvars⇩l⇩s⇩s⇩t 𝒜 = {}"
using reachable_constraints_no_bvars[OF 𝒜_reach] by metis
thus ?thesis using x vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel 𝒜"] by blast
qed
lemma reachable_constraints_subterms_subst:
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model ℐ 𝒜"
and P: "∀T ∈ set P. admissible_transaction' T"
shows "subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (𝒜 ⋅⇩l⇩s⇩s⇩t ℐ)) = (subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t 𝒜)) ⋅⇩s⇩e⇩t ℐ"
proof -
have 𝒜_wf⇩t⇩r⇩m⇩s: "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t 𝒜)"
by (metis reachable_constraints_wf⇩t⇩r⇩m⇩s admissible_transactions_wf⇩t⇩r⇩m⇩s P 𝒜_reach)
from ℐ have ℐ': "welltyped_constraint_model ℐ 𝒜"
using welltyped_constraint_model_prefix by auto
have 1: "∀x ∈ fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t 𝒜). (∃f. ℐ x = Fun f []) ∨ (∃y. ℐ x = Var y)"
proof
fix x
assume xa: "x ∈ fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t 𝒜)"
have "∃f T. ℐ x = Fun f T"
using ℐ interpretation_grounds[of ℐ "Var x"]
unfolding welltyped_constraint_model_def constraint_model_def
by (cases "ℐ x") auto
then obtain f T where fT_p: "ℐ x = Fun f T"
by auto
hence "wf⇩t⇩r⇩m (Fun f T)"
using ℐ
unfolding welltyped_constraint_model_def constraint_model_def
using wf_trm_subst_rangeD
by metis
moreover
have "x ∈ vars⇩l⇩s⇩s⇩t 𝒜"
using xa var_subterm_trms⇩s⇩s⇩t_is_vars⇩s⇩s⇩t[of x "unlabel 𝒜"] vars_iff_subtermeq[of x]
by auto
hence "∃a. Γ⇩v x = TAtom a"
using reachable_constraints_vars_TAtom_typed[OF 𝒜_reach P] by blast
hence "∃a. Γ (Var x) = TAtom a"
by simp
hence "∃a. Γ (Fun f T) = TAtom a"
by (metis (no_types, opaque_lifting) ℐ' welltyped_constraint_model_def fT_p wt⇩s⇩u⇩b⇩s⇩t_def)
ultimately show "(∃f. ℐ x = Fun f []) ∨ (∃y. ℐ x = Var y)"
using TAtom_term_cases fT_p by metis
qed
have "∀T∈set P. bvars_transaction T = {}"
using assms admissible_transactionE(4) by metis
then have "bvars⇩l⇩s⇩s⇩t 𝒜 = {}"
using reachable_constraints_no_bvars assms by metis
then have 2: "bvars⇩l⇩s⇩s⇩t 𝒜 ∩ subst_domain ℐ = {}"
by auto
show ?thesis
using subterms_subst_lsst[OF _ 2] 1
by simp
qed
lemma reachable_constraints_val_funs_private':
fixes 𝒜::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction_terms T"
"∀T ∈ set P. transaction_decl T () = []"
"∀T ∈ set P. ∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value"
and f: "f ∈ ⋃(funs_term ` trms⇩l⇩s⇩s⇩t 𝒜)"
shows "¬is_PubConstValue f"
and "¬is_Abs f"
proof -
have "¬is_PubConstValue f ∧ ¬is_Abs f" using 𝒜_reach f
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
let ?T' = "unlabel (transaction_strand T) ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
let ?T'' = "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
note ξ_empty =
admissible_transaction_decl_subst_empty'[OF bspec[OF P(2) step.hyps(2)] step.hyps(3)]
have T: "admissible_transaction_terms T"
using P(1) step.hyps(2) by metis
have T_fresh: "∀x ∈ set (transaction_fresh T). fst x = TAtom Value" when "T ∈ set P" for T
using P that admissible_transactionE(14) unfolding list_all_iff Γ⇩v_TAtom'' by fast
show ?thesis using step
proof (cases "f ∈ ⋃(funs_term ` trms⇩l⇩s⇩s⇩t 𝒜)")
case False
then obtain t where t: "t ∈ trms⇩s⇩s⇩t ?T'" "f ∈ funs_term t"
using step.prems trms⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of ?T'']
trms⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel (dual⇩l⇩s⇩s⇩t ?T'')"]
unlabel_append[of 𝒜 "dual⇩l⇩s⇩s⇩t ?T''"] unlabel_subst[of "transaction_strand T"]
by fastforce
show ?thesis using trms⇩s⇩s⇩t_funs_term_cases[OF t]
proof
assume "∃u ∈ trms_transaction T. f ∈ funs_term u"
thus ?thesis
using conjunct1[OF conjunct2[OF T[unfolded admissible_transaction_terms_def]]]
unfolding is_PubConstValue_def by blast
next
assume "∃x ∈ fv_transaction T. f ∈ funs_term ((ξ ∘⇩s σ ∘⇩s α) x)"
then obtain x where "x ∈ fv_transaction T" "f ∈ funs_term ((ξ ∘⇩s σ ∘⇩s α) x)" by force
thus ?thesis
using transaction_decl_fresh_renaming_substs_range'(3)[
OF step.hyps(3-5) _ ξ_empty T_fresh[OF step.hyps(2), unfolded Γ⇩v_TAtom''(2)]]
unfolding is_PubConstValue_def
by (metis (no_types, lifting) funs_term_Fun_subterm prot_fun.disc(30,48) subst_imgI
subtermeq_Var_const(2) term.distinct(1) term.inject(2) term.set_cases(1))
qed
qed simp
qed simp
thus "¬is_PubConstValue f" "¬is_Abs f" by simp_all
qed
lemma reachable_constraints_val_funs_private:
fixes 𝒜::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and f: "f ∈ ⋃(funs_term ` trms⇩l⇩s⇩s⇩t 𝒜)"
shows "¬is_PubConstValue f"
and "¬is_Abs f"
using P reachable_constraints_val_funs_private'[OF 𝒜_reach _ _ _ f]
admissible_transaction_is_wellformed_transaction(4)
admissible_transactionE(1,14)
unfolding list_all_iff Γ⇩v_TAtom''
by (blast,fast)
lemma reachable_constraints_occurs_fact_ik_case:
fixes A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and occ: "occurs t ∈ ik⇩l⇩s⇩s⇩t A"
shows "∃n. t = Fun (Val n) []"
using 𝒜_reach occ
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
define θ where "θ ≡ ξ ∘⇩s σ ∘⇩s α"
have T_adm: "admissible_transaction' T" using P step.hyps(2) by blast
hence T: "wellformed_transaction T" "admissible_transaction_occurs_checks T"
using admissible_transaction_is_wellformed_transaction(1) P_occ step.hyps(2) by (blast,blast)
have T_fresh: "∀x ∈ set (transaction_fresh T). fst x = TAtom Value"
using admissible_transactionE(14)[OF T_adm] unfolding list_all_iff by fast
note ξ_empty = admissible_transaction_decl_subst_empty[OF T_adm step.hyps(3)]
have ξ_dom_empty: "z ∉ fst ` set (transaction_decl T ())" for z
using transaction_decl_subst_empty_inv[OF step.hyps(3)[unfolded ξ_empty]] by simp
show ?case
proof (cases "occurs t ∈ ik⇩l⇩s⇩s⇩t A")
case False
hence "occurs t ∈ ik⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
using step.prems unfolding θ_def by simp
hence "∃ts. occurs t ∈ set ts ∧
receive⟨ts⟩ ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)))"
unfolding ik⇩s⇩s⇩t_def by force
hence "∃ts. occurs t ∈ set ts ∧
send⟨ts⟩ ∈ set (unlabel (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
using dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(1) by blast
then obtain ts s where s:
"s ∈ set ts" "send⟨ts⟩ ∈ set (unlabel (transaction_strand T))" "s ⋅ θ = occurs t"
using stateful_strand_step_mem_substD(1)[of _ "unlabel (transaction_strand T)" θ]
unlabel_subst[of "transaction_strand T" θ]
by force
note 0 = transaction_decl_fresh_renaming_substs_range[OF step.hyps(3-5)]
have 1: "send⟨ts⟩ ∈ set (unlabel (transaction_send T))"
using s(2) wellformed_transaction_strand_unlabel_memberD(8)[OF T(1)] by blast
have 2: "is_Send (send⟨ts⟩)"
unfolding is_Send_def by simp
have 3: "∃u. s = occurs u"
proof -
{ fix z
have "(∃n. θ z = Fun (Val n) []) ∨ (∃y. θ z = Var y)"
using 0(3,4) T_fresh ξ_dom_empty unfolding θ_def by blast
hence "∄u. θ z = occurs u" "θ z ≠ Fun OccursSec []" by auto
} note * = this
obtain u u' where T: "s = Fun OccursFact [u,u']"
using *(1) s(3) by (cases s) auto
thus ?thesis using *(2) s(3) by (cases u) auto
qed
obtain x where x: "x ∈ set (transaction_fresh T)" "s = occurs (Var x)"
using 3 s(1) admissible_transaction_occurs_checksE4[OF T(2) 1] by metis
have "t = θ x"
using s(3) x(2) by auto
thus ?thesis
using 0(3)[OF ξ_dom_empty x(1)] x(1) T_fresh unfolding θ_def by fast
qed (simp add: step.IH)
qed simp
lemma reachable_constraints_occurs_fact_send_ex:
fixes A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and x: "Γ⇩v x = TAtom Value" "x ∈ fv⇩l⇩s⇩s⇩t A"
shows "∃ts. occurs (Var x) ∈ set ts ∧ send⟨ts⟩ ∈ set (unlabel A)"
using 𝒜_reach x(2)
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
note ξ_empty = admissible_transaction_decl_subst_empty[OF bspec[OF P step.hyps(2)] step.hyps(3)]
note T = bspec[OF P_occ step.hyps(2)]
show ?case
proof (cases "x ∈ fv⇩l⇩s⇩s⇩t A")
case True
show ?thesis
using step.IH[OF True] unlabel_append[of A]
by auto
next
case False
then obtain y where y:
"y ∈ fv_transaction T - set (transaction_fresh T)" "(ξ ∘⇩s σ ∘⇩s α) y = Var x"
using transaction_decl_fresh_renaming_substs_fv[OF step.hyps(3-5), of x]
step.prems(1) fv⇩s⇩s⇩t_append[of "unlabel A"] unlabel_append[of A]
by auto
have "σ y = Var y" using y(1) step.hyps(4) unfolding transaction_fresh_subst_def by auto
hence "α y = Var x" using y(2) unfolding subst_compose_def ξ_empty by simp
hence y_val: "fst y = TAtom Value" "Γ⇩v y = TAtom Value"
using x(1) Γ⇩v_TAtom''[of x] Γ⇩v_TAtom''[of y]
wt_subst_trm''[OF transaction_renaming_subst_wt[OF step.hyps(5)], of "Var y"]
by force+
obtain ts where ts:
"occurs (Var y) ∈ set ts" "receive⟨ts⟩ ∈ set (unlabel (transaction_receive T))"
using admissible_transaction_occurs_checksE1[OF T y(1) y_val(2)]
by (metis list.set_intros(1) unlabel_Cons(1))
hence "receive⟨ts⟩ ∈ set (unlabel (transaction_strand T))"
using transaction_strand_subsets(5) by blast
hence *: "receive⟨ts ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α⟩ ∈ set (unlabel (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
stateful_strand_step_subst_inI(2)[of _ _ "ξ ∘⇩s σ ∘⇩s α"]
by force
have "occurs (Var y) ⋅ ξ ∘⇩s σ ∘⇩s α = occurs (Var x)"
using y(2) by (auto simp del: subst_subst_compose)
hence **: "occurs (Var x) ∈ set ts ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α" using ts(1) by force
have "send⟨ts ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α⟩ ∈ set (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)))"
using * dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(2) by blast
thus ?thesis using ** unlabel_append[of A] by force
qed
qed simp
lemma reachable_constraints_db⇩l⇩s⇩s⇩t_set_args_empty:
assumes 𝒜: "𝒜 ∈ reachable_constraints P"
and PP: "list_all wellformed_transaction P"
and admissible_transaction_updates:
"let f = (λT. ∀x ∈ set (unlabel (transaction_updates T)).
is_Update x ∧ is_Var (the_elem_term x) ∧ is_Fun_Set (the_set_term x) ∧
fst (the_Var (the_elem_term x)) = TAtom Value)
in list_all f P"
and d: "(t, s) ∈ set (db⇩l⇩s⇩s⇩t 𝒜 ℐ)"
shows "∃ss. s = Fun (Set ss) []"
using 𝒜 d
proof (induction)
case (step 𝒜 TT ξ σ α)
let ?TT = "transaction_strand TT ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
let ?TTu = "unlabel ?TT"
let ?TTd = "dual⇩l⇩s⇩s⇩t ?TT"
let ?TTdu = "unlabel ?TTd"
from step(6) have "(t, s) ∈ set (db'⇩s⇩s⇩t ?TTdu ℐ (db'⇩s⇩s⇩t (unlabel 𝒜) ℐ []))"
by (metis db⇩s⇩s⇩t_append db⇩s⇩s⇩t_def step.prems unlabel_append)
hence "(t, s) ∈ set (db'⇩s⇩s⇩t (unlabel 𝒜) ℐ []) ∨
(∃t' s'. insert⟨t',s'⟩ ∈ set ?TTdu ∧ t = t' ⋅ ℐ ∧ s = s' ⋅ ℐ)"
using db⇩s⇩s⇩t_in_cases[of t "s" ?TTdu ℐ] by metis
thus ?case
proof
assume "∃t' s'. insert⟨t',s'⟩ ∈ set ?TTdu ∧ t = t' ⋅ ℐ ∧ s = s' ⋅ ℐ"
then obtain t' s' where t's'_p: "insert⟨t',s'⟩ ∈ set ?TTdu" "t = t' ⋅ ℐ" "s = s' ⋅ ℐ" by metis
then obtain lll where "(lll, insert⟨t',s'⟩) ∈ set ?TTd" by (meson unlabel_mem_has_label)
hence "(lll, insert⟨t',s'⟩) ∈ set (transaction_strand TT ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using dual⇩l⇩s⇩s⇩t_steps_iff(4) by blast
hence "insert⟨t',s'⟩ ∈ set ?TTu" by (meson unlabel_in)
hence "insert⟨t',s'⟩ ∈ set ((unlabel (transaction_strand TT)) ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
by (simp add: subst_lsst_unlabel)
hence "insert⟨t',s'⟩ ∈ (λx. x ⋅⇩s⇩s⇩t⇩p ξ ∘⇩s σ ∘⇩s α) ` set (unlabel (transaction_strand TT))"
unfolding subst_apply_stateful_strand_def by auto
then obtain u where
"u ∈ set (unlabel (transaction_strand TT)) ∧ u ⋅⇩s⇩s⇩t⇩p ξ ∘⇩s σ ∘⇩s α = insert⟨t',s'⟩"
by auto
hence "∃t'' s''. insert⟨t'',s''⟩ ∈ set (unlabel (transaction_strand TT)) ∧
t' = t'' ⋅ ξ ∘⇩s σ ∘⇩s α ∧ s' = s'' ⋅ ξ ∘⇩s σ ∘⇩s α"
by (cases u) auto
then obtain t'' s'' where t''s''_p:
"insert⟨t'',s''⟩ ∈ set (unlabel (transaction_strand TT)) ∧
t' = t'' ⋅ ξ ∘⇩s σ ∘⇩s α ∧ s' = s'' ⋅ ξ ∘⇩s σ ∘⇩s α"
by auto
hence "insert⟨t'',s''⟩ ∈ set (unlabel (transaction_updates TT))"
using is_Update_in_transaction_updates[of "insert⟨t'',s''⟩" TT]
using PP step(2) unfolding list_all_iff by auto
moreover have "∀x∈set (unlabel (transaction_updates TT)). is_Fun_Set (the_set_term x)"
using step(2) admissible_transaction_updates unfolding is_Fun_Set_def list_all_iff by auto
ultimately have "is_Fun_Set (the_set_term (insert⟨t'',s''⟩))" by auto
moreover have "s' = s'' ⋅ ξ ∘⇩s σ ∘⇩s α" using t''s''_p by blast
ultimately have "is_Fun_Set (the_set_term (insert⟨t',s'⟩))" by (auto simp add: is_Fun_Set_subst)
hence "is_Fun_Set s" by (simp add: t's'_p(3) is_Fun_Set_subst)
thus ?case using is_Fun_Set_exi by auto
qed (auto simp add: step db⇩s⇩s⇩t_def)
qed auto
lemma reachable_constraints_occurs_fact_ik_ground:
fixes A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and t: "occurs t ∈ ik⇩l⇩s⇩s⇩t A"
shows "fv (occurs t) = {}"
proof -
have 0: "admissible_transaction' T"
when "T ∈ set P" for T
using P that unfolding list_all_iff by simp
note 1 = admissible_transaction_is_wellformed_transaction(1)[OF 0] bspec[OF P_occ]
have 2: "ik⇩l⇩s⇩s⇩t (A@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)) =
(ik⇩l⇩s⇩s⇩t A) ∪ (trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t θ)"
when "T ∈ set P" for T θ and A::"('fun,'atom,'sets,'lbl) prot_constr"
using dual_transaction_ik_is_transaction_send'[OF 1(1)[OF that]] by fastforce
show ?thesis using 𝒜_reach t
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
note ξ_empty = admissible_transaction_decl_subst_empty[OF 0[OF step.hyps(2)] step.hyps(3)]
from step show ?case
proof (cases "occurs t ∈ ik⇩l⇩s⇩s⇩t A")
case False
hence "occurs t ∈ trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
using 2[OF step.hyps(2)] step.prems ξ_empty by blast
then obtain ts where ts:
"occurs t ∈ set ts" "send⟨ts⟩ ∈ set (unlabel (transaction_send T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using wellformed_transaction_send_receive_subst_trm_cases(2)[OF 1(1)[OF step.hyps(2)]]
by blast
then obtain ts' s where s:
"occurs s ∈ set ts'" "send⟨ts'⟩ ∈ set (unlabel (transaction_send T))" "t = s ⋅ ξ ∘⇩s σ ∘⇩s α"
using transaction_decl_fresh_renaming_substs_occurs_fact_send_receive(1)[
OF step.hyps(3-5) 0[OF step.hyps(2)] ts(1)]
transaction_strand_subst_subsets(8)[of T "ξ ∘⇩s σ ∘⇩s α"]
by blast
obtain x where x: "x ∈ set (transaction_fresh T)" "s = Var x"
using admissible_transaction_occurs_checksE4[OF 1(2)[OF step.hyps(2)] s(2,1)] by metis
have "fv t = {}"
using transaction_decl_fresh_renaming_substs_range(2)[OF step.hyps(3-5) _ x(1)]
s(3) x(2) transaction_decl_subst_empty_inv[OF step.hyps(3)[unfolded ξ_empty]]
by (auto simp del: subst_subst_compose)
thus ?thesis by simp
qed simp
qed simp
qed
lemma reachable_constraints_occurs_fact_ik_funs_terms:
fixes A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model I A"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
shows "∀s ∈ subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I). OccursFact ∉ ⋃(funs_term ` set (snd (Ana s)))" (is "?A A")
and "∀s ∈ subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I). OccursSec ∉ ⋃(funs_term ` set (snd (Ana s)))" (is "?B A")
and "Fun OccursSec [] ∉ ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I" (is "?C A")
and "∀x ∈ vars⇩l⇩s⇩s⇩t A. I x ≠ Fun OccursSec []" (is "?D A")
proof -
have T_adm: "admissible_transaction' T" when "T ∈ set P" for T
using P that unfolding list_all_iff by simp
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_adm]
note T_occ = bspec[OF P_occ]
note ξ_empty = admissible_transaction_decl_subst_empty[OF T_adm]
have ℐ_wt: "wt⇩s⇩u⇩b⇩s⇩t I" by (metis ℐ welltyped_constraint_model_def)
have ℐ_wf⇩t⇩r⇩m⇩s: "wf⇩t⇩r⇩m⇩s (subst_range I)"
by (metis ℐ welltyped_constraint_model_def constraint_model_def)
have ℐ_grounds: "fv (I x) = {}" "∃f T. I x = Fun f T" for x
using ℐ interpretation_grounds[of I, of "Var x"] empty_fv_exists_fun[of "I x"]
unfolding welltyped_constraint_model_def constraint_model_def by auto
have 00: "fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⊆ vars_transaction T"
"fv⇩s⇩e⇩t (subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))) = fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))"
for T::"('fun,'atom,'sets,'lbl) prot_transaction"
using fv_trms⇩s⇩s⇩t_subset(1)[of "unlabel (transaction_send T)"] vars_transaction_unfold
fv_subterms_set[of "trms⇩l⇩s⇩s⇩t (transaction_send T)"]
by blast+
have 0: "∀x ∈ fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)). ∃a. Γ (Var x) = TAtom a"
"∀x ∈ fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)). Γ (Var x) ≠ TAtom OccursSecType"
"∀x ∈ fv⇩s⇩e⇩t (subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))). ∃a. Γ (Var x) = TAtom a"
"∀x ∈ fv⇩s⇩e⇩t (subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))). Γ (Var x) ≠ TAtom OccursSecType"
"∀x ∈ vars_transaction T. ∃a. Γ (Var x) = TAtom a"
"∀x ∈ vars_transaction T. Γ (Var x) ≠ TAtom OccursSecType"
when "T ∈ set P" for T
using admissible_transaction_occurs_fv_types[OF T_adm[OF that]] 00
by blast+
note T_fresh_type = admissible_transactionE(2)[OF T_adm]
have 1: "ik⇩l⇩s⇩s⇩t (A@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)) ⋅⇩s⇩e⇩t I =
(ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I) ∪ (trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t θ ⋅⇩s⇩e⇩t I)"
when "T ∈ set P" for T θ and A::"('fun,'atom,'sets,'lbl) prot_constr"
using dual_transaction_ik_is_transaction_send'[OF T_wf[OF that]]
by fastforce
have 2: "subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t θ ⋅⇩s⇩e⇩t I) =
subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t θ ⋅⇩s⇩e⇩t I"
when "T ∈ set P" and θ: "wt⇩s⇩u⇩b⇩s⇩t θ" "wf⇩t⇩r⇩m⇩s (subst_range θ)" for T θ
using wt_subst_TAtom_subterms_set_subst[OF wt_subst_compose[OF θ(1) ℐ_wt] 0(1)[OF that(1)]]
wf_trm_subst_rangeD[OF wf_trms_subst_compose[OF θ(2) ℐ_wf⇩t⇩r⇩m⇩s]]
by auto
have 3: "wt⇩s⇩u⇩b⇩s⇩t (ξ ∘⇩s σ ∘⇩s α)" "wf⇩t⇩r⇩m⇩s (subst_range (ξ ∘⇩s σ ∘⇩s α))"
when "T ∈ set P" "transaction_decl_subst ξ T"
"transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t A)" "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
for ξ σ α and T::"('fun,'atom,'sets,'lbl) prot_transaction"
and A::"('fun,'atom,'sets,'lbl) prot_constr"
using protocol_transaction_vars_TAtom_typed(3)[of T] P that(1)
transaction_decl_fresh_renaming_substs_wt[OF that(2-4)]
transaction_decl_fresh_renaming_substs_range_wf_trms[OF that(2-4)]
wf_trms_subst_compose
by simp_all
have 4: "∀s ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)).
OccursFact ∉ ⋃(funs_term ` set (snd (Ana s))) ∧
OccursSec ∉ ⋃(funs_term ` set (snd (Ana s)))"
when T: "T ∈ set P" for T
proof
fix t assume t: "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))"
then obtain ts s where s:
"send⟨ts⟩ ∈ set (unlabel (transaction_send T))" "s ∈ set ts" "t ∈ subterms s"
using wellformed_transaction_unlabel_cases(4)[OF T_wf[OF T]]
by fastforce
have s_occ: "∃x. s = occurs (Var x)" when "OccursFact ∈ funs_term t ∨ OccursSec ∈ funs_term t"
using that s(1) subtermeq_imp_funs_term_subset[OF s(3)]
admissible_transaction_occurs_checksE3[OF T_occ[OF T] _ s(2)]
by blast
obtain K T' where K: "Ana t = (K,T')" by force
show "OccursFact ∉ ⋃(funs_term ` set (snd (Ana t))) ∧
OccursSec ∉ ⋃(funs_term ` set (snd (Ana t)))"
proof (rule ccontr)
assume "¬(OccursFact ∉ ⋃(funs_term ` set (snd (Ana t))) ∧
OccursSec ∉ ⋃(funs_term ` set (snd (Ana t))))"
hence a: "OccursFact ∈ ⋃(funs_term ` set (snd (Ana t))) ∨
OccursSec ∈ ⋃(funs_term ` set (snd (Ana t)))"
by simp
hence "OccursFact ∈ ⋃(funs_term ` set T') ∨ OccursSec ∈ ⋃(funs_term ` set T')"
using K by simp
hence "OccursFact ∈ funs_term t ∨ OccursSec ∈ funs_term t"
using Ana_subterm[OF K] funs_term_subterms_eq(1)[of t] by blast
then obtain x where x: "t ∈ subterms (occurs (Var x))"
using s(3) s_occ by blast
thus False using a by fastforce
qed
qed
have 5: "OccursFact ∉ ⋃(funs_term ` subst_range (ξ ∘⇩s σ ∘⇩s α))"
"OccursSec ∉ ⋃(funs_term ` subst_range (ξ ∘⇩s σ ∘⇩s α))"
when ξσα: "transaction_decl_subst ξ T" "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t A)"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
and T: "T ∈ set P"
for ξ σ α and T::"('fun,'atom,'sets,'lbl) prot_transaction"
and A::"('fun,'atom,'sets,'lbl) prot_constr"
proof -
have "OccursFact ∉ funs_term t" "OccursSec ∉ funs_term t"
when "t ∈ subst_range (ξ ∘⇩s σ ∘⇩s α)" for t
using transaction_decl_fresh_renaming_substs_range'(3)[
OF ξσα that ξ_empty[OF T ξσα(1)] T_fresh_type[OF T]]
by auto
thus "OccursFact ∉ ⋃(funs_term ` subst_range (ξ ∘⇩s σ ∘⇩s α))"
"OccursSec ∉ ⋃(funs_term ` subst_range (ξ ∘⇩s σ ∘⇩s α))"
by blast+
qed
have 6: "I x ≠ Fun OccursSec []" "∄t. I x = occurs t" "∃a. Γ (I x) = TAtom a ∧ a ≠ OccursSecType"
when T: "T ∈ set P"
and ξσα: "transaction_decl_subst ξ T" "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t A)"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
and x: "Var x ∈ trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
for x ξ σ α and T::"('fun,'atom,'sets,'lbl) prot_transaction"
and A::"('fun,'atom,'sets,'lbl) prot_constr"
proof -
obtain t where t: "t ∈ trms⇩l⇩s⇩s⇩t (transaction_send T)" "t ⋅ (ξ ∘⇩s σ ∘⇩s α) = Var x"
using x by force
then obtain y where y: "t = Var y" by (cases t) auto
have "∃a. Γ t = TAtom a ∧ a ≠ OccursSecType"
using 0(1,2)[OF T] t(1) y
by force
thus "∃a. Γ (I x) = TAtom a ∧ a ≠ OccursSecType"
using wt_subst_trm''[OF 3(1)[OF T ξσα]] wt_subst_trm''[OF ℐ_wt] t(2)
by (metis eval_term.simps(1))
thus "I x ≠ Fun OccursSec []" "∄t. I x = occurs t"
by auto
qed
have 7: "I x ≠ Fun OccursSec []" "∄t. I x = occurs t" "∃a. Γ (I x) = TAtom a ∧ a ≠ OccursSecType"
when T: "T ∈ set P"
and ξσα: "transaction_decl_subst ξ T" "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t A)"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
and x: "x ∈ fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` vars_transaction T)"
for x ξ σ α and T::"('fun,'atom,'sets,'lbl) prot_transaction"
and A::"('fun,'atom,'sets,'lbl) prot_constr"
proof -
obtain y where y: "y ∈ vars_transaction T" "x ∈ fv ((ξ ∘⇩s σ ∘⇩s α) y)"
using x by auto
hence y': "(ξ ∘⇩s σ ∘⇩s α) y = Var x"
using transaction_decl_fresh_renaming_substs_range'(3)[
OF ξσα _ ξ_empty[OF T ξσα(1)] T_fresh_type[OF T]]
by (cases "(ξ ∘⇩s σ ∘⇩s α) y ∈ subst_range (ξ ∘⇩s σ ∘⇩s α)") force+
have "∃a. Γ (Var y) = TAtom a ∧ a ≠ OccursSecType"
using 0(5,6)[OF T] y
by force
thus "∃a. Γ (I x) = TAtom a ∧ a ≠ OccursSecType"
using wt_subst_trm''[OF 3(1)[OF T ξσα]] wt_subst_trm''[OF ℐ_wt] y'
by (metis eval_term.simps(1))
thus "I x ≠ Fun OccursSec []" "∄t. I x = occurs t"
by auto
qed
have 8: "I x ≠ Fun OccursSec []" "∄t. I x = occurs t" "∃a. Γ (I x) = TAtom a ∧ a ≠ OccursSecType"
when T: "T ∈ set P"
and ξσα: "transaction_decl_subst ξ T" "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t A)"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
and x: "Var x ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
for x ξ σ α and T::"('fun,'atom,'sets,'lbl) prot_transaction"
and A::"('fun,'atom,'sets,'lbl) prot_constr"
proof -
obtain t where t: "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))" "t ⋅ (ξ ∘⇩s σ ∘⇩s α) = Var x"
using x by force
then obtain y where y: "t = Var y" by (cases t) auto
have "∃a. Γ t = TAtom a ∧ a ≠ OccursSecType"
using 0(3,4)[OF T] t(1) y
by force
thus "∃a. Γ (I x) = TAtom a ∧ a ≠ OccursSecType"
using wt_subst_trm''[OF 3(1)[OF T ξσα]] wt_subst_trm''[OF ℐ_wt] t(2)
by (metis eval_term.simps(1))
thus "I x ≠ Fun OccursSec []" "∄t. I x = occurs t"
by auto
qed
have s_fv: "fv s ⊆ fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` vars_transaction T)"
when s: "s ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
and T: "T ∈ set P"
for s and ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
and T::"('fun,'atom,'sets,'lbl) prot_transaction"
proof
fix x assume "x ∈ fv s"
hence "x ∈ fv⇩s⇩e⇩t (subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α)"
using s by auto
hence *: "x ∈ fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α)"
using fv_subterms_set_subst' by fast
have **: "list_all is_Send (unlabel (transaction_send T))"
using T_wf[OF T] unfolding wellformed_transaction_def by blast
have "x ∈ fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` vars⇩l⇩s⇩s⇩t (transaction_send T))"
proof -
obtain t where t: "t ∈ trms⇩l⇩s⇩s⇩t (transaction_send T)" "x ∈ fv (t ⋅ ξ ∘⇩s σ ∘⇩s α)"
using * by fastforce
hence "fv t ⊆ vars⇩l⇩s⇩s⇩t (transaction_send T)"
using fv_trms⇩s⇩s⇩t_subset(1)[of "unlabel (transaction_send T)"]
by auto
thus ?thesis using t(2) subst_apply_fv_subset by fast
qed
thus "x ∈ fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` vars_transaction T)"
using vars_transaction_unfold[of T] by fastforce
qed
show "?A A" using 𝒜_reach
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
have *: "∀s ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)).
OccursFact ∉ ⋃(funs_term ` set (snd (Ana s)))"
using 4[OF step.hyps(2)] by blast
have "∀s ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α ⋅⇩s⇩e⇩t I.
OccursFact ∉ ⋃(funs_term ` set (snd (Ana s)))"
proof
fix t assume t: "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α ⋅⇩s⇩e⇩t I"
then obtain s u where su:
"s ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α" "s ⋅ I = t"
"u ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))" "u ⋅ ξ ∘⇩s σ ∘⇩s α = s"
by force
obtain Ku Tu where KTu: "Ana u = (Ku,Tu)" by force
have *: "OccursFact ∉ ⋃(funs_term ` set Tu)"
"OccursFact ∉ ⋃(funs_term ` subst_range (ξ ∘⇩s σ ∘⇩s α))"
"OccursFact ∉ ⋃(funs_term ` ⋃(((set ∘ snd ∘ Ana) ` subst_range (ξ ∘⇩s σ ∘⇩s α))))"
using transaction_decl_fresh_renaming_substs_range'(3)[
OF step.hyps(3-5) _ ξ_empty[OF step.hyps(2,3)] T_fresh_type[OF step.hyps(2)]]
4[OF step.hyps(2)] su(3) KTu
by (fastforce,fastforce,fastforce)
have "OccursFact ∉ ⋃(funs_term ` set (Tu ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
proof -
{ fix f assume f: "f ∈ ⋃(funs_term ` set (Tu ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
then obtain tf where tf: "tf ∈ set Tu" "f ∈ funs_term (tf ⋅ ξ ∘⇩s σ ∘⇩s α)" by force
hence "f ∈ funs_term tf ∨ f ∈ ⋃(funs_term ` subst_range (ξ ∘⇩s σ ∘⇩s α))"
using funs_term_subst[of tf "ξ ∘⇩s σ ∘⇩s α"] by force
hence "f ≠ OccursFact" using *(1,2) tf(1) by blast
} thus ?thesis by metis
qed
hence **: "OccursFact ∉ ⋃(funs_term ` set (snd (Ana s)))"
proof (cases u)
case (Var xu)
hence "s = (ξ ∘⇩s σ ∘⇩s α) xu" using su(4) by (metis eval_term.simps(1))
thus ?thesis using *(3) by fastforce
qed (use su(4) KTu Ana_subst'[of _ _ Ku Tu "ξ ∘⇩s σ ∘⇩s α"] in simp)
show "OccursFact ∉ ⋃(funs_term ` set (snd (Ana t)))"
proof (cases s)
case (Var sx)
then obtain a where a: "Γ (I sx) = Var a"
using su(1) 8(3)[OF step.hyps(2-5), of sx] by fast
hence "Ana (I sx) = ([],[])" by (metis ℐ_grounds(2) const_type_inv[THEN Ana_const])
thus ?thesis using Var su(2) by simp
next
case (Fun f S)
hence snd_Ana_t: "snd (Ana t) = snd (Ana s) ⋅⇩l⇩i⇩s⇩t I"
using su(2) Ana_subst'[of f S _ "snd (Ana s)" I] by (cases "Ana s") simp_all
{ fix g assume "g ∈ ⋃(funs_term ` set (snd (Ana t)))"
hence "g ∈ ⋃(funs_term ` set (snd (Ana s))) ∨
(∃x ∈ fv⇩s⇩e⇩t (set (snd (Ana s))). g ∈ funs_term (I x))"
using snd_Ana_t funs_term_subst[of _ I] by auto
hence "g ≠ OccursFact"
proof
assume "∃x ∈ fv⇩s⇩e⇩t (set (snd (Ana s))). g ∈ funs_term (I x)"
then obtain x where x: "x ∈ fv⇩s⇩e⇩t (set (snd (Ana s)))" "g ∈ funs_term (I x)" by force
have "x ∈ fv s" using x(1) Ana_vars(2)[of s] by (cases "Ana s") auto
hence "x ∈ fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` vars_transaction T)"
using s_fv[OF su(1) step.hyps(2)] by blast
then obtain a h U where h:
"I x = Fun h U" "Γ (I x) = Var a" "a ≠ OccursSecType" "arity h = 0"
using ℐ_grounds(2) 7(3)[OF step.hyps(2-5)] const_type_inv
by metis
hence "h ≠ OccursFact" by auto
moreover have "U = []" using h(1,2,4) const_type_inv_wf[of h U a] ℐ_wf⇩t⇩r⇩m⇩s by fastforce
ultimately show ?thesis using h(1) x(2) by auto
qed (use ** in blast)
} thus ?thesis by blast
qed
qed
thus ?case
using step.IH step.prems 1[OF step.hyps(2), of A "ξ ∘⇩s σ ∘⇩s α"]
2[OF step.hyps(2) 3[OF step.hyps(2-5)]]
by auto
qed simp
show "?B A" using 𝒜_reach
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
have "∀s ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α ⋅⇩s⇩e⇩t I.
OccursSec ∉ ⋃(funs_term ` set (snd (Ana s)))"
proof
fix t assume t: "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α ⋅⇩s⇩e⇩t I"
then obtain s u where su:
"s ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α" "s ⋅ I = t"
"u ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))" "u ⋅ ξ ∘⇩s σ ∘⇩s α = s"
by force
obtain Ku Tu where KTu: "Ana u = (Ku,Tu)" by force
have *: "OccursSec ∉ ⋃(funs_term ` set Tu)"
"OccursSec ∉ ⋃(funs_term ` subst_range (ξ ∘⇩s σ ∘⇩s α))"
"OccursSec ∉ ⋃(funs_term ` ⋃(((set ∘ snd ∘ Ana) ` subst_range (ξ ∘⇩s σ ∘⇩s α))))"
using transaction_decl_fresh_renaming_substs_range'(3)[
OF step.hyps(3-5) _ ξ_empty[OF step.hyps(2,3)] T_fresh_type[OF step.hyps(2)]]
4[OF step.hyps(2)] su(3) KTu
by (fastforce,fastforce,fastforce)
have "OccursSec ∉ ⋃(funs_term ` set (Tu ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
proof -
{ fix f assume f: "f ∈ ⋃(funs_term ` set (Tu ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
then obtain tf where tf: "tf ∈ set Tu" "f ∈ funs_term (tf ⋅ ξ ∘⇩s σ ∘⇩s α)" by force
hence "f ∈ funs_term tf ∨ f ∈ ⋃(funs_term ` subst_range (ξ ∘⇩s σ ∘⇩s α))"
using funs_term_subst[of tf "ξ ∘⇩s σ ∘⇩s α"] by force
hence "f ≠ OccursSec" using *(1,2) tf(1) by blast
} thus ?thesis by metis
qed
hence **: "OccursSec ∉ ⋃(funs_term ` set (snd (Ana s)))"
proof (cases u)
case (Var xu)
hence "s = (ξ ∘⇩s σ ∘⇩s α) xu" using su(4) by (metis eval_term.simps(1))
thus ?thesis using *(3) by fastforce
qed (use su(4) KTu Ana_subst'[of _ _ Ku Tu "ξ ∘⇩s σ ∘⇩s α"] in simp)
show "OccursSec ∉ ⋃(funs_term ` set (snd (Ana t)))"
proof (cases s)
case (Var sx)
then obtain a where a: "Γ (I sx) = Var a"
using su(1) 8(3)[OF step.hyps(2-5), of sx] by fast
hence "Ana (I sx) = ([],[])" by (metis ℐ_grounds(2) const_type_inv[THEN Ana_const])
thus ?thesis using Var su(2) by simp
next
case (Fun f S)
hence snd_Ana_t: "snd (Ana t) = snd (Ana s) ⋅⇩l⇩i⇩s⇩t I"
using su(2) Ana_subst'[of f S _ "snd (Ana s)" I] by (cases "Ana s") simp_all
{ fix g assume "g ∈ ⋃(funs_term ` set (snd (Ana t)))"
hence "g ∈ ⋃(funs_term ` set (snd (Ana s))) ∨
(∃x ∈ fv⇩s⇩e⇩t (set (snd (Ana s))). g ∈ funs_term (I x))"
using snd_Ana_t funs_term_subst[of _ I] by auto
hence "g ≠ OccursSec"
proof
assume "∃x ∈ fv⇩s⇩e⇩t (set (snd (Ana s))). g ∈ funs_term (I x)"
then obtain x where x: "x ∈ fv⇩s⇩e⇩t (set (snd (Ana s)))" "g ∈ funs_term (I x)" by force
have "x ∈ fv s" using x(1) Ana_vars(2)[of s] by (cases "Ana s") auto
hence "x ∈ fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` vars_transaction T)"
using s_fv[OF su(1) step.hyps(2)] by blast
then obtain a h U where h:
"I x = Fun h U" "Γ (I x) = Var a" "a ≠ OccursSecType" "arity h = 0"
using ℐ_grounds(2) 7(3)[OF step.hyps(2-5)] const_type_inv
by metis
hence "h ≠ OccursSec" by auto
moreover have "U = []" using h(1,2,4) const_type_inv_wf[of h U a] ℐ_wf⇩t⇩r⇩m⇩s by fastforce
ultimately show ?thesis using h(1) x(2) by auto
qed (use ** in blast)
} thus ?thesis by blast
qed
qed
thus ?case
using step.IH step.prems 1[OF step.hyps(2), of A "ξ ∘⇩s σ ∘⇩s α"]
2[OF step.hyps(2) 3[OF step.hyps(2-5)]]
by auto
qed simp
show "?C A" using 𝒜_reach
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
have *: "Fun OccursSec [] ∉ trms⇩l⇩s⇩s⇩t (transaction_send T)"
using admissible_transaction_occurs_checksE5[OF T_occ[OF step.hyps(2)]] by blast
have **: "Fun OccursSec [] ∉ subst_range (ξ ∘⇩s σ ∘⇩s α)"
using transaction_decl_fresh_renaming_substs_range'(3)[
OF step.hyps(3-5) _ ξ_empty[OF step.hyps(2,3)] T_fresh_type[OF step.hyps(2)]]
by auto
have "Fun OccursSec [] ∉ trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α ⋅⇩s⇩e⇩t I"
proof
assume "Fun OccursSec [] ∈ trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α ⋅⇩s⇩e⇩t I"
then obtain s where "s ∈ trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α" "s ⋅ I = Fun OccursSec []"
by force
moreover have "Fun OccursSec [] ∉ trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
proof
assume "Fun OccursSec [] ∈ trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
then obtain u where "u ∈ trms⇩l⇩s⇩s⇩t (transaction_send T)" "u ⋅ ξ ∘⇩s σ ∘⇩s α = Fun OccursSec []"
by force
thus False using * ** by (cases u) (force simp del: subst_subst_compose)+
qed
ultimately show False using 6[OF step.hyps(2-5)] by (cases s) auto
qed
thus ?case using step.IH step.prems 1[OF step.hyps(2), of A "ξ ∘⇩s σ ∘⇩s α"] by fast
qed simp
show "?D A" using 𝒜_reach
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
{ fix x assume x: "x ∈ vars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
hence x': "x ∈ vars⇩s⇩s⇩t (unlabel (transaction_strand T) ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
by (metis vars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq unlabel_subst)
hence "x ∈ vars_transaction T ∨ x ∈ fv⇩s⇩e⇩t ((ξ ∘⇩s σ ∘⇩s α) ` vars_transaction T)"
using vars⇩s⇩s⇩t_subst_cases[OF x'] by metis
moreover have "I x ≠ Fun OccursSec []" when "x ∈ vars_transaction T"
using that 0(5,6)[OF step.hyps(2)] wt_subst_trm''[OF ℐ_wt, of "Var x"]
by fastforce
ultimately have "I x ≠ Fun OccursSec []"
using 7(1)[OF step.hyps(2-5), of x]
by blast
} thus ?case using step.IH by auto
qed simp
qed
lemma reachable_constraints_occurs_fact_ik_subst_aux:
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model I A"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and t: "t ∈ ik⇩l⇩s⇩s⇩t A" "t ⋅ I = occurs s"
shows "∃u. t = occurs u"
proof -
have "wt⇩s⇩u⇩b⇩s⇩t I"
using ℐ unfolding welltyped_constraint_model_def constraint_model_def by metis
hence 0: "Γ t = Γ (occurs s)"
using t(2) wt_subst_trm'' by metis
have 1: "Γ⇩v ` fv⇩l⇩s⇩s⇩t A ⊆ (⋃T ∈ set P. Γ⇩v ` fv_transaction T)"
"∀T ∈ set P. ∀x ∈ fv_transaction T. Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
using reachable_constraints_var_types_in_transactions(1)[OF 𝒜_reach]
protocol_transaction_vars_TAtom_typed(2,3) P
by fast+
show ?thesis
proof (cases t)
case (Var x)
thus ?thesis
using 0 1 t(1) var_subterm_ik⇩s⇩s⇩t_is_fv⇩s⇩s⇩t[of x "unlabel A"]
by fastforce
next
case (Fun f T)
hence 2: "f = OccursFact" "length T = Suc (Suc 0)" "T ! 0 ⋅ I = Fun OccursSec []"
using t(2) by auto
have "T ! 0 = Fun OccursSec []"
proof (cases "T ! 0")
case (Var y)
hence "I y = Fun OccursSec []" using Fun 2(3) by simp
moreover have "Var y ∈ set T" using Var 2(2) length_Suc_conv[of T 1] by auto
hence "y ∈ fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t A)" using Fun t(1) by force
hence "y ∈ vars⇩l⇩s⇩s⇩t A"
using fv_ik_subset_fv_sst'[of "unlabel A"] vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel A"]
by blast
ultimately have False
using reachable_constraints_occurs_fact_ik_funs_terms(4)[OF 𝒜_reach ℐ P P_occ]
by blast
thus ?thesis by simp
qed (use 2(3) in simp)
moreover have "∃u u'. T = [u,u']"
using iffD1[OF length_Suc_conv 2(2)] iffD1[OF length_Suc_conv[of _ 0]] length_0_conv by fast
ultimately show ?thesis using Fun 2(1,2) by force
qed
qed
lemma reachable_constraints_occurs_fact_ik_subst:
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model I A"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and t: "occurs t ∈ ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I"
shows "occurs t ∈ ik⇩l⇩s⇩s⇩t A"
proof -
have ℐ_wt: "wt⇩s⇩u⇩b⇩s⇩t I"
using ℐ unfolding welltyped_constraint_model_def constraint_model_def by metis
obtain s where s: "s ∈ ik⇩l⇩s⇩s⇩t A" "s ⋅ I = occurs t"
using t by auto
hence u: "∃u. s = occurs u"
using ℐ_wt reachable_constraints_occurs_fact_ik_subst_aux[OF 𝒜_reach ℐ P P_occ]
by blast
hence "fv s = {}"
using reachable_constraints_occurs_fact_ik_ground[OF 𝒜_reach P P_occ] s
by fast
thus ?thesis
using s u subst_ground_ident[of s I]
by argo
qed
lemma reachable_constraints_occurs_fact_send_in_ik:
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model I A"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and x: "occurs (Var x) ∈ set ts" "send⟨ts⟩ ∈ set (unlabel A)"
shows "occurs (I x) ∈ ik⇩l⇩s⇩s⇩t A"
using 𝒜_reach ℐ x
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
define θ where "θ ≡ ξ ∘⇩s σ ∘⇩s α"
define T' where "T' ≡ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)"
have T_adm: "admissible_transaction' T"
using P step.hyps(2) unfolding list_all_iff by blast
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_adm]
note T_adm_occ = bspec[OF P_occ]
have ℐ_is_T_model: "strand_sem_stateful (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I) (set (db⇩l⇩s⇩s⇩t A I)) (unlabel T') I"
using step.prems unlabel_append[of A T'] db⇩s⇩s⇩t_set_is_dbupd⇩s⇩s⇩t[of "unlabel A" I "[]"]
strand_sem_append_stateful[of "{}" "{}" "unlabel A" "unlabel T'" I]
by (simp add: T'_def θ_def welltyped_constraint_model_def constraint_model_def db⇩s⇩s⇩t_def)
show ?case
proof (cases "send⟨ts⟩ ∈ set (unlabel A)")
case False
hence "send⟨ts⟩ ∈ set (unlabel T')"
using step.prems(3) unfolding T'_def θ_def by simp
hence "receive⟨ts⟩ ∈ set (unlabel (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
using dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(2) unfolding T'_def by blast
then obtain y ts' where y:
"receive⟨ts'⟩ ∈ set (unlabel (transaction_receive T))"
"θ y = Var x" "occurs (Var y) ∈ set ts'"
using transaction_decl_fresh_renaming_substs_occurs_fact_send_receive(2)[
OF step.hyps(3-5) T_adm]
subst_to_var_is_var[of _ θ x] step.prems(2)
unfolding θ_def by (metis eval_term.simps(1))
hence "occurs (Var y) ⋅ θ ∈ set ts' ⋅⇩s⇩e⇩t θ"
"receive⟨ts' ⋅⇩l⇩i⇩s⇩t θ⟩ ∈ set (unlabel (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ))"
using subst_lsst_unlabel_member[of "receive⟨ts'⟩" "transaction_receive T" θ]
by fastforce+
hence "ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I ⊢ occurs (Var y) ⋅ θ ⋅ I"
using wellformed_transaction_sem_receives[
OF T_wf, of "ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I" "set (db⇩l⇩s⇩s⇩t A I)" θ I "ts' ⋅⇩l⇩i⇩s⇩t θ"]
ℐ_is_T_model
unfolding T'_def list_all_iff by fastforce
hence *: "ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I ⊢ occurs (θ y ⋅ I)"
by auto
have "occurs (θ y ⋅ I) ∈ ik⇩l⇩s⇩s⇩t A"
using deduct_occurs_in_ik[OF *]
reachable_constraints_occurs_fact_ik_subst[
OF step.hyps(1) welltyped_constraint_model_prefix[OF step.prems(1)] P P_occ,
of "θ y ⋅ I"]
reachable_constraints_occurs_fact_ik_funs_terms[
OF step.hyps(1) welltyped_constraint_model_prefix[OF step.prems(1)] P P_occ]
by blast
thus ?thesis using y(2) by simp
qed (simp add: step.IH[OF welltyped_constraint_model_prefix[OF step.prems(1)]] step.prems(2))
qed simp
lemma reachable_constraints_occurs_fact_deduct_in_ik:
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model I A"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and k: "ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I ⊢ occurs k"
shows "occurs k ∈ ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I"
and "occurs k ∈ ik⇩l⇩s⇩s⇩t A"
using reachable_constraints_occurs_fact_ik_funs_terms(1-3)[OF 𝒜_reach ℐ P P_occ]
reachable_constraints_occurs_fact_ik_subst[OF 𝒜_reach ℐ P P_occ]
deduct_occurs_in_ik[OF k]
by (presburger, presburger)
lemma reachable_constraints_fv_bvars_subset:
assumes A: "A ∈ reachable_constraints P"
shows "bvars⇩l⇩s⇩s⇩t A ⊆ (⋃T ∈ set P. bvars_transaction T)"
using assms
proof (induction A rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
let ?T' = "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
show ?case
using step.IH step.hyps(2)
bvars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of ?T']
bvars⇩l⇩s⇩s⇩t_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
bvars⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel (dual⇩l⇩s⇩s⇩t ?T')"]
unlabel_append[of 𝒜 "dual⇩l⇩s⇩s⇩t ?T'"]
by (metis (no_types, lifting) SUP_upper Un_subset_iff)
qed simp
lemma reachable_constraints_fv_disj:
fixes A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes A: "A ∈ reachable_constraints P"
shows "fv⇩l⇩s⇩s⇩t A ∩ (⋃T ∈ set P. bvars_transaction T) = {}"
using A
proof (induction A rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
define T' where "T' ≡ transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
define X where "X ≡ ⋃T ∈ set P. bvars_transaction T"
have "fv⇩l⇩s⇩s⇩t T' ∩ X = {}"
using transaction_decl_fresh_renaming_substs_vars_disj(4)[OF step.hyps(3-5)]
transaction_decl_fresh_renaming_substs_vars_subset(4)[OF step.hyps(3-5,2)]
unfolding T'_def X_def by blast
hence "fv⇩l⇩s⇩s⇩t (𝒜@dual⇩l⇩s⇩s⇩t T') ∩ X = {}"
using step.IH[unfolded X_def[symmetric]] fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of T'] by auto
thus ?case unfolding T'_def X_def by blast
qed simp
lemma reachable_constraints_fv_bvars_disj':
fixes A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes P: "∀T ∈ set P. wellformed_transaction T"
and A: "A ∈ reachable_constraints P"
shows "fv⇩l⇩s⇩s⇩t A ∩ bvars⇩l⇩s⇩s⇩t A = {}"
using A
proof (induction A rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
define T' where "T' ≡ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
note 0 = transaction_decl_fresh_renaming_substs_vars_disj[OF step.hyps(3-5)]
note 1 = transaction_decl_fresh_renaming_substs_vars_subset[OF step.hyps(3-5)]
have 2: "bvars⇩l⇩s⇩s⇩t 𝒜 ∩ fv⇩l⇩s⇩s⇩t T' = {}"
using 0(7) 1(4)[OF step.hyps(2)] fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq
unfolding T'_def by (metis (no_types) disjoint_iff_not_equal subset_iff)
have "bvars⇩l⇩s⇩s⇩t T' ⊆ ⋃(bvars_transaction ` set P)"
"fv⇩l⇩s⇩s⇩t 𝒜 ∩ ⋃(bvars_transaction ` set P) = {}"
using reachable_constraints_fv_bvars_subset[OF reachable_constraints.step[OF step.hyps]]
reachable_constraints_fv_disj[OF reachable_constraints.step[OF step.hyps]]
unfolding T'_def by auto
hence 3: "fv⇩l⇩s⇩s⇩t 𝒜 ∩ bvars⇩l⇩s⇩s⇩t T' = {}" by blast
have "fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α) ∩ bvars_transaction T = {}"
using 0(4)[OF step.hyps(2)] 1(4)[OF step.hyps(2)] by blast
hence 4: "fv⇩l⇩s⇩s⇩t T' ∩ bvars⇩l⇩s⇩s⇩t T' = {}"
by (metis (no_types) T'_def fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq bvars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq
unlabel_subst bvars⇩s⇩s⇩t_subst)
have "fv⇩l⇩s⇩s⇩t (𝒜@T') ∩ bvars⇩l⇩s⇩s⇩t (𝒜@T') = {}"
using 2 3 4 step.IH
unfolding unlabel_append[of 𝒜 T']
fv⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel T'"]
bvars⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel T'"]
by fast
thus ?case unfolding T'_def by blast
qed simp
lemma reachable_constraints_wf:
assumes P:
"∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. wf⇩t⇩r⇩m⇩s' arity (trms_transaction T)"
and A: "A ∈ reachable_constraints P"
shows "wf⇩s⇩s⇩t (unlabel A)"
and "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t A)"
proof -
let ?X = "λT. fst ` set (transaction_decl T ()) ∪ set (transaction_fresh T)"
have "wellformed_transaction T"
when "T ∈ set P" for T
using P(1) that by fast+
hence 0: "wf'⇩s⇩s⇩t (?X T) (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T)))"
"fv⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T)) ∩ bvars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T)) = {}"
"wf⇩t⇩r⇩m⇩s (trms_transaction T)"
when T: "T ∈ set P" for T
unfolding admissible_transaction_terms_def
by (metis T wellformed_transaction_wf⇩s⇩s⇩t(1),
metis T wellformed_transaction_wf⇩s⇩s⇩t(2) fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq bvars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq,
metis T wf⇩t⇩r⇩m⇩s_code P(2))
from A have "wf⇩s⇩s⇩t (unlabel A) ∧ wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t A)"
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
let ?T' = "dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
have IH: "wf'⇩s⇩s⇩t {} (unlabel A)" "fv⇩l⇩s⇩s⇩t A ∩ bvars⇩l⇩s⇩s⇩t A = {}" "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t A)"
using step.IH by metis+
have 1: "wf'⇩s⇩s⇩t {} (unlabel (A@?T'))"
using transaction_decl_fresh_renaming_substs_wf_sst[OF 0(1)[OF step.hyps(2)] step.hyps(3-5)]
wf⇩s⇩s⇩t_vars_mono[of "{}"] wf⇩s⇩s⇩t_append[OF IH(1)]
by simp
have 2: "fv⇩l⇩s⇩s⇩t (A@?T') ∩ bvars⇩l⇩s⇩s⇩t (A@?T') = {}"
using reachable_constraints_fv_bvars_disj'[OF P(1)]
reachable_constraints.step[OF step.hyps]
by blast
have "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t ?T')"
using trms⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq unlabel_subst
wf_trms_subst[
OF transaction_decl_fresh_renaming_substs_range_wf_trms[OF step.hyps(3-5)],
THEN wf⇩t⇩r⇩m⇩s_trms⇩s⇩s⇩t_subst,
OF 0(3)[OF step.hyps(2)]]
by metis
hence 3: "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t (A@?T'))"
using IH(3) by auto
show ?case using 1 2 3 by force
qed simp
thus "wf⇩s⇩s⇩t (unlabel A)" "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t A)" by metis+
qed
lemma reachable_constraints_no_Ana_attack:
assumes 𝒜: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. admissible_transaction_terms T"
"∀T ∈ set P. ∀x ∈ set (transaction_fresh T).
Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
and t: "t ∈ subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜)"
shows "attack⟨n⟩ ∉ set (snd (Ana t))"
proof -
have T_adm_term: "admissible_transaction_terms T" when "T ∈ set P" for T
using P that by blast
have T_wf: "wellformed_transaction T" when "T ∈ set P" for T
using P that by blast
have T_fresh: "∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
when "T ∈ set P" for T
using P(3) that by fast
show ?thesis
using 𝒜 t
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step A T ξ σ α) thus ?case
proof (cases "t ∈ subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t A)")
case False
hence "t ∈ subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)))"
using step.prems by simp
hence "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α)"
using dual_transaction_ik_is_transaction_send'[OF T_wf[OF step.hyps(2)]]
by metis
hence "t ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
using transaction_decl_fresh_renaming_substs_trms[
OF step.hyps(3-5), of "transaction_send T"]
wellformed_transaction_unlabel_cases(4)[OF T_wf[OF step.hyps(2)]]
by fastforce
then obtain s where s: "s ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (transaction_send T))" "t = s ⋅ ξ ∘⇩s σ ∘⇩s α"
by force
hence s': "attack⟨n⟩ ∉ set (snd (Ana s))"
using admissible_transaction_no_Ana_Attack[OF T_adm_term[OF step.hyps(2)]]
trms_transaction_unfold[of T]
by blast
note * = transaction_decl_fresh_renaming_substs_range'(1-3)[OF step.hyps(3-5)]
transaction_decl_fresh_renaming_substs_range_no_attack_const[
OF step.hyps(3-5) T_fresh[OF step.hyps(2)]]
show ?thesis
proof
assume n: "attack⟨n⟩ ∈ set (snd (Ana t))"
thus False
proof (cases s)
case (Var x)
hence "(∃c. t = Fun c []) ∨ (∃y. t = Var y)"
using *(1)[of t] n s(2) by (force simp del: subst_subst_compose)
thus ?thesis using n Ana_subterm' by fastforce
next
case (Fun f S)
hence "attack⟨n⟩ ∈ set (snd (Ana s)) ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
using Ana_subst'[of f S _ "snd (Ana s)" "ξ ∘⇩s σ ∘⇩s α"] s(2) s' n
by (cases "Ana s") auto
hence "attack⟨n⟩ ∈ set (snd (Ana s)) ∨ attack⟨n⟩ ∈ subst_range (ξ ∘⇩s σ ∘⇩s α)"
using const_mem_subst_cases' by fast
thus ?thesis using *(4) s' by fast
qed
qed
qed simp
qed simp
qed
lemma reachable_constraints_receive_attack_if_attack:
assumes 𝒜: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. admissible_transaction_terms T"
"∀T ∈ set P. ∀x ∈ set (transaction_fresh T).
Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
"∀T ∈ set P. ∀x ∈ vars_transaction T. ¬TAtom AttackType ⊑ Γ⇩v x"
and ℐ: "welltyped_constraint_model ℐ 𝒜"
and l: "ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ ⊢ attack⟨l⟩"
shows "attack⟨l⟩ ∈ ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ"
and "receive⟨[attack⟨l⟩]⟩ ∈ set (unlabel 𝒜)"
and "∀T ∈ set P. ∀s ∈ set (transaction_strand T).
is_Send (snd s) ∧ length (the_msgs (snd s)) = 1 ∧
is_Fun_Attack (hd (the_msgs (snd s)))
⟶ the_Attack_label (the_Fun (hd (the_msgs (snd s)))) = fst s
⟹ (l,receive⟨[attack⟨l⟩]⟩) ∈ set 𝒜" (is "?Q ⟹ (l,receive⟨[attack⟨l⟩]⟩) ∈ set 𝒜")
proof -
have ℐ': "constr_sem_stateful ℐ (unlabel 𝒜)" "interpretation⇩s⇩u⇩b⇩s⇩t ℐ"
"wf⇩t⇩r⇩m⇩s (subst_range ℐ)" "wt⇩s⇩u⇩b⇩s⇩t ℐ"
using ℐ unfolding welltyped_constraint_model_def constraint_model_def by metis+
have 0: "wf⇩t⇩r⇩m⇩s (ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ)"
when 𝒜: "𝒜 ∈ reachable_constraints P" for 𝒜
using reachable_constraints_wf⇩t⇩r⇩m⇩s[OF _ 𝒜] admissible_transaction_terms_wf⇩t⇩r⇩m⇩s P(2)
ik⇩s⇩s⇩t_trms⇩s⇩s⇩t_subset[of "unlabel 𝒜"] wf_trms_subst[OF ℐ'(3)]
by fast
have 1: "∀x ∈ fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜). ¬TAtom AttackType ⊑ Γ⇩v x"
when 𝒜: "𝒜 ∈ reachable_constraints P" for 𝒜
using reachable_constraints_vars_not_attack_typed[OF 𝒜 P(3,4)]
fv_ik_subset_vars_sst'[of "unlabel 𝒜"]
by fast
have 2: "attack⟨l⟩ ∉ set (snd (Ana t)) ⋅⇩s⇩e⇩t ℐ" when t: "t ∈ subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜)" for t
proof
assume "attack⟨l⟩ ∈ set (snd (Ana t)) ⋅⇩s⇩e⇩t ℐ"
then obtain s where s: "s ∈ set (snd (Ana t))" "s ⋅ ℐ = attack⟨l⟩" by force
obtain x where x: "s = Var x"
by (cases s) (use s reachable_constraints_no_Ana_attack[OF 𝒜 P(1-3) t] in auto)
have "x ∈ fv t" using x Ana_subterm'[OF s(1)] vars_iff_subtermeq by force
hence "x ∈ fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜)" using t fv_subterms by fastforce
hence "Γ⇩v x ≠ TAtom AttackType" using 1[OF 𝒜] by fastforce
thus False using s(2) x wt_subst_trm''[OF ℐ'(4), of "Var x"] by fastforce
qed
have 3: "attack⟨l⟩ ∉ set (snd (Ana t))" when t: "t ∈ subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ)" for t
proof
assume "attack⟨l⟩ ∈ set (snd (Ana t))"
then obtain s where s:
"s ∈ subterms⇩s⇩e⇩t (ℐ ` fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜))" "attack⟨l⟩ ∈ set (snd (Ana s))"
using Ana_subst_subterms_cases[OF t] 2 by fast
then obtain x where x: "x ∈ fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜)" "s ⊑ ℐ x" by force
hence "ℐ x ∈ subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ)"
using var_is_subterm[of x] subterms_subst_subset'[of ℐ "ik⇩l⇩s⇩s⇩t 𝒜"]
by force
hence *: "wf⇩t⇩r⇩m (ℐ x)" "wf⇩t⇩r⇩m s"
using wf_trms_subterms[OF 0[OF 𝒜]] wf_trm_subtermeq[OF _ x(2)]
by auto
show False
using term.order_trans[
OF subtermeq_imp_subtermtypeeq[OF *(2) Ana_subterm'[OF s(2)]]
subtermeq_imp_subtermtypeeq[OF *(1) x(2)]]
1[OF 𝒜] x(1) wt_subst_trm''[OF ℐ'(4), of "Var x"]
by force
qed
have 4: "t = attack⟨n⟩"
when t: "t ⋅ ξ ∘⇩s σ ∘⇩s α = attack⟨n⟩"
and hyps: "transaction_decl_subst ξ T"
"transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
and T: "∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = TAtom (Atom a))"
for t n
and T::"('fun, 'atom, 'sets, 'lbl) prot_transaction"
and ξ σ α::"('fun, 'atom, 'sets, 'lbl) prot_subst"
and 𝒜::"('fun, 'atom, 'sets, 'lbl) prot_strand"
proof (cases t)
case (Var x)
hence "attack⟨n⟩ ∈ subst_range (ξ ∘⇩s σ ∘⇩s α)"
by (metis (no_types, lifting) t eval_term.simps(1) subst_imgI term.distinct(1))
thus ?thesis
using transaction_decl_fresh_renaming_substs_range_no_attack_const[OF hyps T]
by blast
qed (use t in simp)
have 5: "∃ts'. ts = ts' ⋅⇩l⇩i⇩s⇩t θ ∧ (l,send⟨ts'⟩) ∈ set (transaction_strand T)"
when ts: "(l,receive⟨ts⟩) ∈ set (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
for l ts θ and T::"('fun, 'atom, 'sets, 'lbl) prot_transaction"
using subst_lsst_memD(2)[OF ts[unfolded dual⇩l⇩s⇩s⇩t_steps_iff(1)[symmetric]]]
by auto
have 6: "l' = l" when "(l',receive⟨[attack⟨l⟩]⟩) ∈ set 𝒜" and Q: "?Q" for l'
using 𝒜 that(1)
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α) show ?case
proof (cases "(l',receive⟨[attack⟨l⟩]⟩) ∈ set 𝒜")
case False
hence *: "(l',receive⟨[attack⟨l⟩]⟩) ∈ set (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using step.prems by simp
have "(l',send⟨[attack⟨l⟩]⟩) ∈ set (transaction_strand T)"
using 4[OF _ step.hyps(3-5)] P(3) step.hyps(2) 5[OF *] by force
thus ?thesis using Q step.hyps(2) unfolding is_Fun_Attack_def by fastforce
qed (use step.IH in simp)
qed simp
have 7: "∃t. ts = [t] ∧ t = attack⟨l⟩"
when ts: "receive⟨ts⟩ ∈ set (unlabel 𝒜)" "attack⟨l⟩ ∈ set ts ⋅⇩s⇩e⇩t ℐ" for ts
using 𝒜 ts(1)
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
obtain t where t: "t ∈ set ts" "attack⟨l⟩ = t ⋅ ℐ" using ts(2) by blast
hence t_in_ik: "t ∈ ik⇩l⇩s⇩s⇩t (𝒜 @ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using step.prems(1) in_ik⇩s⇩s⇩t_iff[of t] by blast
have t_attack_eq: "t = attack⟨l⟩"
proof (cases t)
case (Var x)
hence "TAtom AttackType ∉ subterms (Γ t)"
using t_in_ik 1[OF reachable_constraints.step[OF step.hyps]] by fastforce
thus ?thesis using t(2) wt_subst_trm''[OF ℐ'(4), of t] by force
qed (use t(2) in simp)
show ?case
proof (cases "receive⟨ts⟩ ∈ set (unlabel 𝒜)")
case False
then obtain l' where l':
"(l', receive⟨ts⟩) ∈ set (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using step.prems(1) unfolding unlabel_def by force
then obtain ts' where ts':
"ts = ts' ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α" "(l', send⟨ts'⟩) ∈ set (transaction_strand T)"
using 5 by meson
then obtain t' where t': "t' ∈ set ts'" "t' ⋅ ξ ∘⇩s σ ∘⇩s α = attack⟨l⟩"
using t(1) t_attack_eq by force
note * = t'(1) 4[OF t'(2) step.hyps(3-5)]
have "send⟨ts'⟩ ∈ set (unlabel (transaction_strand T))"
using ts'(2) step.hyps(2) P(2) unfolding unlabel_def by force
hence "length ts' = 1"
using step.hyps(2) P(2,3) * unfolding admissible_transaction_terms_def by fastforce
hence "ts' = [attack⟨l⟩]" using * P(3) step.hyps(2) by (cases ts') auto
thus ?thesis by (simp add: ts'(1))
qed (use step.IH in simp)
qed simp
show "attack⟨l⟩ ∈ ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ"
using private_const_deduct[OF _ l] 3 by simp
then obtain ts where ts: "receive⟨ts⟩ ∈ set (unlabel 𝒜)" "attack⟨l⟩ ∈ set ts ⋅⇩s⇩e⇩t ℐ"
using in_ik⇩l⇩s⇩s⇩t_iff[of _ 𝒜] unfolding unlabel_def by force
then obtain t where "ts = [t]" "t = attack⟨l⟩"
using 7 by blast
thus "receive⟨[attack⟨l⟩]⟩ ∈ set (unlabel 𝒜)"
using ts(1) by blast
hence "∃l'. (l', receive⟨[attack⟨l⟩]⟩) ∈ set 𝒜"
unfolding unlabel_def by fastforce
thus "(l,receive⟨[attack⟨l⟩]⟩) ∈ set 𝒜" when ?Q
using that 6 by fast
qed
lemma reachable_constraints_receive_attack_if_attack':
assumes 𝒜: "𝒜 ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and ℐ: "welltyped_constraint_model ℐ 𝒜"
and n: "ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ ⊢ attack⟨n⟩"
shows "attack⟨n⟩ ∈ ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ"
and "receive⟨[attack⟨n⟩]⟩ ∈ set (unlabel 𝒜)"
proof -
have P': "∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. admissible_transaction_terms T"
"∀T ∈ set P. ∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value"
"∀T ∈ set P. ∀x ∈ vars_transaction T. ¬TAtom AttackType ⊑ Γ⇩v x"
using admissible_transaction_is_wellformed_transaction(1,4)[OF bspec[OF P]]
admissible_transactionE(2,15)[OF bspec[OF P]]
by (blast, blast, blast, blast)
show "attack⟨n⟩ ∈ ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ" "receive⟨[attack⟨n⟩]⟩ ∈ set (unlabel 𝒜)"
using reachable_constraints_receive_attack_if_attack(1,2)[OF 𝒜 P'(1,2) _ P'(4) ℐ n] P'(3)
by (metis, metis)
qed
lemma constraint_model_Value_term_is_Val:
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model I A"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and x: "Γ⇩v x = TAtom Value" "x ∈ fv⇩l⇩s⇩s⇩t A"
shows "∃n. I x = Fun (Val n) []"
using reachable_constraints_occurs_fact_send_ex[OF 𝒜_reach P P_occ x]
reachable_constraints_occurs_fact_send_in_ik[OF 𝒜_reach ℐ P P_occ]
reachable_constraints_occurs_fact_ik_case[OF 𝒜_reach P P_occ]
by fast
lemma constraint_model_Value_term_is_Val':
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model I A"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and x: "(TAtom Value, m) ∈ fv⇩l⇩s⇩s⇩t A"
shows "∃n. I (TAtom Value, m) = Fun (Val n) []"
using constraint_model_Value_term_is_Val[OF 𝒜_reach ℐ P P_occ _ x] by simp
lemma constraint_model_Value_var_in_constr_prefix:
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model ℐ 𝒜"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
shows "∀x ∈ fv⇩l⇩s⇩s⇩t 𝒜. Γ⇩v x = TAtom Value ⟶ (∃B. prefix B 𝒜 ∧ x ∉ fv⇩l⇩s⇩s⇩t B ∧ ℐ x ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t B)"
(is "∀x ∈ ?X 𝒜. ?R x ⟶ ?Q x 𝒜")
using 𝒜_reach ℐ
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
let ?P = "λ𝒜. ∀x ∈ ?X 𝒜. ?R x ⟶ ?Q x 𝒜"
define T' where "T' ≡ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
have IH: "?P 𝒜" using step welltyped_constraint_model_prefix by fast
note ξ_empty = admissible_transaction_decl_subst_empty[OF bspec[OF P step.hyps(2)] step.hyps(3)]
have T_adm: "admissible_transaction' T" by (metis P step.hyps(2))
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_adm]
have ℐ_is_T_model: "strand_sem_stateful (ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ) (set (db⇩l⇩s⇩s⇩t 𝒜 ℐ)) (unlabel T') ℐ"
using step.prems unlabel_append[of 𝒜 T'] db⇩s⇩s⇩t_set_is_dbupd⇩s⇩s⇩t[of "unlabel 𝒜" ℐ "[]"]
strand_sem_append_stateful[of "{}" "{}" "unlabel 𝒜" "unlabel T'" ℐ]
by (simp add: T'_def welltyped_constraint_model_def constraint_model_def db⇩s⇩s⇩t_def)
have ℐ_interp: "interpretation⇩s⇩u⇩b⇩s⇩t ℐ"
and ℐ_wt: "wt⇩s⇩u⇩b⇩s⇩t ℐ"
and ℐ_wf⇩t⇩r⇩m⇩s: "wf⇩t⇩r⇩m⇩s (subst_range ℐ)"
by (metis ℐ welltyped_constraint_model_def constraint_model_def,
metis ℐ welltyped_constraint_model_def,
metis ℐ welltyped_constraint_model_def constraint_model_def)
have 1: "?Q x 𝒜" when x: "x ∈ fv⇩l⇩s⇩s⇩t T'" "Γ⇩v x = TAtom Value" for x
proof -
obtain n where n: "ℐ x = Fun n []" "is_Val n" "¬public n"
using constraint_model_Value_term_is_Val[
OF reachable_constraints.step[OF step.hyps] step.prems P P_occ x(2)]
x(1) fv⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel T'"] unlabel_append[of 𝒜 T']
unfolding T'_def by force
have "x ∈ fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using x(1) fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq unfolding T'_def by fastforce
then obtain y where y: "y ∈ fv⇩l⇩s⇩s⇩t (transaction_strand T)" "x ∈ fv ((ξ ∘⇩s σ ∘⇩s α) y)"
using fv⇩s⇩s⇩t_subst_obtain_var[of x "unlabel (transaction_strand T)" "ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
by auto
have y_x: "(ξ ∘⇩s σ ∘⇩s α) y = Var x" and y_not_fresh: "y ∉ set (transaction_fresh T)"
using y(2) transaction_decl_fresh_renaming_substs_range[OF step.hyps(3-5), of y]
by (force, fastforce)
have "Γ ((ξ ∘⇩s σ ∘⇩s α) y) = TAtom Value" using x(2) y_x by simp
moreover have "wt⇩s⇩u⇩b⇩s⇩t (ξ ∘⇩s σ ∘⇩s α)"
by (rule transaction_decl_fresh_renaming_substs_wt[OF step.hyps(3-5)])
ultimately have y_val: "Γ⇩v y = TAtom Value"
by (metis wt⇩s⇩u⇩b⇩s⇩t_def Γ.simps(1))
have "Fun n [] = (ξ ∘⇩s σ ∘⇩s α) y ⋅ ℐ" using n y_x by simp
hence y_n: "Fun n [] = (ξ ∘⇩s σ ∘⇩s α ∘⇩s ℐ) y"
by (metis subst_subst_compose[of "Var y" "ξ ∘⇩s σ ∘⇩s α" ℐ] eval_term.simps(1))
have 𝒜_ik_ℐ_vals: "∀x ∈ fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜). ∃f. ℐ x = Fun f []"
proof -
have "∃a. Γ (ℐ x) = Var a" when "x ∈ fv⇩l⇩s⇩s⇩t 𝒜" for x
using that reachable_constraints_vars_TAtom_typed[OF step.hyps(1) P, of x]
vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel 𝒜"] wt_subst_trm''[OF ℐ_wt, of "Var x"]
by force
hence "∃f. ℐ x = Fun f []" when "x ∈ fv⇩l⇩s⇩s⇩t 𝒜" for x
using that wf_trm_subst[OF ℐ_wf⇩t⇩r⇩m⇩s, of "Var x"] wf_trm_Var[of x] const_type_inv_wf
empty_fv_exists_fun[OF interpretation_grounds[OF ℐ_interp], of "Var x"]
by (metis eval_term.simps(1)[of _ x ℐ])
thus ?thesis
using fv_ik_subset_fv_sst'[of "unlabel 𝒜"] vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel 𝒜"]
by blast
qed
hence 𝒜_subterms_subst_cong: "subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ) = subterms⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜) ⋅⇩s⇩e⇩t ℐ"
by (metis ik⇩s⇩s⇩t_subst[of "unlabel 𝒜" ℐ] unlabel_subst[of 𝒜 ℐ] subterms_subst_lsst_ik[of 𝒜 ℐ])
have x_nin_𝒜: "x ∉ fv⇩l⇩s⇩s⇩t 𝒜"
proof -
have "x ∈ fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using x(1) fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq unfolding T'_def by fast
hence "x ∈ fv⇩s⇩s⇩t ((unlabel (transaction_strand T) ⋅⇩s⇩s⇩t σ) ⋅⇩s⇩s⇩t α)"
using transaction_fresh_subst_grounds_domain[OF step.hyps(4)] step.hyps(4)
labeled_stateful_strand_subst_comp[of σ "transaction_strand T" α]
unlabel_subst[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t σ" α]
unlabel_subst[of "transaction_strand T" σ]
by (simp add: ξ_empty transaction_fresh_subst_def range_vars_alt_def)
then obtain y where "α y = Var x"
using transaction_renaming_subst_var_obtain(1)[OF step.hyps(5)] by blast
thus ?thesis
using transaction_renaming_subst_range_notin_vars[OF step.hyps(5), of y]
vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel 𝒜"]
by auto
qed
from admissible_transaction_fv_in_receives_or_selects[OF T_adm y(1) y_not_fresh]
have n_cases: "Fun n [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t 𝒜 ∨ (∃z ∈ fv⇩l⇩s⇩s⇩t 𝒜. Γ⇩v z = TAtom Value ∧ ℐ z = Fun n [])"
proof
assume y_in: "y ∈ fv⇩l⇩s⇩s⇩t (transaction_receive T)"
then obtain ts where ts:
"receive⟨ts⟩ ∈ set (unlabel (transaction_receive T))" "y ∈ fv⇩s⇩e⇩t (set ts)"
using admissible_transaction_strand_step_cases(1)[OF T_adm]
by force
hence ts_deduct: "list_all (λt. ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ ⊢ t ⋅ ξ ∘⇩s σ ∘⇩s α ⋅ ℐ) ts"
using wellformed_transaction_sem_receives[
OF T_wf, of "ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ" "set (db⇩l⇩s⇩s⇩t 𝒜 ℐ)" "ξ ∘⇩s σ ∘⇩s α" ℐ "ts ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
ℐ_is_T_model
subst_lsst_unlabel_member[of "receive⟨ts⟩" "transaction_receive T" "ξ ∘⇩s σ ∘⇩s α"]
unfolding T'_def list_all_iff by force
obtain ty where ty: "ty ∈ set ts" "y ∈ fv ty" using ts(2) by fastforce
have "Fun n [] ⊑⇩s⇩e⇩t ik⇩l⇩s⇩s⇩t 𝒜 ∨ (∃z ∈ fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜). Γ⇩v z = TAtom Value ∧ ℐ z = Fun n [])"
proof -
have "Fun n [] ⊑ ty ⋅ ξ ∘⇩s σ ∘⇩s α ⋅ ℐ"
using imageI[of "Var y" "subterms ty" "λx. x ⋅ ξ ∘⇩s σ ∘⇩s α ∘⇩s ℐ"]
var_is_subterm[OF ty(2)] subterms_subst_subset[of "ξ ∘⇩s σ ∘⇩s α ∘⇩s ℐ" ty]
subst_subst_compose[of ty "ξ ∘⇩s σ ∘⇩s α" ℐ] y_n
by (auto simp del: subst_subst_compose)
hence "Fun n [] ⊑⇩s⇩e⇩t ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ"
using ty(1) private_fun_deduct_in_ik[of _ _ n "[]"] n(2,3) ts_deduct
unfolding is_Val_def is_Abs_def list_all_iff by fast
hence "Fun n [] ⊑⇩s⇩e⇩t ik⇩l⇩s⇩s⇩t 𝒜 ∨ (∃z ∈ fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t 𝒜). ℐ z = Fun n [])"
using const_subterm_subst_cases[of n _ ℐ] 𝒜_ik_ℐ_vals by fastforce
thus ?thesis
using ℐ_wt n(2) unfolding wt⇩s⇩u⇩b⇩s⇩t_def is_Val_def is_Abs_def by force
qed
thus ?thesis
using fv_ik_subset_fv_sst' ik⇩s⇩s⇩t_trms⇩s⇩s⇩t_subset[of "unlabel 𝒜"] 𝒜_subterms_subst_cong
by fast
next
assume y_in: "y ∈ fv⇩l⇩s⇩s⇩t (transaction_checks T) ∧
(∃t s. select⟨t,s⟩ ∈ set (unlabel (transaction_checks T)) ∧ y ∈ fv t ∪ fv s)"
then obtain s where s: "select⟨Var y,Fun (Set s) []⟩ ∈ set (unlabel (transaction_checks T))"
using admissible_transaction_strand_step_cases(2)[OF T_adm] by force
hence "select⟨(ξ ∘⇩s σ ∘⇩s α) y, Fun (Set s) []⟩ ∈
set (unlabel (transaction_checks T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using subst_lsst_unlabel_member
by fastforce
hence n_in_db: "(Fun n [], Fun (Set s) []) ∈ set (db'⇩s⇩s⇩t (unlabel 𝒜) ℐ [])"
using wellformed_transaction_sem_pos_checks(1)[
OF T_wf, of "ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ" "set (db⇩l⇩s⇩s⇩t 𝒜 ℐ)" "ξ ∘⇩s σ ∘⇩s α" ℐ
assign "(ξ ∘⇩s σ ∘⇩s α) y" "Fun (Set s) []"]
ℐ_is_T_model n y_x
unfolding T'_def db⇩s⇩s⇩t_def
by fastforce
obtain tn sn where tsn: "insert⟨tn,sn⟩ ∈ set (unlabel 𝒜)" "Fun n [] = tn ⋅ ℐ"
using db⇩s⇩s⇩t_in_cases[OF n_in_db] by force
have "Fun n [] = tn ∨ (∃z. Γ⇩v z = TAtom Value ∧ tn = Var z)"
using ℐ_wt tsn(2) n(2) unfolding wt⇩s⇩u⇩b⇩s⇩t_def is_Val_def is_Abs_def by (cases tn) auto
moreover have "tn ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t 𝒜)" "fv tn ⊆ fv⇩l⇩s⇩s⇩t 𝒜"
using tsn(1) in_subterms_Union by force+
ultimately show ?thesis using tsn(2) by auto
qed
from n_cases show ?thesis
proof
assume "∃z ∈ fv⇩l⇩s⇩s⇩t 𝒜. Γ⇩v z = TAtom Value ∧ ℐ z = Fun n []"
then obtain B where B: "prefix B 𝒜" "Fun n [] ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t B)"
by (metis IH n(1))
thus ?thesis
using n x_nin_𝒜 trms⇩s⇩s⇩t_unlabel_prefix_subset(1)[of B]
by (metis (no_types, opaque_lifting) self_append_conv subset_iff subterms⇩s⇩e⇩t_mono prefix_def)
qed (use n x_nin_𝒜 in fastforce)
qed
have "?P (𝒜@T')"
proof (intro ballI impI)
fix x assume x: "x ∈ fv⇩l⇩s⇩s⇩t (𝒜@T')" "Γ⇩v x = TAtom Value"
show "?Q x (𝒜@T')"
proof (cases "x ∈ fv⇩l⇩s⇩s⇩t 𝒜")
case False
hence "x ∈ fv⇩l⇩s⇩s⇩t T'" using x(1) unlabel_append[of 𝒜] fv⇩s⇩s⇩t_append[of "unlabel 𝒜"] by simp
then obtain B where B: "prefix B 𝒜" "x ∉ fv⇩l⇩s⇩s⇩t B" "ℐ x ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t B)"
using x(2) 1 by blast
thus ?thesis using prefix_prefix by fast
qed (use x(2) IH prefix_prefix in fast)
qed
thus ?case unfolding T'_def by blast
qed simp
lemma constraint_model_Val_const_in_constr_prefix:
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model ℐ 𝒜"
and P: "∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. admissible_transaction_terms T"
and n: "Fun (Val n) [] ⊑⇩s⇩e⇩t ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ"
shows "Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t 𝒜"
proof -
have *: "wf⇩s⇩s⇩t (unlabel 𝒜)"
"constr_sem_stateful ℐ (unlabel 𝒜)"
"interpretation⇩s⇩u⇩b⇩s⇩t ℐ"
"wf⇩t⇩r⇩m⇩s (subst_range ℐ)"
"wt⇩s⇩u⇩b⇩s⇩t ℐ"
using reachable_constraints_wf(1)[OF P(1) _ 𝒜_reach]
admissible_transaction_terms_wf⇩t⇩r⇩m⇩s ℐ P(2) n
unfolding welltyped_constraint_model_def constraint_model_def wf⇩t⇩r⇩m⇩s_code by fast+
show ?thesis
using constraint_model_priv_const_in_constr_prefix[OF * _ _ n]
by simp
qed
lemma constraint_model_Val_const_in_constr_prefix':
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model ℐ 𝒜"
and P: "∀T ∈ set P. admissible_transaction' T"
and n: "Fun (Val n) [] ⊑⇩s⇩e⇩t ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t ℐ"
shows "Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t 𝒜"
using constraint_model_Val_const_in_constr_prefix[OF 𝒜_reach ℐ _ _ n]
P admissible_transaction_is_wellformed_transaction(1,4)
by fast
lemma constraint_model_Value_in_constr_prefix_fresh_action':
fixes P::"('fun, 'atom, 'sets, 'lbl) prot_transaction list"
assumes A: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction_terms T"
"∀T ∈ set P. transaction_decl T () = []"
"∀T ∈ set P. bvars_transaction T = {}"
and n: "Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t A"
obtains B T ξ σ α where "prefix (B@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) A"
and "B ∈ reachable_constraints P" "T ∈ set P" "transaction_decl_subst ξ T"
"transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t B)" "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t B)"
and "Fun (Val n) [] ∈ subst_range σ"
proof -
define f where "f ≡
λ(T::('fun, 'atom, 'sets, 'lbl) prot_transaction,
ξ::('fun, 'atom, 'sets, 'lbl) prot_subst,
σ::('fun, 'atom, 'sets, 'lbl) prot_subst,
α::('fun, 'atom, 'sets, 'lbl) prot_subst).
dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
define g where "g ≡ concat ∘ map f"
obtain Ts where Ts:
"A = g Ts" "∀B. prefix B Ts ⟶ g B ∈ reachable_constraints P"
"∀B T ξ σ α. prefix (B@[(T,ξ,σ,α)]) Ts ⟶
T ∈ set P ∧ transaction_decl_subst ξ T ∧
transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (g B)) ∧
transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (g B))"
using reachable_constraints_as_transaction_lists[OF A] unfolding g_def f_def by blast
obtain T ξ σ α where T:
"(T, ξ, σ, α) ∈ set Ts" "Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using n trms⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq unlabel_subst
unfolding Ts(1) g_def f_def unlabel_def trms⇩s⇩s⇩t_def
by fastforce
obtain B where B:
"prefix (B@[(T, ξ, σ, α)]) Ts" "g B ∈ reachable_constraints P" "T ∈ set P"
"transaction_decl_subst ξ T" "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (g B))"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (g B))"
proof -
obtain B where "∃C. B@(T, ξ, σ, α)#C = Ts" by (metis T(1) split_list)
thus ?thesis using Ts(2-) that[of B] by auto
qed
note T_adm_terms = bspec[OF P(1) B(3)]
note T_decl_empty = bspec[OF P(2) B(3)]
note T_no_bvars = bspec[OF P(3) B(3)]
note ξ_empty = admissible_transaction_decl_subst_empty'[OF T_decl_empty B(4)]
have "trms⇩s⇩s⇩t (unlabel (transaction_strand T) ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α) = trms_transaction T ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
using trms⇩s⇩s⇩t_subst[of _ "ξ ∘⇩s σ ∘⇩s α"] T_no_bvars by blast
hence "Fun (Val n) [] ⊑⇩s⇩e⇩t trms_transaction T ⋅⇩s⇩e⇩t ξ ∘⇩s σ ∘⇩s α"
by (metis T(2) unlabel_subst)
hence "Fun (Val n) [] ⊑⇩s⇩e⇩t subst_range (ξ ∘⇩s σ ∘⇩s α)"
using admissible_transaction_terms_no_Value_consts(1)[OF T_adm_terms]
const_subterms_subst_cases'[of "Val n" "ξ ∘⇩s σ ∘⇩s α" "trms_transaction T"]
by blast
then obtain tn where tn: "tn ∈ subst_range (ξ ∘⇩s σ ∘⇩s α)" "Fun (Val n) [] ⊑ tn" "is_Fun tn"
by fastforce
have "Fun (Val n) [] ∈ subst_range σ"
using tn(1-) transaction_decl_fresh_renaming_substs_range'(2,4)[OF B(4-6) tn(1) ξ_empty]
by fastforce
moreover have "prefix (g B@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) A"
using Ts(1) B(1) unfolding g_def f_def prefix_def by fastforce
ultimately show thesis using that B(2-) by blast
qed
lemma constraint_model_Value_in_constr_prefix_fresh_action:
fixes P::"('fun, 'atom, 'sets, 'lbl) prot_transaction list"
assumes A: "A ∈ reachable_constraints P"
and P_adm: "∀T ∈ set P. admissible_transaction' T"
and n: "Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t A"
obtains B T ξ σ α where "prefix (B@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) A"
and "B ∈ reachable_constraints P" "T ∈ set P" "transaction_decl_subst ξ T"
"transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t B)" "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t B)"
and "Fun (Val n) [] ∈ subst_range σ"
proof -
have P: "∀T ∈ set P. admissible_transaction_terms T"
"∀T ∈ set P. transaction_decl T () = []"
"∀T ∈ set P. bvars_transaction T = {}"
using P_adm admissible_transactionE(1) admissible_transaction_no_bvars(2)
admissible_transaction_is_wellformed_transaction(4)
by (blast,blast,blast)
show ?thesis using that constraint_model_Value_in_constr_prefix_fresh_action'[OF A P n] by blast
qed
lemma reachable_constraints_occurs_fact_ik_case':
fixes A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and val: "Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t A"
shows "occurs (Fun (Val n) []) ∈ ik⇩l⇩s⇩s⇩t A"
proof -
obtain B T ξ σ α where B:
"prefix (B@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) A"
"B ∈ reachable_constraints P"
"T ∈ set P"
"transaction_decl_subst ξ T"
"transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t B)"
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t B)"
"Fun (Val n) [] ∈ subst_range σ"
using constraint_model_Value_in_constr_prefix_fresh_action[OF 𝒜_reach P val]
by blast
define θ where "θ ≡ ξ ∘⇩s σ ∘⇩s α"
have T_adm: "admissible_transaction' T" using P B(3) by blast
hence T_wf: "wellformed_transaction T" "admissible_transaction_occurs_checks T"
using admissible_transaction_is_wellformed_transaction(1) bspec[OF P_occ B(3)] by (blast,blast)
obtain x where x: "x ∈ set (transaction_fresh T)" "θ x = Fun (Val n) []"
using transaction_fresh_subst_domain[OF B(5)] B(7)
admissible_transaction_decl_subst_empty[OF T_adm B(4)]
by (force simp add: subst_compose θ_def)
obtain ts where ts: "send⟨ts⟩ ∈ set (unlabel (transaction_send T))" "occurs (Var x) ∈ set ts"
using admissible_transaction_occurs_checksE2[OF T_wf(2) x(1)]
by (metis (mono_tags, lifting) list.set_intros(1) unlabel_Cons(1))
have "occurs (Var x) ∈ trms⇩l⇩s⇩s⇩t (transaction_send T)"
using ts by force
hence "occurs (Var x) ⋅ θ ∈ ik⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
using dual_transaction_ik_is_transaction_send'[OF T_wf(1), of θ] by fast
hence "occurs (Fun (Val n) []) ∈ ik⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"
using x(2) by simp
thus ?thesis
using B(1)[unfolded θ_def[symmetric]]
unlabel_append[of B "dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)"]
ik⇩s⇩s⇩t_append[of "unlabel B" "unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))"]
unfolding prefix_def by force
qed
lemma reachable_constraints_occurs_fact_ik_case'':
fixes A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes 𝒜_reach: "A ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model ℐ A"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and val: "Fun (Val n) [] ⊑ t" "ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t ℐ ⊢ t"
shows "occurs (Fun (Val n) []) ∈ ik⇩l⇩s⇩s⇩t A"
proof -
obtain f ts where t: "t = Fun f ts" using val(1) by (cases t) simp_all
show ?thesis
using private_fun_deduct_in_ik[OF val(2,1)[unfolded t]]
constraint_model_Val_const_in_constr_prefix'[OF 𝒜_reach ℐ P, of n]
reachable_constraints_occurs_fact_ik_case'[OF 𝒜_reach P P_occ, of n]
by fastforce
qed
lemma admissible_transaction_occurs_checks_prop:
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model ℐ 𝒜"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and f: "f ∈ ⋃(funs_term ` (ℐ ` fv⇩l⇩s⇩s⇩t 𝒜))"
shows "¬is_PubConstValue f"
and "¬is_Abs f"
proof -
obtain x where x: "x ∈ fv⇩l⇩s⇩s⇩t 𝒜" "f ∈ funs_term (ℐ x)" using f by force
obtain T where T: "Fun f T ⊑ ℐ x" using funs_term_Fun_subterm[OF x(2)] by force
have ℐ_interp: "interpretation⇩s⇩u⇩b⇩s⇩t ℐ"
and ℐ_wt: "wt⇩s⇩u⇩b⇩s⇩t ℐ"
and ℐ_wf⇩t⇩r⇩m⇩s: "wf⇩t⇩r⇩m⇩s (subst_range ℐ)"
by (metis ℐ welltyped_constraint_model_def constraint_model_def,
metis ℐ welltyped_constraint_model_def,
metis ℐ welltyped_constraint_model_def constraint_model_def)
note 0 = x(1) reachable_constraints_vars_TAtom_typed[OF 𝒜_reach P, of x]
vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel 𝒜"]
have 1: "Γ (Var x) = Γ (ℐ x)" using wt_subst_trm''[OF ℐ_wt, of "Var x"] by simp
hence "∃a. Γ (ℐ x) = Var a" using 0 by force
hence "∃f. ℐ x = Fun f []"
using x(1) wf_trm_subst[OF ℐ_wf⇩t⇩r⇩m⇩s, of "Var x"] wf_trm_Var[of x] const_type_inv_wf
empty_fv_exists_fun[OF interpretation_grounds[OF ℐ_interp], of "Var x"]
by (metis eval_term.simps(1)[of _ x ℐ])
hence 2: "ℐ x = Fun f []" using x(2) by force
have 3: "Γ⇩v x ≠ TAtom AbsValue" using 0 by force
have "¬is_PubConstValue f ∧ ¬is_Abs f"
proof (cases "Γ⇩v x = TAtom Value")
case True
then obtain B where B: "prefix B 𝒜" "x ∉ fv⇩l⇩s⇩s⇩t B" "ℐ x ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t B)"
using constraint_model_Value_var_in_constr_prefix[OF 𝒜_reach ℐ P P_occ] x(1)
by fast
have "ℐ x ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t 𝒜)"
using B(1,3) trms⇩s⇩s⇩t_append[of "unlabel B"] unlabel_append[of B]
unfolding prefix_def by auto
hence "f ∈ ⋃(funs_term ` trms⇩l⇩s⇩s⇩t 𝒜)"
using x(2) funs_term_subterms_eq(2)[of "trms⇩l⇩s⇩s⇩t 𝒜"] by blast
thus ?thesis
using reachable_constraints_val_funs_private[OF 𝒜_reach P]
by blast+
next
case False thus ?thesis using x 1 2 3 unfolding is_PubConstValue_def by (cases f) auto
qed
thus "¬is_PubConstValue f" "¬is_Abs f" by metis+
qed
lemma admissible_transaction_occurs_checks_prop':
assumes 𝒜_reach: "𝒜 ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model ℐ 𝒜"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and f: "f ∈ ⋃(funs_term ` (ℐ ` fv⇩l⇩s⇩s⇩t 𝒜))"
shows "∄n. f = PubConst Value n"
and "∄n. f = Abs n"
using admissible_transaction_occurs_checks_prop[OF 𝒜_reach ℐ P P_occ f]
unfolding is_PubConstValue_def by auto
lemma transaction_var_becomes_Val:
assumes 𝒜_reach: "𝒜@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α) ∈ reachable_constraints P"
and ℐ: "welltyped_constraint_model ℐ (𝒜@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
and ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
and P: "∀T ∈ set P. admissible_transaction' T"
and P_occ: "∀T ∈ set P. admissible_transaction_occurs_checks T"
and T: "T ∈ set P"
and x: "x ∈ fv_transaction T" "fst x = TAtom Value"
shows "∃n. Fun (Val n) [] = (ξ ∘⇩s σ ∘⇩s α) x ⋅ ℐ"
proof -
obtain m where m: "x = (TAtom Value, m)" by (metis x(2) eq_fst_iff)
note ξ_empty = admissible_transaction_decl_subst_empty[OF bspec[OF P T] ξ]
have x_not_bvar: "x ∉ bvars_transaction T" "fv ((ξ ∘⇩s σ ∘⇩s α) x) ∩ bvars_transaction T = {}"
using x(1) admissible_transactions_fv_bvars_disj[OF P] T
transaction_decl_fresh_renaming_substs_vars_disj(2)[OF ξ σ α, of x]
vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel (transaction_strand T)"]
by (blast, blast)
have σx_type: "Γ (σ x) = TAtom Value"
using σ x Γ⇩v_TAtom''(2)[of x] wt_subst_trm''[of σ "Var x"]
unfolding transaction_fresh_subst_def by simp
show ?thesis
proof (cases "x ∈ subst_domain σ")
case True
then obtain c where c: "σ x = Fun c []" "¬public c" "arity c = 0"
using σ unfolding transaction_fresh_subst_def by fastforce
then obtain n where n: "c = Val n" using σx_type by (cases c) (auto split: option.splits)
show ?thesis using c n subst_compose[of σ α x] ξ_empty by simp
next
case False
hence "σ x = Var x" by auto
then obtain n where n: "(σ ∘⇩s α) x = Var (TAtom Value, n)"
using m transaction_renaming_subst_is_renaming(1)[OF α] subst_compose[of σ α x]
by force
hence "(TAtom Value, n) ∈ fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using x_not_bvar fv⇩s⇩s⇩t_subst_fv_subset[OF x(1), of "ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"] ξ_empty
by force
hence "∃n'. ℐ (TAtom Value, n) = Fun (Val n') []"
using constraint_model_Value_term_is_Val'[OF 𝒜_reach ℐ P P_occ, of n] x
fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
fv⇩s⇩s⇩t_append[of "unlabel 𝒜"] unlabel_append[of 𝒜]
by fastforce
thus ?thesis using n ξ_empty by simp
qed
qed
lemma reachable_constraints_SMP_subset:
assumes 𝒜: "𝒜 ∈ reachable_constraints P"
shows "SMP (trms⇩l⇩s⇩s⇩t 𝒜) ⊆ SMP (⋃T ∈ set P. trms_transaction T)" (is "?A 𝒜")
and "SMP (pair`setops⇩s⇩s⇩t (unlabel 𝒜)) ⊆ SMP (⋃T∈set P. pair`setops_transaction T)" (is "?B 𝒜")
proof -
have "?A 𝒜 ∧ ?B 𝒜" using 𝒜
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step A T ξ σ α)
define T' where "T' ≡ transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
define M where "M ≡ ⋃T ∈ set P. trms_transaction T"
define N where "N ≡ ⋃T ∈ set P. pair ` setops_transaction T"
let ?P = "λt. ∃s δ. s ∈ M ∧ wt⇩s⇩u⇩b⇩s⇩t δ ∧ wf⇩t⇩r⇩m⇩s (subst_range δ) ∧ t = s ⋅ δ"
let ?Q = "λt. ∃s δ. s ∈ N ∧ wt⇩s⇩u⇩b⇩s⇩t δ ∧ wf⇩t⇩r⇩m⇩s (subst_range δ) ∧ t = s ⋅ δ"
have IH: "SMP (trms⇩l⇩s⇩s⇩t A) ⊆ SMP M" "SMP (pair ` setops⇩s⇩s⇩t (unlabel A)) ⊆ SMP N"
using step.IH by (metis M_def, metis N_def)
note ξσα_wt = transaction_decl_fresh_renaming_substs_wt[OF step.hyps(3-5)]
note ξσα_wf = transaction_decl_fresh_renaming_substs_range_wf_trms[OF step.hyps(3-5)]
have 0: "SMP (trms⇩l⇩s⇩s⇩t (A@dual⇩l⇩s⇩s⇩t T')) = SMP (trms⇩l⇩s⇩s⇩t A) ∪ SMP (trms⇩l⇩s⇩s⇩t T')"
"SMP (pair ` setops⇩s⇩s⇩t (unlabel (A@dual⇩l⇩s⇩s⇩t T'))) =
SMP (pair ` setops⇩s⇩s⇩t (unlabel A)) ∪ SMP (pair ` setops⇩s⇩s⇩t (unlabel T'))"
using trms⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of T']
setops⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of T']
trms⇩s⇩s⇩t_append[of "unlabel A" "unlabel (dual⇩l⇩s⇩s⇩t T')"]
setops⇩s⇩s⇩t_append[of "unlabel A" "unlabel (dual⇩l⇩s⇩s⇩t T')"]
unlabel_append[of A "dual⇩l⇩s⇩s⇩t T'"]
image_Un[of pair "setops⇩s⇩s⇩t (unlabel A)" "setops⇩s⇩s⇩t (unlabel T')"]
SMP_union[of "trms⇩l⇩s⇩s⇩t A" "trms⇩l⇩s⇩s⇩t T'"]
SMP_union[of "pair ` setops⇩s⇩s⇩t (unlabel A)" "pair ` setops⇩s⇩s⇩t (unlabel T')"]
by argo+
have 1: "SMP (trms⇩l⇩s⇩s⇩t T') ⊆ SMP M"
proof (intro SMP_subset_I ballI)
fix t show "t ∈ trms⇩l⇩s⇩s⇩t T' ⟹ ?P t"
using trms⇩s⇩s⇩t_wt_subst_ex[OF ξσα_wt ξσα_wf, of t "unlabel (transaction_strand T)"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"] step.hyps(2)
unfolding T'_def M_def by auto
qed
have 2: "SMP (pair ` setops⇩s⇩s⇩t (unlabel T')) ⊆ SMP N"
proof (intro SMP_subset_I ballI)
fix t show "t ∈ pair ` setops⇩s⇩s⇩t (unlabel T') ⟹ ?Q t"
using setops⇩s⇩s⇩t_wt_subst_ex[OF ξσα_wt ξσα_wf, of t "unlabel (transaction_strand T)"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"] step.hyps(2)
unfolding T'_def N_def by auto
qed
have "SMP (trms⇩l⇩s⇩s⇩t (A@dual⇩l⇩s⇩s⇩t T')) ⊆ SMP M"
"SMP (pair ` setops⇩s⇩s⇩t (unlabel (A@dual⇩l⇩s⇩s⇩t T'))) ⊆ SMP N"
using 0 1 2 IH by blast+
thus ?case unfolding T'_def M_def N_def by blast
qed (simp add: setops⇩s⇩s⇩t_def)
thus "?A 𝒜" "?B 𝒜" by metis+
qed
lemma reachable_constraints_no_Pair_fun':
assumes A: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. ∀x ∈ set (transaction_fresh T). Γ⇩v x = TAtom Value"
"∀T ∈ set P. transaction_decl T () = []"
"∀T ∈ set P. admissible_transaction_terms T"
"∀T ∈ set P. ∀x ∈ vars_transaction T. Γ⇩v x = TAtom Value ∨ (∃a. Γ⇩v x = ⟨a⟩⇩τ⇩a)"
shows "Pair ∉ ⋃(funs_term ` SMP (trms⇩l⇩s⇩s⇩t A))"
using A
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
define T' where "T' ≡ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
note T_fresh_type = bspec[OF P(1) step.hyps(2)]
note ξ_empty =
admissible_transaction_decl_subst_empty'[OF bspec[OF P(2) step.hyps(2)] step.hyps(3)]
note T_adm_terms = bspec[OF P(3) step.hyps(2)]
note ξσα_wt = transaction_decl_fresh_renaming_substs_wt[OF step.hyps(3-5)]
note ξσα_wf = transaction_decl_fresh_renaming_substs_range_wf_trms[OF step.hyps(3-5)]
have 0: "SMP (trms⇩l⇩s⇩s⇩t (A@T')) = SMP (trms⇩l⇩s⇩s⇩t A) ∪ SMP (trms⇩l⇩s⇩s⇩t T')"
using SMP_union[of "trms⇩l⇩s⇩s⇩t A" "trms⇩l⇩s⇩s⇩t T'"]
unlabel_append[of A T'] trms⇩s⇩s⇩t_append[of "unlabel A" "unlabel T'"]
by simp
have 1: "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t T')"
using reachable_constraints_wf⇩t⇩r⇩m⇩s[OF _ reachable_constraints.step[OF step.hyps]]
admissible_transaction_terms_wf⇩t⇩r⇩m⇩s P(3)
trms⇩s⇩s⇩t_append[of "unlabel A"] unlabel_append[of A]
unfolding T'_def by force
have 2: "Pair ∉ ⋃(funs_term ` (subst_range (ξ ∘⇩s σ ∘⇩s α)))"
using transaction_decl_fresh_renaming_substs_range'(3)[
OF step.hyps(3-5) _ ξ_empty T_fresh_type]
by force
have "Pair ∉ ⋃(funs_term ` (trms_transaction T))"
using T_adm_terms unfolding admissible_transaction_terms_def by blast
hence "Pair ∉ funs_term t"
when t: "t ∈ trms⇩s⇩s⇩t (unlabel (transaction_strand T) ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)" for t
using 2 trms⇩s⇩s⇩t_funs_term_cases[OF t]
by force
hence 3: "Pair ∉ funs_term t" when t: "t ∈ trms⇩l⇩s⇩s⇩t T'" for t
using t unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
trms⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
unfolding T'_def by metis
have "∃a. Γ⇩v x = TAtom a" when "x ∈ vars_transaction T" for x
using that protocol_transaction_vars_TAtom_typed(1) bspec[OF P(4) step.hyps(2)]
by fast
hence "∃a. Γ⇩v x = TAtom a" when "x ∈ vars⇩s⇩s⇩t (unlabel (transaction_strand T) ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)" for x
using wt_subst_fv⇩s⇩e⇩t_termtype_subterm[OF _ ξσα_wt ξσα_wf, of x "vars_transaction T"]
vars⇩s⇩s⇩t_subst_cases[OF that]
by fastforce
hence "∃a. Γ⇩v x = TAtom a" when "x ∈ vars⇩l⇩s⇩s⇩t T'" for x
using that unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
vars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
unfolding T'_def
by simp
hence "∃a. Γ⇩v x = TAtom a" when "x ∈ fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t T')" for x
using that fv_trms⇩s⇩s⇩t_subset(1) by fast
hence "Pair ∉ funs_term (Γ (Var x))" when "x ∈ fv⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t T')" for x
using that by fastforce
moreover have "Pair ∈ funs_term s"
when s: "Ana s = (K, M)" "Pair ∈ ⋃(funs_term ` set K)"
for s::"('fun,'atom,'sets,'lbl) prot_term" and K M
proof (cases s)
case (Fun f S) thus ?thesis using s Ana_Fu_keys_not_pairs[of _ S K M] by (cases f) force+
qed (use s in simp)
ultimately have "Pair ∉ funs_term t" when t: "t ∈ SMP (trms⇩l⇩s⇩s⇩t T')" for t
using t 3 SMP_funs_term[OF t _ _ 1, of Pair] funs_term_type_iff by fastforce
thus ?case using 0 step.IH(1) unfolding T'_def by blast
qed simp
lemma reachable_constraints_no_Pair_fun:
assumes A: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
shows "Pair ∉ ⋃(funs_term ` SMP (trms⇩l⇩s⇩s⇩t A))"
using reachable_constraints_no_Pair_fun'[OF A]
P admissible_transactionE(1,2,3)
admissible_transaction_is_wellformed_transaction(4)
by blast
lemma reachable_constraints_setops_form:
assumes A: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and t: "t ∈ pair ` setops⇩s⇩s⇩t (unlabel A)"
shows "∃c s. t = pair (c, Fun (Set s) []) ∧ Γ c = TAtom Value"
using A t
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
have T_adm: "admissible_transaction' T" when "T ∈ set P" for T
using P that unfolding list_all_iff by simp
note T_adm' = admissible_transaction_is_wellformed_transaction(2,3)[OF T_adm]
note T_wf = admissible_transaction_is_wellformed_transaction(1)[OF T_adm]
note ξσα_wt = transaction_decl_fresh_renaming_substs_wt[OF step.hyps(3-5)]
note ξσα_wf = transaction_decl_fresh_renaming_substs_range_wf_trms[OF step.hyps(3-5)]
show ?case using step.IH
proof (cases "t ∈ pair ` setops⇩s⇩s⇩t (unlabel A)")
case False
hence "t ∈ pair ` setops⇩s⇩s⇩t (unlabel (transaction_strand T) ⋅⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using step.prems setops⇩s⇩s⇩t_append unlabel_append
setops⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
by fastforce
then obtain t' δ where t':
"t' ∈ pair ` setops⇩s⇩s⇩t (unlabel (transaction_strand T))"
"wt⇩s⇩u⇩b⇩s⇩t δ" "wf⇩t⇩r⇩m⇩s (subst_range δ)" "t = t' ⋅ δ"
using setops⇩s⇩s⇩t_wt_subst_ex[OF ξσα_wt ξσα_wf] by blast
then obtain s s' where s: "t' = pair (s,s')"
using setops⇩s⇩s⇩t_are_pairs by fastforce
moreover have "InSet ac s s' = InSet Assign s s' ∨ InSet ac s s' = InSet Check s s'" for ac
by (cases ac) simp_all
ultimately have "∃n. s = Var (Var Value, n)" "∃u. s' = Fun (Set u) []"
using t'(1) setops⇩s⇩s⇩t_member_iff[of s s' "unlabel (transaction_strand T)"]
pair_in_pair_image_iff[of s s']
transaction_inserts_are_Value_vars[
OF T_wf[OF step.hyps(2)] T_adm'(2)[OF step.hyps(2)], of s s']
transaction_deletes_are_Value_vars[
OF T_wf[OF step.hyps(2)] T_adm'(2)[OF step.hyps(2)], of s s']
transaction_selects_are_Value_vars[
OF T_wf[OF step.hyps(2)] T_adm'(1)[OF step.hyps(2)], of s s']
transaction_inset_checks_are_Value_vars[
OF T_adm[OF step.hyps(2)], of s s']
transaction_notinset_checks_are_Value_vars[
OF T_adm[OF step.hyps(2)], of _ _ _ s s']
by metis+
then obtain ss n where ss: "t = pair (δ (Var Value, n), Fun (Set ss) [])"
using t'(4) s unfolding pair_def by force
have "Γ (δ (Var Value, n)) = TAtom Value" "wf⇩t⇩r⇩m (δ (Var Value, n))"
using t'(2) wt_subst_trm''[OF t'(2), of "Var (Var Value, n)"] apply simp
using t'(3) by (cases "(Var Value, n) ∈ subst_domain δ") auto
thus ?thesis using ss by blast
qed simp
qed (simp add: setops⇩s⇩s⇩t_def)
lemma reachable_constraints_insert_delete_form:
assumes A: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and t: "insert⟨t,s⟩ ∈ set (unlabel A) ∨ delete⟨t,s⟩ ∈ set (unlabel A)" (is "?Q t s A")
shows "∃k. s = Fun (Set k) []" (is ?A)
and "Γ t = TAtom Value" (is ?B)
and "(∃x. t = Var x) ∨ (∃n. t = Fun (Val n) [])" (is ?C)
proof -
have 0: "pair (t,s) ∈ pair ` setops⇩s⇩s⇩t (unlabel A)" using t unfolding setops⇩s⇩s⇩t_def by force
show 1: ?A ?B using reachable_constraints_setops_form[OF A P 0] by (fast,fast)
show ?C using A t
proof (induction A rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
let ?T' = "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
note T_adm = bspec[OF P step.hyps(2)]
note T_wf = admissible_transaction_is_wellformed_transaction(1,3)[OF T_adm]
have "?Q t s 𝒜 ∨ ?Q t s ?T'"
using step.prems dual⇩l⇩s⇩s⇩t_unlabel_steps_iff(4,5)[of t s ?T']
unfolding unlabel_append by auto
thus ?case
proof
assume "?Q t s ?T'"
then obtain u v where u: "?Q u v (transaction_strand T)" "t = u ⋅ ξ ∘⇩s σ ∘⇩s α"
by (metis (no_types, lifting) stateful_strand_step_mem_substD(4,5) unlabel_subst)
obtain x where x: "u = Var x"
using u(1) transaction_inserts_are_Value_vars(1)[OF T_wf, of u v]
transaction_deletes_are_Value_vars(1)[OF T_wf, of u v]
by fastforce
show ?case
using u(2) x
transaction_decl_fresh_renaming_substs_range'(3)[
OF step.hyps(3,4,5) _
admissible_transaction_decl_subst_empty[OF T_adm step.hyps(3)]
admissible_transactionE(2)[OF T_adm],
of t]
by (cases "t ∈ subst_range (ξ ∘⇩s σ ∘⇩s α)")
(blast, metis eval_term.simps(1) subst_imgI)
qed (use step.IH in fastforce)
qed simp
qed
lemma reachable_constraints_setops_type:
fixes t::"('fun,'atom,'sets,'lbl) prot_term"
assumes A: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
and t: "t ∈ pair ` setops⇩s⇩s⇩t (unlabel A)"
shows "Γ t = TComp Pair [TAtom Value, TAtom SetType]"
proof -
obtain s c where s: "t = pair (c, Fun (Set s) [])" "Γ c = TAtom Value"
using reachable_constraints_setops_form[OF A P t] by force
hence "(Fun (Set s) []::('fun,'atom,'sets,'lbl) prot_term) ∈ trms⇩l⇩s⇩s⇩t A"
using t setops⇩s⇩s⇩t_member_iff[of c "Fun (Set s) []" "unlabel A"]
by force
hence "wf⇩t⇩r⇩m (Fun (Set s) []::('fun,'atom,'sets,'lbl) prot_term)"
using reachable_constraints_wf(2) P A admissible_transaction_is_wellformed_transaction(1,4)
unfolding admissible_transaction_terms_def by blast
hence "arity (Set s) = 0" unfolding wf⇩t⇩r⇩m_def by simp
thus ?thesis using s unfolding pair_def by fastforce
qed
lemma reachable_constraints_setops_same_type_if_unifiable:
assumes A: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
shows "∀s ∈ pair ` setops⇩s⇩s⇩t (unlabel A). ∀t ∈ pair ` setops⇩s⇩s⇩t (unlabel A).
(∃δ. Unifier δ s t) ⟶ Γ s = Γ t"
(is "?P A")
using reachable_constraints_setops_type[OF A P] by simp
lemma reachable_constraints_setops_unifiable_if_wt_instance_unifiable:
assumes A: "A ∈ reachable_constraints P"
and P: "∀T ∈ set P. admissible_transaction' T"
shows "∀s ∈ pair ` setops⇩s⇩s⇩t (unlabel A). ∀t ∈ pair ` setops⇩s⇩s⇩t (unlabel A).
(∃σ θ ρ. wt⇩s⇩u⇩b⇩s⇩t σ ∧ wt⇩s⇩u⇩b⇩s⇩t θ ∧ wf⇩t⇩r⇩m⇩s (subst_range σ) ∧ wf⇩t⇩r⇩m⇩s (subst_range θ) ∧
Unifier ρ (s ⋅ σ) (t ⋅ θ))
⟶ (∃δ. Unifier δ s t)"
proof (intro ballI impI)
fix s t assume st: "s ∈ pair ` setops⇩s⇩s⇩t (unlabel A)" "t ∈ pair ` setops⇩s⇩s⇩t (unlabel A)" and
"∃σ θ ρ. wt⇩s⇩u⇩b⇩s⇩t σ ∧ wt⇩s⇩u⇩b⇩s⇩t θ ∧ wf⇩t⇩r⇩m⇩s (subst_range σ) ∧ wf⇩t⇩r⇩m⇩s (subst_range θ) ∧
Unifier ρ (s ⋅ σ) (t ⋅ θ)"
then obtain σ θ ρ where σ:
"wt⇩s⇩u⇩b⇩s⇩t σ" "wt⇩s⇩u⇩b⇩s⇩t θ" "wf⇩t⇩r⇩m⇩s (subst_range σ)" "wf⇩t⇩r⇩m⇩s (subst_range θ)"
"Unifier ρ (s ⋅ σ) (t ⋅ θ)"
by force
obtain fs ft cs ct where c:
"s = pair (cs, Fun (Set fs) [])" "t = pair (ct, Fun (Set ft) [])"
"Γ cs = TAtom Value" "Γ ct = TAtom Value"
using reachable_constraints_setops_form[OF A P st(1)]
reachable_constraints_setops_form[OF A P st(2)]
by force
have "cs ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t A)" "ct ∈ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t A)"
using c(1,2) setops_subterm_trms[OF st(1), of cs] setops_subterm_trms[OF st(2), of ct]
Fun_param_is_subterm[of cs "args s"] Fun_param_is_subterm[of ct "args t"]
unfolding pair_def by simp_all
moreover have
"∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. wf⇩t⇩r⇩m⇩s' arity (trms_transaction T)"
using P admissible_transaction_is_wellformed_transaction(1,4)
unfolding admissible_transaction_terms_def by fast+
ultimately have *: "wf⇩t⇩r⇩m cs" "wf⇩t⇩r⇩m ct"
using reachable_constraints_wf(2)[OF _ _ A] wf_trms_subterms by blast+
have "(∃x. cs = Var x) ∨ (∃c d. cs = Fun c [])"
using const_type_inv_wf c(3) *(1) by (cases cs) auto
moreover have "(∃x. ct = Var x) ∨ (∃c d. ct = Fun c [])"
using const_type_inv_wf c(4) *(2) by (cases ct) auto
ultimately show "∃δ. Unifier δ s t"
using reachable_constraints_setops_form[OF A P] reachable_constraints_setops_type[OF A P] st σ c
unfolding pair_def by auto
qed
lemma reachable_constraints_tfr:
assumes M:
"M ≡ ⋃T ∈ set P. trms_transaction T"
"has_all_wt_instances_of Γ M N"
"finite N"
"tfr⇩s⇩e⇩t N"
"wf⇩t⇩r⇩m⇩s N"
and P:
"∀T ∈ set P. admissible_transaction T"
"∀T ∈ set P. list_all tfr⇩s⇩s⇩t⇩p (unlabel (transaction_strand T))"
and 𝒜: "𝒜 ∈ reachable_constraints P"
shows "tfr⇩s⇩s⇩t (unlabel 𝒜)"
using 𝒜
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step A T ξ σ α)
define T' where "T' ≡ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
have P': "∀T ∈ set P. admissible_transaction' T" using P(1) admissible_transactionE'(1) by blast
have AT'_reach: "A@T' ∈ reachable_constraints P"
using reachable_constraints.step[OF step.hyps] unfolding T'_def by metis
note T_adm = bspec[OF P(1) step.hyps(2)]
note T_adm' = bspec[OF P'(1) step.hyps(2)]
note ξ_empty = admissible_transaction_decl_subst_empty[OF T_adm' step.hyps(3)]
note ξσα_wt = transaction_decl_fresh_renaming_substs_wt[OF step.hyps(3-5)]
note ξσα_wf = transaction_decl_fresh_renaming_substs_range_wf_trms[OF step.hyps(3-5)]
have ξσα_bvars_disj: "bvars⇩l⇩s⇩s⇩t (transaction_strand T) ∩ range_vars (ξ ∘⇩s σ ∘⇩s α) = {}"
using transaction_decl_fresh_renaming_substs_vars_disj(4)[OF step.hyps(3,4,5,2)] ξ_empty
by simp
have wf_trms_M: "wf⇩t⇩r⇩m⇩s M"
using admissible_transactions_wf⇩t⇩r⇩m⇩s P'(1) unfolding M(1) by blast
have "tfr⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (A@T'))"
using reachable_constraints_SMP_subset(1)[OF AT'_reach]
tfr_subset(3)[OF M(4), of "trms⇩l⇩s⇩s⇩t (A@T')"]
SMP_SMP_subset[of M N] SMP_I'[OF wf_trms_M M(5,2)]
unfolding M(1) by blast
moreover have "∀p. Ana (pair p) = ([],[])" unfolding pair_def by auto
ultimately have 1: "tfr⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (A@T') ∪ pair ` setops⇩s⇩s⇩t (unlabel (A@T')))"
using tfr_setops_if_tfr_trms[of "unlabel (A@T')"]
reachable_constraints_no_Pair_fun[OF AT'_reach P']
reachable_constraints_setops_same_type_if_unifiable[OF AT'_reach P']
reachable_constraints_setops_unifiable_if_wt_instance_unifiable[OF AT'_reach P']
by blast
have "list_all tfr⇩s⇩s⇩t⇩p (unlabel (transaction_strand T))"
using step.hyps(2) P(2) tfr⇩s⇩s⇩t⇩p_is_comp_tfr⇩s⇩s⇩t⇩p
unfolding comp_tfr⇩s⇩s⇩t_def tfr⇩s⇩s⇩t_def by fastforce
hence "list_all tfr⇩s⇩s⇩t⇩p (unlabel T')"
using tfr⇩s⇩s⇩t⇩p_all_wt_subst_apply[OF _ ξσα_wt ξσα_wf ξσα_bvars_disj]
dual⇩l⇩s⇩s⇩t_tfr⇩s⇩s⇩t⇩p[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
unfolding T'_def by argo
hence 2: "list_all tfr⇩s⇩s⇩t⇩p (unlabel (A@T'))"
using step.IH unlabel_append
unfolding tfr⇩s⇩s⇩t_def by auto
have "tfr⇩s⇩s⇩t (unlabel (A@T'))" using 1 2 by (metis tfr⇩s⇩s⇩t_def)
thus ?case by (metis T'_def)
qed simp
lemma reachable_constraints_tfr':
assumes M:
"M ≡ ⋃T ∈ set P. trms_transaction T ∪ pair' Pair ` setops_transaction T"
"has_all_wt_instances_of Γ M N"
"finite N"
"tfr⇩s⇩e⇩t N"
"wf⇩t⇩r⇩m⇩s N"
and P:
"∀T ∈ set P. wf⇩t⇩r⇩m⇩s' arity (trms_transaction T)"
"∀T ∈ set P. list_all tfr⇩s⇩s⇩t⇩p (unlabel (transaction_strand T))"
and 𝒜: "𝒜 ∈ reachable_constraints P"
shows "tfr⇩s⇩s⇩t (unlabel 𝒜)"
using 𝒜
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step A T ξ σ α)
define T' where "T' ≡ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
have AT'_reach: "A@T' ∈ reachable_constraints P"
using reachable_constraints.step[OF step.hyps] unfolding T'_def by metis
note ξσα_wt = transaction_decl_fresh_renaming_substs_wt[OF step.hyps(3-5)]
note ξσα_wf = transaction_decl_fresh_renaming_substs_range_wf_trms[OF step.hyps(3-5)]
have ξσα_bvars_disj: "bvars⇩l⇩s⇩s⇩t (transaction_strand T) ∩ range_vars (ξ ∘⇩s σ ∘⇩s α) = {}"
by (rule transaction_decl_fresh_renaming_substs_vars_disj(4)[OF step.hyps(3,4,5,2)])
have wf_trms_M: "wf⇩t⇩r⇩m⇩s M"
using P(1) setops⇩s⇩s⇩t_wf⇩t⇩r⇩m⇩s(2) unfolding M(1) pair_code wf⇩t⇩r⇩m⇩s_code[symmetric] by fast
have "SMP (trms⇩l⇩s⇩s⇩t (A@T')) ⊆ SMP M" "SMP (pair ` setops⇩s⇩s⇩t (unlabel (A@T'))) ⊆ SMP M"
using reachable_constraints_SMP_subset[OF AT'_reach]
SMP_mono[of "⋃T ∈ set P. trms_transaction T" M]
SMP_mono[of "⋃T ∈ set P. pair ` setops_transaction T" M]
unfolding M(1) pair_code[symmetric] by blast+
hence 1: "tfr⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (A@T') ∪ pair ` setops⇩s⇩s⇩t (unlabel (A@T')))"
using tfr_subset(3)[OF M(4), of "trms⇩l⇩s⇩s⇩t (A@T') ∪ pair ` setops⇩s⇩s⇩t (unlabel (A@T'))"]
SMP_union[of "trms⇩l⇩s⇩s⇩t (A@T')" "pair ` setops⇩s⇩s⇩t (unlabel (A@T'))"]
SMP_SMP_subset[of M N] SMP_I'[OF wf_trms_M M(5,2)]
by blast
have "list_all tfr⇩s⇩s⇩t⇩p (unlabel (transaction_strand T))"
using step.hyps(2) P(2) tfr⇩s⇩s⇩t⇩p_is_comp_tfr⇩s⇩s⇩t⇩p
unfolding comp_tfr⇩s⇩s⇩t_def tfr⇩s⇩s⇩t_def by fastforce
hence "list_all tfr⇩s⇩s⇩t⇩p (unlabel T')"
using tfr⇩s⇩s⇩t⇩p_all_wt_subst_apply[OF _ ξσα_wt ξσα_wf ξσα_bvars_disj]
dual⇩l⇩s⇩s⇩t_tfr⇩s⇩s⇩t⇩p[of "transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α"]
unlabel_subst[of "transaction_strand T" "ξ ∘⇩s σ ∘⇩s α"]
unfolding T'_def by argo
hence 2: "list_all tfr⇩s⇩s⇩t⇩p (unlabel (A@T'))"
using step.IH unlabel_append
unfolding tfr⇩s⇩s⇩t_def by auto
have "tfr⇩s⇩s⇩t (unlabel (A@T'))" using 1 2 by (metis tfr⇩s⇩s⇩t_def)
thus ?case by (metis T'_def)
qed simp
lemma reachable_constraints_typing_cond⇩s⇩s⇩t:
assumes M:
"M ≡ ⋃T ∈ set P. trms_transaction T ∪ pair' Pair ` setops_transaction T"
"has_all_wt_instances_of Γ M N"
"finite N"
"tfr⇩s⇩e⇩t N"
"wf⇩t⇩r⇩m⇩s N"
and P:
"∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. wf⇩t⇩r⇩m⇩s' arity (trms_transaction T)"
"∀T ∈ set P. list_all tfr⇩s⇩s⇩t⇩p (unlabel (transaction_strand T))"
and 𝒜: "𝒜 ∈ reachable_constraints P"
shows "typing_cond⇩s⇩s⇩t (unlabel 𝒜)"
using reachable_constraints_wf[OF P(1,2) 𝒜] reachable_constraints_tfr'[OF M P(2,3) 𝒜]
unfolding typing_cond⇩s⇩s⇩t_def by blast
context
begin
private lemma reachable_constraints_typing_result_aux:
assumes 0: "wf⇩s⇩s⇩t (unlabel 𝒜)" "tfr⇩s⇩s⇩t (unlabel 𝒜)" "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t 𝒜)"
shows "wf⇩s⇩s⇩t (unlabel (𝒜@[(l,send⟨[attack⟨n⟩]⟩)]))" "tfr⇩s⇩s⇩t (unlabel (𝒜@[(l,send⟨[attack⟨n⟩]⟩)]))"
"wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t (𝒜@[(l,send⟨[attack⟨n⟩]⟩)]))"
proof -
let ?n = "[(l,send⟨[attack⟨n⟩]⟩)]"
let ?A = "𝒜@?n"
show "wf⇩s⇩s⇩t (unlabel ?A)"
using 0(1) wf⇩s⇩s⇩t_append_suffix'[of "{}" "unlabel 𝒜" "unlabel ?n"] unlabel_append[of 𝒜 ?n]
by simp
show "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t ?A)"
using 0(3) trms⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel ?n"] unlabel_append[of 𝒜 ?n]
by fastforce
have "∀t ∈ trms⇩l⇩s⇩s⇩t ?n ∪ pair ` setops⇩s⇩s⇩t (unlabel ?n). ∃c. t = Fun c []"
"∀t ∈ trms⇩l⇩s⇩s⇩t ?n ∪ pair ` setops⇩s⇩s⇩t (unlabel ?n). Ana t = ([],[])"
by (simp_all add: setops⇩s⇩s⇩t_def)
hence "tfr⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t 𝒜 ∪ pair ` setops⇩s⇩s⇩t (unlabel 𝒜) ∪
(trms⇩l⇩s⇩s⇩t ?n ∪ pair ` setops⇩s⇩s⇩t (unlabel ?n)))"
using 0(2) tfr_consts_mono unfolding tfr⇩s⇩s⇩t_def by blast
hence "tfr⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (𝒜@?n) ∪ pair ` setops⇩s⇩s⇩t (unlabel (𝒜@?n)))"
using unlabel_append[of 𝒜 ?n] trms⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel ?n"]
setops⇩s⇩s⇩t_append[of "unlabel 𝒜" "unlabel ?n"]
by (simp add: setops⇩s⇩s⇩t_def)
thus "tfr⇩s⇩s⇩t (unlabel ?A)"
using 0(2) unlabel_append[of ?A ?n]
unfolding tfr⇩s⇩s⇩t_def by auto
qed
lemma reachable_constraints_typing_result:
fixes P
assumes M:
"has_all_wt_instances_of Γ (⋃T ∈ set P. trms_transaction T) N"
"finite N"
"tfr⇩s⇩e⇩t N"
"wf⇩t⇩r⇩m⇩s N"
and P:
"∀T ∈ set P. admissible_transaction T"
"∀T ∈ set P. list_all tfr⇩s⇩s⇩t⇩p (unlabel (transaction_strand T))"
and A: "𝒜 ∈ reachable_constraints P"
and ℐ: "constraint_model ℐ (𝒜@[(l, send⟨[attack⟨n⟩]⟩)])"
shows "∃ℐ⇩τ. welltyped_constraint_model ℐ⇩τ (𝒜@[(l, send⟨[attack⟨n⟩]⟩)])"
proof -
have I:
"interpretation⇩s⇩u⇩b⇩s⇩t ℐ" "wf⇩t⇩r⇩m⇩s (subst_range ℐ)"
"constr_sem_stateful ℐ (unlabel (𝒜@[(l, send⟨[attack⟨n⟩]⟩)]))"
using ℐ unfolding constraint_model_def by metis+
note 0 = admissible_transaction_is_wellformed_transaction(1,4)[OF admissible_transactionE'(1)]
have 1: "∀T ∈ set P. wellformed_transaction T"
using P(1) 0(1) by blast
have 2: "∀T ∈ set P. wf⇩t⇩r⇩m⇩s' arity (trms_transaction T)"
using P(1) 0(2) unfolding admissible_transaction_terms_def by blast
have 3: "wf⇩s⇩s⇩t (unlabel 𝒜)" "tfr⇩s⇩s⇩t (unlabel 𝒜)" "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t 𝒜)"
using reachable_constraints_tfr[OF _ M P A] reachable_constraints_wf[OF 1(1) 2 A] by metis+
show ?thesis
using stateful_typing_result[OF reachable_constraints_typing_result_aux[OF 3] I(1,3)]
by (metis welltyped_constraint_model_def constraint_model_def)
qed
lemma reachable_constraints_typing_result':
fixes P
assumes M:
"M ≡ ⋃T ∈ set P. trms_transaction T ∪ pair' Pair ` setops_transaction T"
"has_all_wt_instances_of Γ M N"
"finite N"
"tfr⇩s⇩e⇩t N"
"wf⇩t⇩r⇩m⇩s N"
and P:
"∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. wf⇩t⇩r⇩m⇩s' arity (trms_transaction T)"
"∀T ∈ set P. list_all tfr⇩s⇩s⇩t⇩p (unlabel (transaction_strand T))"
and A: "𝒜 ∈ reachable_constraints P"
and ℐ: "constraint_model ℐ (𝒜@[(l, send⟨[attack⟨n⟩]⟩)])"
shows "∃ℐ⇩τ. welltyped_constraint_model ℐ⇩τ (𝒜@[(l, send⟨[attack⟨n⟩]⟩)])"
proof -
have I:
"interpretation⇩s⇩u⇩b⇩s⇩t ℐ" "wf⇩t⇩r⇩m⇩s (subst_range ℐ)"
"constr_sem_stateful ℐ (unlabel (𝒜@[(l, send⟨[attack⟨n⟩]⟩)]))"
using ℐ unfolding constraint_model_def by metis+
have 0: "wf⇩s⇩s⇩t (unlabel 𝒜)" "tfr⇩s⇩s⇩t (unlabel 𝒜)" "wf⇩t⇩r⇩m⇩s (trms⇩l⇩s⇩s⇩t 𝒜)"
using reachable_constraints_tfr'[OF M P(2-3) A]
reachable_constraints_wf[OF P(1,2) A]
by metis+
show ?thesis
using stateful_typing_result[OF reachable_constraints_typing_result_aux[OF 0] I(1,3)]
by (metis welltyped_constraint_model_def constraint_model_def)
qed
end
lemma reachable_constraints_transaction_proj:
assumes "𝒜 ∈ reachable_constraints P"
shows "proj n 𝒜 ∈ reachable_constraints (map (transaction_proj n) P)"
using assms
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α) show ?case
using step.hyps(2) reachable_constraints.step[OF
step.IH _ transaction_decl_subst_proj[OF step.hyps(3)]
transaction_fresh_subst_proj[OF step.hyps(4)]
transaction_renaming_subst_proj[OF step.hyps(5)]]
by (simp add: proj_dual⇩l⇩s⇩s⇩t proj_subst transaction_strand_proj)
qed (simp add: reachable_constraints.init)
context
begin
private lemma reachable_constraints_par_comp⇩l⇩s⇩s⇩t_aux:
fixes P
defines "Ts ≡ concat (map transaction_strand P)"
assumes A: "A ∈ reachable_constraints P"
shows "∀b ∈ set (dual⇩l⇩s⇩s⇩t A). ∃a ∈ set Ts. ∃δ. b = a ⋅⇩l⇩s⇩s⇩t⇩p δ ∧
wt⇩s⇩u⇩b⇩s⇩t δ ∧ wf⇩t⇩r⇩m⇩s (subst_range δ) ∧
(∀t ∈ subst_range δ. (∃x. t = Var x) ∨ (∃c. t = Fun c []))"
(is "∀b ∈ set (dual⇩l⇩s⇩s⇩t A). ∃a ∈ set Ts. ?P b a")
using A
proof (induction A rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
define Q where "Q ≡ ?P"
define θ where "θ ≡ ξ ∘⇩s σ ∘⇩s α"
let ?R = "λA Ts. ∀b ∈ set A. ∃a ∈ set Ts. Q b a"
have "wt⇩s⇩u⇩b⇩s⇩t θ" "wf⇩t⇩r⇩m⇩s (subst_range θ)"
"∀t ∈ subst_range θ. (∃x. t = Var x) ∨ (∃c. t = Fun c [])"
using transaction_decl_fresh_renaming_substs_wt[OF step.hyps(3-5)]
transaction_decl_fresh_renaming_substs_range_wf_trms[OF step.hyps(3-5)]
transaction_decl_fresh_renaming_substs_range'(1)[OF step.hyps(3-5)]
unfolding θ_def by (metis,metis,fastforce)
hence "?R (dual⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T)) ⋅⇩l⇩s⇩s⇩t θ) (transaction_strand T)"
using dual⇩l⇩s⇩s⇩t_self_inverse[of "transaction_strand T"]
by (auto simp add: Q_def subst_apply_labeled_stateful_strand_def)
hence "?R (dual⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) (transaction_strand T)"
by (metis dual⇩l⇩s⇩s⇩t_subst)
hence "?R (dual⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ))) Ts"
using step.hyps(2) unfolding Ts_def dual⇩l⇩s⇩s⇩t_def by fastforce
thus ?case using step.IH unfolding Q_def θ_def by auto
qed simp
lemma reachable_constraints_par_comp⇩l⇩s⇩s⇩t:
fixes P
defines "f ≡ λM. {t ⋅ δ | t δ. t ∈ M ∧ wt⇩s⇩u⇩b⇩s⇩t δ ∧ wf⇩t⇩r⇩m⇩s (subst_range δ) ∧ fv (t ⋅ δ) = {}}"
and "Ts ≡ concat (map transaction_strand P)"
assumes P_pc: "comp_par_comp⇩l⇩s⇩s⇩t public arity Ana Γ Pair Ts M S"
and A: "A ∈ reachable_constraints P"
shows "par_comp⇩l⇩s⇩s⇩t A ((f S) - {m. intruder_synth {} m})"
using par_comp⇩l⇩s⇩s⇩t_if_comp_par_comp⇩l⇩s⇩s⇩t'[OF P_pc, of "dual⇩l⇩s⇩s⇩t A", THEN par_comp⇩l⇩s⇩s⇩t_dual⇩l⇩s⇩s⇩t]
reachable_constraints_par_comp⇩l⇩s⇩s⇩t_aux[OF A, unfolded Ts_def[symmetric]]
unfolding f_def dual⇩l⇩s⇩s⇩t_self_inverse by fast
end
lemma reachable_constraints_par_comp_constr:
fixes P f S
defines "f ≡ λM. {t ⋅ δ | t δ. t ∈ M ∧ wt⇩s⇩u⇩b⇩s⇩t δ ∧ wf⇩t⇩r⇩m⇩s (subst_range δ) ∧ fv (t ⋅ δ) = {}}"
and "Ts ≡ concat (map transaction_strand P)"
and "Sec ≡ f S - {m. intruder_synth {} m}"
and "M ≡ ⋃T ∈ set P. trms_transaction T ∪ pair' Pair ` setops_transaction T"
assumes M:
"has_all_wt_instances_of Γ M N"
"finite N"
"tfr⇩s⇩e⇩t N"
"wf⇩t⇩r⇩m⇩s N"
and P:
"∀T ∈ set P. wellformed_transaction T"
"∀T ∈ set P. wf⇩t⇩r⇩m⇩s' arity (trms_transaction T)"
"∀T ∈ set P. list_all tfr⇩s⇩s⇩t⇩p (unlabel (transaction_strand T))"
"comp_par_comp⇩l⇩s⇩s⇩t public arity Ana Γ Pair Ts M_fun S"
and 𝒜: "𝒜 ∈ reachable_constraints P"
and ℐ: "constraint_model ℐ 𝒜"
shows "∃ℐ⇩τ. welltyped_constraint_model ℐ⇩τ 𝒜 ∧
((∀n. welltyped_constraint_model ℐ⇩τ (proj n 𝒜)) ∨
(∃𝒜' l t. prefix 𝒜' 𝒜 ∧ suffix [(l, receive⟨t⟩)] 𝒜' ∧ strand_leaks⇩l⇩s⇩s⇩t 𝒜' Sec ℐ⇩τ))"
proof -
have ℐ': "constr_sem_stateful ℐ (unlabel 𝒜)" "interpretation⇩s⇩u⇩b⇩s⇩t ℐ"
using ℐ unfolding constraint_model_def by blast+
show ?thesis
using reachable_constraints_par_comp⇩l⇩s⇩s⇩t[OF P(4)[unfolded Ts_def] 𝒜]
reachable_constraints_typing_cond⇩s⇩s⇩t[OF M_def M P(1-3) 𝒜]
par_comp_constr_stateful[OF _ _ ℐ', of Sec]
unfolding f_def Sec_def welltyped_constraint_model_def constraint_model_def by blast
qed
lemma reachable_constraints_component_leaks_if_composed_leaks:
fixes Sec Q
defines "leaks ≡ λ𝒜. ∃ℐ⇩τ 𝒜'.
Q ℐ⇩τ ∧ prefix 𝒜' 𝒜 ∧ (∃l' t. suffix [(l', receive⟨t⟩)] 𝒜') ∧ strand_leaks⇩l⇩s⇩s⇩t 𝒜' Sec ℐ⇩τ"
assumes Sec: "∀s ∈ Sec. ¬{} ⊢⇩c s" "ground Sec"
and composed_leaks: "∃𝒜 ∈ reachable_constraints Ps. leaks 𝒜"
shows "∃l. ∃𝒜 ∈ reachable_constraints (map (transaction_proj l) Ps). leaks 𝒜"
proof -
from composed_leaks obtain 𝒜 ℐ⇩τ 𝒜' s n where
𝒜: "𝒜 ∈ reachable_constraints Ps" and
𝒜': "prefix 𝒜' 𝒜" "constr_sem_stateful ℐ⇩τ (proj_unl n 𝒜'@[send⟨[s]⟩])" and
ℐ⇩τ: "Q ℐ⇩τ" and
s: "s ∈ Sec - declassified⇩l⇩s⇩s⇩t 𝒜' ℐ⇩τ"
unfolding leaks_def strand_leaks⇩l⇩s⇩s⇩t_def by fast
have "¬{} ⊢⇩c s" "s ⋅ ℐ⇩τ = s" using s Sec by auto
then obtain B k' u where
"constr_sem_stateful ℐ⇩τ (proj_unl n B@[send⟨[s]⟩])"
"prefix (proj n B) (proj n 𝒜)" "suffix [(k', receive⟨u⟩)] (proj n B)"
"s ∈ Sec - declassified⇩l⇩s⇩s⇩t (proj n B) ℐ⇩τ"
using constr_sem_stateful_proj_priv_term_prefix_obtain[OF 𝒜' s]
unfolding welltyped_constraint_model_def constraint_model_def by metis
thus ?thesis
using ℐ⇩τ reachable_constraints_transaction_proj[OF 𝒜, of n] proj_idem[of n B]
unfolding leaks_def strand_leaks⇩l⇩s⇩s⇩t_def
by metis
qed
lemma reachable_constraints_preserves_labels:
assumes 𝒜: "𝒜 ∈ reachable_constraints P"
shows "∀a ∈ set 𝒜. ∃T ∈ set P. ∃b ∈ set (transaction_strand T). fst b = fst a"
(is "∀a ∈ set 𝒜. ∃T ∈ set P. ?P T a")
using 𝒜
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
have "∀a ∈ set (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)). ?P T a"
proof
fix a assume a: "a ∈ set (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
then obtain b where b: "b ∈ set (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)" "a = dual⇩l⇩s⇩s⇩t⇩p b"
unfolding dual⇩l⇩s⇩s⇩t_def by auto
then obtain c where c: "c ∈ set (transaction_strand T)" "b = c ⋅⇩l⇩s⇩s⇩t⇩p ξ ∘⇩s σ ∘⇩s α"
unfolding subst_apply_labeled_stateful_strand_def by auto
have "?P T c" using c(1) by blast
hence "?P T b" using c(2) by (simp add: subst_lsstp_fst_eq)
thus "?P T a" using b(2) dual⇩l⇩s⇩s⇩t⇩p_fst_eq[of b] by presburger
qed
thus ?case using step.IH step.hyps(2) by (metis Un_iff set_append)
qed simp
lemma reachable_constraints_preserves_labels':
assumes P: "∀T ∈ set P. ∀a ∈ set (transaction_strand T). has_LabelN l a ∨ has_LabelS a"
and 𝒜: "𝒜 ∈ reachable_constraints P"
shows "∀a ∈ set 𝒜. has_LabelN l a ∨ has_LabelS a"
using reachable_constraints_preserves_labels[OF 𝒜] P by fastforce
lemma reachable_constraints_transaction_proj_proj_eq:
assumes 𝒜: "𝒜 ∈ reachable_constraints (map (transaction_proj l) P)"
shows "proj l 𝒜 = 𝒜"
and "prefix 𝒜' 𝒜 ⟹ proj l 𝒜' = 𝒜'"
using 𝒜
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
let ?T = "dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
note A = reachable_constraints.step[OF step.hyps]
have P: "∀T ∈ set (map (transaction_proj l) P).
∀a ∈ set (transaction_strand T). has_LabelN l a ∨ has_LabelS a"
using transaction_proj_labels[of l] unfolding list_all_iff by auto
note * = reachable_constraints_preserves_labels'[OF P A]
have **: "∀a ∈ set 𝒜'. has_LabelN l a ∨ has_LabelS a"
when "∀a ∈ set B. has_LabelN l a ∨ has_LabelS a" "prefix 𝒜' B" for B
using that assms unfolding prefix_def by auto
note *** = proj_ident[unfolded list_all_iff]
{ case 1 thus ?case using *[THEN ***] by blast }
{ case 2 thus ?case using *[THEN **, THEN ***] by blast }
qed (simp_all add: reachable_constraints.init)
lemma reachable_constraints_transaction_proj_star_proj:
assumes 𝒜: "𝒜 ∈ reachable_constraints (map (transaction_proj l) P)"
and k_neq_l: "k ≠ l"
shows "proj k 𝒜 ∈ reachable_constraints (map transaction_star_proj P)"
using 𝒜
proof (induction 𝒜 rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
have "map (transaction_proj k) (map (transaction_proj l) P) = map transaction_star_proj P"
using transaction_star_proj_negates_transaction_proj(2)[OF k_neq_l]
by fastforce
thus ?case
using reachable_constraints_transaction_proj[OF reachable_constraints.step[OF step.hyps], of k]
by argo
qed (simp add: reachable_constraints.init)
lemma reachable_constraints_aligned_prefix_ex:
fixes P
defines "f ≡ λT.
list_all is_Receive (unlabel (transaction_receive T)) ∧
list_all is_Check_or_Assignment (unlabel (transaction_checks T)) ∧
list_all is_Update (unlabel (transaction_updates T)) ∧
list_all is_Send (unlabel (transaction_send T))"
assumes P: "list_all f P" "list_all ((list_all (Not ∘ has_LabelS)) ∘ tl ∘ transaction_send) P"
and s: "¬{} ⊢⇩c s" "fv s = {}"
and A: "A ∈ reachable_constraints P" "prefix B A"
and B: "∃l ts. suffix [(l, receive⟨ts⟩)] B"
"constr_sem_stateful ℐ (unlabel B@[send⟨[s]⟩])"
shows "∃C ∈ reachable_constraints P.
prefix C A ∧ (∃l ts. suffix [(l, receive⟨ts⟩)] C) ∧
declassified⇩l⇩s⇩s⇩t B ℐ = declassified⇩l⇩s⇩s⇩t C ℐ ∧
constr_sem_stateful ℐ (unlabel C@[send⟨[s]⟩])"
using A
proof (induction A rule: reachable_constraints.induct)
case (step A T ξ σ α)
define θ where "θ ≡ ξ ∘⇩s σ ∘⇩s α"
let ?T = "dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
note AT_reach = reachable_constraints.step[OF step.hyps]
obtain lb tsb B' where B': "B = B'@[(lb, receive⟨tsb⟩)]" using B(1) unfolding suffix_def by blast
define decl_ik where "decl_ik ≡ λS::('fun,'atom,'sets,'lbl) prot_strand.
⋃{set ts |ts. ⟨⋆, receive⟨ts⟩⟩ ∈ set S} ⋅⇩s⇩e⇩t ℐ"
have decl_ik_append: "decl_ik (M@N) = decl_ik M ∪ decl_ik N" for M N
unfolding decl_ik_def by fastforce
have "⟨⋆, receive⟨ts⟩⟩ ∉ set N"
when "⋆ ∉ fst ` set N" for ts and N::"('fun, 'atom, 'sets, 'lbl) prot_strand"
using that by force
hence decl_ik_star: "decl_ik M = decl_ik (M@N)" when "⋆ ∉ fst ` set N" for M N
using that unfolding decl_ik_def by simp
have decl_decl_ik: "declassified⇩l⇩s⇩s⇩t S ℐ = {t. decl_ik S ⊢ t}" for S
unfolding declassified⇩l⇩s⇩s⇩t_alt_def decl_ik_def by blast
have "f T" using P(1) step.hyps(2) by (simp add: list_all_iff)
hence "list_all is_Send (unlabel (dual⇩l⇩s⇩s⇩t (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)))"
"list_all is_Check_or_Assignment (unlabel (dual⇩l⇩s⇩s⇩t (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ)))"
"list_all is_Update (unlabel (dual⇩l⇩s⇩s⇩t (transaction_updates T ⋅⇩l⇩s⇩s⇩t θ)))"
"list_all is_Receive (unlabel (dual⇩l⇩s⇩s⇩t (transaction_send T ⋅⇩l⇩s⇩s⇩t θ)))"
using subst_sst_list_all(2)[of "unlabel (transaction_receive T)" θ]
subst_sst_list_all(11)[of "unlabel (transaction_checks T)" θ]
subst_sst_list_all(10)[of "unlabel (transaction_updates T)" θ]
subst_sst_list_all(1)[of "unlabel (transaction_send T)" θ]
dual⇩l⇩s⇩s⇩t_list_all(1)[of "transaction_receive T ⋅⇩l⇩s⇩s⇩t θ"]
dual⇩l⇩s⇩s⇩t_list_all(11)[of "transaction_checks T ⋅⇩l⇩s⇩s⇩t θ"]
dual⇩l⇩s⇩s⇩t_list_all(10)[of "transaction_updates T ⋅⇩l⇩s⇩s⇩t θ"]
dual⇩l⇩s⇩s⇩t_list_all(2)[of "transaction_send T ⋅⇩l⇩s⇩s⇩t θ"]
unfolding f_def by (metis unlabel_subst[of _ θ])+
hence "¬list_ex is_Receive (unlabel (dual⇩l⇩s⇩s⇩t (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ)))"
"¬list_ex is_Receive (unlabel (dual⇩l⇩s⇩s⇩t (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ)))"
"¬list_ex is_Receive (unlabel (dual⇩l⇩s⇩s⇩t (transaction_updates T ⋅⇩l⇩s⇩s⇩t θ)))"
"list_all is_Receive (unlabel (dual⇩l⇩s⇩s⇩t (transaction_send T ⋅⇩l⇩s⇩s⇩t θ)))"
unfolding list_ex_iff list_all_iff by blast+
then obtain TA TB where T:
"?T = TA@TB" "¬list_ex is_Receive (unlabel TA)" "list_all is_Receive (unlabel TB)"
"TB = dual⇩l⇩s⇩s⇩t (transaction_send T ⋅⇩l⇩s⇩s⇩t θ)"
using transaction_dual_subst_unfold[of T θ] unfolding θ_def by fastforce
have 0: "prefix B (A@TA@TB)" using step.prems B' T by argo
have 1: "prefix B A" when "prefix B (A@TA)"
using that T(2) B' prefix_prefix_inv
unfolding list_ex_iff unlabel_def by fastforce
have 2: "⋆ ∉ fst ` set TB2" when "TB = TB1@(l,x)#TB2" for TB1 l x TB2
proof -
have "k ≠ ⋆" when "k ∈ set (map fst (tl (transaction_send T)))" for k
using that P(2) step.hyps(2) unfolding list_all_iff by auto
hence "k ≠ ⋆" when "k ∈ set (map fst (tl TB))" for k
using that subst_lsst_map_fst_eq[of "tl (transaction_send T)" θ]
dual⇩l⇩s⇩s⇩t_map_fst_eq[of "tl (transaction_send T ⋅⇩l⇩s⇩s⇩t θ)"]
unfolding T(4) dual⇩l⇩s⇩s⇩t_tl subst_lsst_tl by simp
moreover have "set TB2 ⊆ set (tl TB)"
using that
by (metis (no_types, lifting) append_eq_append_conv2 order.eq_iff list.sel(3) self_append_conv
set_mono_suffix suffix_appendI suffix_tl tl_append2)
ultimately show ?thesis by auto
qed
have 3: "declassified⇩l⇩s⇩s⇩t TB ℐ = declassified⇩l⇩s⇩s⇩t (TB1@[(l,x)]) ℐ"
when "TB = TB1@(l,x)#TB2" for TB1 l x TB2
using decl_ik_star[OF 2[OF that], of "TB1@[(l,x)]"] unfolding that decl_decl_ik by simp
show ?case
proof (cases "prefix B A")
case False
hence 4: "¬prefix B (A@TA)" using 1 by blast
have 5: "∃l ts. suffix [(l, receive⟨ts⟩)] (A@?T)"
proof -
have "(lb, receive⟨tsb⟩) ∈ set TB"
using 0 4 prefix_prefix_inv[OF _ suffixI[OF B'], of "A@TA" TB] by (metis append_assoc)
hence "receive⟨tsb⟩ ∈ set (unlabel TB)"
unfolding unlabel_def by force
hence "∃ts. suffix [receive⟨ts⟩] (unlabel TB)"
using T(3) unfolding list_all_iff is_Receive_def suffix_def
by (metis in_set_conv_decomp list.distinct(1) list.set_cases rev_exhaust)
then obtain TB' ts where "unlabel TB = TB'@[receive⟨ts⟩]" unfolding suffix_def by blast
then obtain TB'' x where "TB = TB''@[x]" "snd x = receive⟨ts⟩"
by (metis (no_types, opaque_lifting) append1_eq_conv list.distinct(1) rev_exhaust
rotate1.simps(2) rotate1_is_Nil_conv unlabel_Cons(2) unlabel_append unlabel_nil)
then obtain l where "suffix [(l, receive⟨ts⟩)] TB"
by (metis surj_pair prod.sel(2) suffix_def)
thus ?thesis
using T(4) transaction_dual_subst_unfold[of T θ]
suffix_append[of "[(l, receive⟨ts⟩)]"]
unfolding θ_def by metis
qed
obtain TB1 where TB:
"B = A@TA@TB1@[(lb, receive⟨tsb⟩)]" "prefix (TB1@[(lb, receive⟨tsb⟩)]) TB"
using 0 4 B' prefix_snoc_obtain[of B' "(lb, receive⟨tsb⟩)" "A@TA" TB thesis]
by (metis append_assoc)
then obtain TB2 where TB2: "TB = TB1@(lb, receive⟨tsb⟩)#TB2"
unfolding prefix_def by fastforce
hence TB2': "list_all is_Receive (unlabel TB2)"
using T(3) unfolding list_all_iff is_Receive_def proj_def unlabel_def by auto
have 6: "constr_sem_stateful ℐ (unlabel B)" "ik⇩l⇩s⇩s⇩t B ⋅⇩s⇩e⇩t ℐ ⊢ s ⋅ ℐ"
using B(2) strand_sem_append_stateful[of "{}" "{}" "unlabel B" "[send⟨[s]⟩]" ℐ]
by auto
have "constr_sem_stateful ℐ (unlabel (A@TA@TB1@[(lb, receive⟨tsb⟩)]))"
using 6(1) TB(1) by blast
hence "constr_sem_stateful ℐ (unlabel (A@?T))"
using T(1) TB2 strand_sem_receive_prepend_stateful[
of "{}" "{}" "unlabel (A@TA@TB1@[(lb, receive⟨tsb⟩)])" ℐ,
OF _ TB2']
by auto
moreover have "set (unlabel B) ⊆ set (unlabel (A@?T))"
using step.prems(1) unfolding prefix_def by force
hence "ik⇩l⇩s⇩s⇩t (A@?T) ⋅⇩s⇩e⇩t ℐ ⊢ s ⋅ ℐ"
using ideduct_mono[OF 6(2)] subst_all_mono[of _ _ ℐ]
ik⇩s⇩s⇩t_set_subset[of "unlabel B" "unlabel (A@?T)"]
by meson
ultimately have 7: "constr_sem_stateful ℐ (unlabel (A@?T)@[send⟨[s]⟩])"
using strand_sem_append_stateful[of "{}" "{}" "unlabel (A@?T)" "[send⟨[s]⟩]" ℐ]
by auto
have "declassified⇩l⇩s⇩s⇩t B ℐ = declassified⇩l⇩s⇩s⇩t (A@?T) ℐ"
proof -
have "declassified⇩l⇩s⇩s⇩t TB ℐ = declassified⇩l⇩s⇩s⇩t (TB1@[(lb, receive⟨tsb⟩)]) ℐ"
using 3[of _ lb "receive⟨tsb⟩"] TB(2) unfolding prefix_def by auto
hence "(decl_ik TB ⊢ t) ⟷ decl_ik (TB1@[(lb,receive⟨tsb⟩)]) ⊢ t" for t
unfolding TB(1) T(1) decl_decl_ik by blast
hence "(decl_ik (A@TA@TB) ⊢ t) ⟷ decl_ik (A@TA@TB1@[(lb,receive⟨tsb⟩)]) ⊢ t" for t
using ideduct_mono_eq[of "decl_ik TB" "decl_ik (TB1@[(lb,receive⟨tsb⟩)])" "decl_ik (A@TA)"]
by (metis decl_ik_append[of "A@TA"] Un_commute[of _ "decl_ik (A@TA)"] append_assoc)
thus ?thesis unfolding TB(1) T(1) decl_decl_ik by blast
qed
thus ?thesis using step.prems AT_reach B(1) 5 7 by force
qed (use step.IH prefix_append in blast)
qed (use B(1) suffix_def in simp)
lemma reachable_constraints_secure_if_filter_secure_case:
fixes f l n
and P::"('fun,'atom,'sets,'lbl) prot_transaction list"
defines "has_attack ≡ λP.
∃𝒜 ∈ reachable_constraints P. ∃ℐ. constraint_model ℐ (𝒜@[(l, send⟨[attack⟨n⟩]⟩)])"
and "f ≡ λT. list_ex (λa. is_Update (snd a) ∨ is_Send (snd a)) (transaction_strand T)"
and "g ≡ λT. transaction_fresh T = [] ⟶ f T"
assumes att: "has_attack P"
shows "has_attack (filter g P)"
proof -
let ?attack = "λA I. constraint_model I (A@[(l, send⟨[attack⟨n⟩]⟩)])"
define constr' where "constr' ≡
λ(T::('fun,'atom,'sets,'lbl) prot_transaction,ξ::('fun,'atom,'sets,'lbl) prot_subst,
σ::('fun,'atom,'sets,'lbl) prot_subst,α::('fun,'atom,'sets,'lbl) prot_subst).
dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
define constr where "constr ≡ λTs. concat (map constr' Ts)"
define h where "h ≡
λ(T::('fun,'atom,'sets,'lbl) prot_transaction,_::('fun,'atom,'sets,'lbl) prot_subst,
_::('fun,'atom,'sets,'lbl) prot_subst,_::('fun,'atom,'sets,'lbl) prot_subst).
g T"
obtain A I where A: "A ∈ reachable_constraints P" "?attack A I"
using att unfolding has_attack_def by blast
obtain Ts where Ts:
"A = constr Ts"
"∀B. prefix B Ts ⟶ constr B ∈ reachable_constraints P"
"∀B T ξ σ α. prefix (B@[(T,ξ,σ,α)]) Ts ⟶
T ∈ set P ∧ transaction_decl_subst ξ T ∧
transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (constr B)) ∧
transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (constr B))"
using reachable_constraints_as_transaction_lists[OF A(1)] constr_def constr'_def by auto
define B where "B ≡ constr (filter h Ts)"
have Ts': "T ∈ set P" when "(T,ξ,σ,α) ∈ set Ts" for T ξ σ α
using that Ts(3) by (meson prefix_snoc_in_iff)
have constr_Cons: "constr (p#Ts) = constr' p@constr Ts" for p Ts unfolding constr_def by simp
have constr_snoc: "constr (Ts@[p]) = constr Ts@constr' p" for p Ts unfolding constr_def by simp
have 0: "?attack B I" when A_att: "?attack A I"
proof -
have not_f_T_case: "ik⇩l⇩s⇩s⇩t (constr' p) = {}" "⋀D. dbupd⇩s⇩s⇩t (unlabel (constr' p)) I D = D"
when not_f_T: "¬(f T)" and p: "p = (T,ξ,σ,α)" for p T ξ σ α
proof -
have constr_p: "constr' p = dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
unfolding p constr'_def by fast
have "¬is_Receive a" when a: "(l,a) ∈ set (constr' p)" for l a
proof
assume "is_Receive a"
then obtain ts where ts: "a = receive⟨ts⟩" by (cases a) auto
then obtain ts' where ts':
"(l,send⟨ts'⟩) ∈ set (transaction_strand T)" "ts = ts' ⋅⇩l⇩i⇩s⇩t ξ ∘⇩s σ ∘⇩s α"
using a dual⇩l⇩s⇩s⇩t_steps_iff(1)[of l ts] subst_lsst_memD(2)[of l _ "transaction_strand T"]
unfolding constr_p by blast
thus False using not_f_T unfolding f_def list_ex_iff by fastforce
qed
thus "ik⇩l⇩s⇩s⇩t (constr' p) = {}" using in_ik⇩l⇩s⇩s⇩t_iff by fastforce
have "¬is_Update a" when a: "(l,a) ∈ set (constr' p)" for l a
proof
assume "is_Update a"
then obtain t s where ts: "a = insert⟨t,s⟩ ∨ a = delete⟨t,s⟩" by (cases a) auto
then obtain t' s' where ts':
"(l,insert⟨t',s'⟩) ∈ set (transaction_strand T) ∨
(l,delete⟨t',s'⟩) ∈ set (transaction_strand T)"
"t = t' ⋅ ξ ∘⇩s σ ∘⇩s α" "s = s' ⋅ ξ ∘⇩s σ ∘⇩s α"
using a dual⇩l⇩s⇩s⇩t_steps_iff(4,5)[of l]
subst_lsst_memD(4,5)[of l _ _ "transaction_strand T"]
unfolding constr_p by blast
thus False using not_f_T unfolding f_def list_ex_iff by fastforce
qed
thus "⋀D. dbupd⇩s⇩s⇩t (unlabel (constr' p)) I D = D"
using dbupd⇩s⇩s⇩t_no_upd[of "unlabel (constr' p)" I] by (meson unlabel_mem_has_label)
qed
have *: "strand_sem_stateful M D (unlabel B) I"
when "strand_sem_stateful M D (unlabel A) I" for M D
using that Ts' unfolding Ts(1) B_def
proof (induction Ts arbitrary: M D)
case (Cons p Ts)
obtain T ξ σ α where p: "p = (T,ξ,σ,α)" by (cases p) simp
have T_in: "T ∈ set P" using Cons.prems(2) unfolding p by fastforce
let ?M' = "M ∪ (ik⇩l⇩s⇩s⇩t (constr' p) ⋅⇩s⇩e⇩t I)"
let ?D' = "dbupd⇩s⇩s⇩t (unlabel (constr' p)) I D"
have p_sem: "strand_sem_stateful M D (unlabel (constr' p)) I"
and IH: "strand_sem_stateful ?M' ?D' (unlabel (constr (filter h Ts))) I"
using Cons.IH[of ?M' ?D'] Cons.prems
strand_sem_append_stateful[of M D "unlabel (constr' p)" "unlabel (constr Ts)" I]
unfolding constr_Cons unlabel_append by fastforce+
show ?case
proof (cases "T ∈ set (filter g P)")
case True
hence h_p: "filter h (p#Ts) = p#filter h Ts" unfolding h_def p by simp
show ?thesis
using p_sem IH strand_sem_append_stateful[of M D "unlabel (constr' p)" _ I]
unfolding h_p constr_Cons unlabel_append by blast
next
case False
hence not_f: "¬(f T)"
and not_h: "¬(h p)"
using T_in unfolding g_def h_def p by auto
show ?thesis
using not_h not_f_T_case[OF not_f p] IH
unfolding constr_Cons unlabel_append by auto
qed
qed simp
have **: "ik⇩l⇩s⇩s⇩t B = ik⇩l⇩s⇩s⇩t A"
proof
show "ik⇩l⇩s⇩s⇩t B ⊆ ik⇩l⇩s⇩s⇩t A"
unfolding Ts(1) B_def constr_def by (induct Ts) (auto simp add: ik⇩s⇩s⇩t_def)
show "ik⇩l⇩s⇩s⇩t A ⊆ ik⇩l⇩s⇩s⇩t B" using Ts' unfolding Ts(1) B_def
proof (induction Ts)
case (Cons p Ts)
obtain T ξ σ α where p: "p = (T,ξ,σ,α)" by (cases p) simp
have T_in: "T ∈ set P" using Cons.prems unfolding p by fastforce
have IH: "ik⇩l⇩s⇩s⇩t (constr Ts) ⊆ ik⇩l⇩s⇩s⇩t (constr (filter h Ts))"
using Cons.IH Cons.prems by auto
show ?case
proof (cases "T ∈ set (filter g P)")
case True
hence h_p: "filter h (p#Ts) = p#filter h Ts" unfolding h_def p by simp
show ?thesis
using IH unfolding h_p constr_Cons unlabel_append ik⇩s⇩s⇩t_append by blast
next
case False
hence not_f: "¬(f T)"
and not_h: "¬(h p)"
using T_in unfolding g_def h_def p by auto
show ?thesis
using not_h not_f_T_case[OF not_f p] IH
unfolding constr_Cons unlabel_append by auto
qed
qed simp
qed
show ?thesis
using A_att *[of "{}" "{}"] ** strand_sem_stateful_if_sends_deduct
strand_sem_append_stateful[of "{}" "{}" _ "unlabel [(l, send⟨[attack⟨n⟩]⟩)]" I]
unfolding constraint_model_def unlabel_append by force
qed
have 1: "B ∈ reachable_constraints (filter g P)"
using A(1) Ts(2,3) unfolding Ts(1) B_def
proof (induction Ts rule: List.rev_induct)
case (snoc p Ts)
obtain T ξ σ α where p: "p = (T,ξ,σ,α)" by (cases p) simp
have constr_p: "constr' p = dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
unfolding constr'_def p by fastforce
have T_in: "T ∈ set P"
and ξ: "transaction_decl_subst ξ T"
and σ: "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (constr Ts))"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (constr Ts))"
using snoc.prems(3) unfolding p by fast+
have "transaction_fresh_subst s t bb"
when "transaction_fresh_subst s t aa" "bb ⊆ aa"
for s t bb aa using that unfolding transaction_fresh_subst_def by fast
have "trms⇩l⇩s⇩s⇩t (constr (filter h Ts)) ⊆ trms⇩l⇩s⇩s⇩t (constr Ts)"
unfolding constr_def unlabel_def by fastforce
hence σ': "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (constr (filter h Ts)))"
using σ unfolding transaction_fresh_subst_def by fast
have "vars⇩l⇩s⇩s⇩t (constr (filter h Ts)) ⊆ vars⇩l⇩s⇩s⇩t (constr Ts)"
unfolding constr_def unlabel_def vars⇩s⇩s⇩t_def by auto
hence α': "transaction_renaming_subst α (filter g P) (vars⇩l⇩s⇩s⇩t (constr (filter h Ts)))"
using α unfolding transaction_renaming_subst_def by auto
have IH: "constr (filter h Ts) ∈ reachable_constraints (filter g P)"
using snoc.prems snoc.IH by simp
show ?case
proof (cases "h p")
case True
hence h_p: "filter h (Ts@[p]) = filter h Ts@[p]" by fastforce
have T_in': "T ∈ set (filter g P)" using T_in True unfolding h_def p by fastforce
show ?thesis
using IH reachable_constraints.step[OF IH T_in' ξ σ' α']
unfolding h_p constr_snoc constr_p by fast
next
case False thus ?thesis using IH by fastforce
qed
qed (simp add: constr_def)
show ?thesis using 0 1 A(2) unfolding has_attack_def by blast
qed
lemma reachable_constraints_fv_Value_typed:
assumes P: "∀T ∈ set P. admissible_transaction' T"
and A: "𝒜 ∈ reachable_constraints P"
and x: "x ∈ fv⇩l⇩s⇩s⇩t 𝒜"
shows "Γ⇩v x = TAtom Value"
proof -
obtain T where T: "T ∈ set P" "Γ⇩v x ∈ Γ⇩v ` fv_transaction T"
using x P(1) reachable_constraints_var_types_in_transactions(1)[OF A(1)]
admissible_transactionE(2)
by blast
show ?thesis
using T(2) admissible_transactionE(3)[OF bspec[OF P(1) T(1)]]
vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t[of "unlabel (transaction_strand T)"]
by force
qed
lemma reachable_constraints_fv_Value_const_cases:
assumes P: "∀T ∈ set P. admissible_transaction' T"
and A: "𝒜 ∈ reachable_constraints P"
and I: "welltyped_constraint_model ℐ 𝒜"
and x: "x ∈ fv⇩l⇩s⇩s⇩t 𝒜"
shows "(∃n. ℐ x = Fun (Val n) []) ∨ (∃n. ℐ x = Fun (PubConst Value n) [])"
proof -
have x': "Γ (ℐ x) = TAtom Value" "fv (ℐ x) = {}" "wf⇩t⇩r⇩m (ℐ x)"
using reachable_constraints_fv_Value_typed[OF P A x] I wt_subst_trm''[of ℐ "Var x"]
unfolding welltyped_constraint_model_def constraint_model_def by auto
obtain f where f: "arity f = 0" "ℐ x = Fun f []"
using TAtom_term_cases[OF x'(3,1)] x' const_type_inv_wf[of _ _ Value] by (cases "ℐ x") force+
show ?thesis
proof (cases f)
case (Fu g) thus ?thesis by (metis f(2) x'(1) Γ_Fu_simps(4)[of g "[]"])
qed (use f x'(1) in auto)
qed
lemma reachable_constraints_receive_attack_if_attack'':
assumes P: "∀T ∈ set P. admissible_transaction' T"
and A: "𝒜 ∈ reachable_constraints P"
and wt_attack: "welltyped_constraint_model ℐ (𝒜@[(l, send⟨[attack⟨n⟩]⟩)])"
shows "receive⟨[attack⟨n⟩]⟩ ∈ set (unlabel 𝒜)"
proof -
have I: "welltyped_constraint_model ℐ 𝒜"
using welltyped_constraint_model_prefix wt_attack by blast
show ?thesis
using wt_attack strand_sem_append_stateful[of "{}" "{}" "unlabel 𝒜" "[send⟨[attack⟨n⟩]⟩]" ℐ]
reachable_constraints_receive_attack_if_attack'(2)[OF A(1) P I]
unfolding welltyped_constraint_model_def constraint_model_def by simp
qed
context
begin
private lemma reachable_constraints_initial_value_transaction_aux:
fixes P::"('fun,'atom,'sets,'lbl) prot" and N::"nat set"
assumes P: "∀T ∈ set P. admissible_transaction' T"
and A: "A ∈ reachable_constraints P"
and P':
"∀T ∈ set P. ∀(l,a) ∈ set (transaction_strand T). ∀t.
a ≠ select⟨t,⟨k⟩⇩s⟩ ∧ a ≠ ⟨t in ⟨k⟩⇩s⟩ ∧ a ≠ ⟨t not in ⟨k⟩⇩s⟩ ∧ a ≠ delete⟨t,⟨k⟩⇩s⟩"
shows "(l,⟨ac: t ∈ s⟩) ∈ set A ⟹ (∃u. s = ⟨u⟩⇩s ∧ u ≠ k)" (is "?A A ⟹ ?Q A")
and "(l,⟨t not in s⟩) ∈ set A ⟹ (∃u. s = ⟨u⟩⇩s ∧ u ≠ k)" (is "?B A ⟹ ?Q A")
and "(l,delete⟨t,s⟩) ∈ set A ⟹ (∃u. s = ⟨u⟩⇩s ∧ u ≠ k)" (is "?C A ⟹ ?Q A")
proof -
have "(?A A ⟶ ?Q A) ∧ (?B A ⟶ ?Q A) ∧ (?C A ⟶ ?Q A)" (is "?D A") using A
proof (induction A rule: reachable_constraints.induct)
case (step 𝒜 T ξ σ α)
define θ where "θ ≡ ξ ∘⇩s σ ∘⇩s α"
let ?T' = "dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)"
note T_adm = bspec[OF P step.hyps(2)]
note T_wf = admissible_transaction_is_wellformed_transaction[OF T_adm]
note T_P' = bspec[OF P' step.hyps(2)]
have 0: "?Q ?T'" when A: "?A ?T'"
proof -
obtain t' s' where t:
"(l, ⟨ac: t' ∈ s'⟩) ∈ set (transaction_strand T)" "t = t' ⋅ θ" "s = s' ⋅ θ"
using A dual⇩l⇩s⇩s⇩t_steps_iff(6) subst_lsst_memD(6) by blast
obtain u where u: "s' = ⟨u⟩⇩s"
using transaction_selects_are_Value_vars[OF T_wf(1,2), of t' s']
transaction_inset_checks_are_Value_vars[OF T_adm, of t' s']
unlabel_in[OF t(1)]
by (cases ac) auto
show ?thesis using T_P' t(1,3) unfolding u by (cases ac) auto
qed
have 1: "?Q ?T'" when B: "?B ?T'"
proof -
obtain t' s' where t:
"(l, ⟨t' not in s'⟩) ∈ set (transaction_strand T)" "t = t' ⋅ θ" "s = s' ⋅ θ"
using B dual⇩l⇩s⇩s⇩t_steps_iff(7) subst_lsst_memD(9) by blast
obtain u where u: "s' = ⟨u⟩⇩s"
using transaction_notinset_checks_are_Value_vars(2)[OF T_adm unlabel_in[OF t(1)]]
by fastforce
show ?thesis using T_P' t(1,3) unfolding u by auto
qed
have 2: "?Q ?T'" when C: "?C ?T'"
proof -
obtain t' s' where t:
"(l, delete⟨t', s'⟩) ∈ set (transaction_strand T)" "t = t' ⋅ θ" "s = s' ⋅ θ"
using C dual⇩l⇩s⇩s⇩t_steps_iff(5) subst_lsst_memD(5) by blast
obtain u where u: "s' = ⟨u⟩⇩s"
using transaction_deletes_are_Value_vars(2)[OF T_wf(1,3) unlabel_in[OF t(1)]] by blast
show ?thesis using T_P' t(1,3) unfolding u by auto
qed
show ?case using 0 1 2 step.IH unfolding θ_def by auto
qed simp
thus "?A A ⟹ ?Q A" "?B A ⟹ ?Q A" "?C A ⟹ ?Q A" by fast+
qed
lemma reachable_constraints_initial_value_transaction:
fixes P::"('fun,'atom,'sets,'lbl) prot" and N::"nat set" and k A T_upds
defines "checks_not_k ≡ λB.
T_upds ≠ [] ⟶ (
(∀l t s. (l,⟨t in s⟩) ∈ set (A@B) ⟶ (∃u. s = ⟨u⟩⇩s ∧ u ≠ k)) ∧
(∀l t s. (l,⟨t not in s⟩) ∈ set (A@B) ⟶ (∃u. s = ⟨u⟩⇩s ∧ u ≠ k)) ∧
(∀l t s. (l,delete⟨t,s⟩) ∈ set (A@B) ⟶ (∃u. s = ⟨u⟩⇩s ∧ u ≠ k)))"
assumes P: "∀T ∈ set P. admissible_transaction' T"
and A: "A ∈ reachable_constraints P"
and N: "finite N" "∀n ∈ N. ¬(Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t A)"
and T:
"T ∈ set P" "Var x ∈ set T_ts" "Γ⇩v x = TAtom Value" "fv⇩s⇩e⇩t (set T_ts) = {x}"
"∀n. ¬(Fun (Val n) [] ⊑⇩s⇩e⇩t set T_ts)"
"T = Transaction (λ(). []) [x] [] [] T_upds [(l1,send⟨T_ts⟩)]"
"T_upds = [] ∨
(T_upds = [(l2,insert⟨Var x, ⟨k⟩⇩s⟩)] ∧
(∀T ∈ set P. ∀(l,a) ∈ set (transaction_strand T). ∀t.
a ≠ select⟨t,⟨k⟩⇩s⟩ ∧ a ≠ ⟨t in ⟨k⟩⇩s⟩ ∧ a ≠ ⟨t not in ⟨k⟩⇩s⟩ ∧ a ≠ delete⟨t,⟨k⟩⇩s⟩))"
shows "∃B. A@B ∈ reachable_constraints P ∧ B ∈ reachable_constraints P ∧ vars⇩l⇩s⇩s⇩t B = {} ∧
(T_upds = [] ⟶ list_all is_Receive (unlabel B)) ∧
(T_upds ≠ [] ⟶ list_all (λa. is_Insert a ∨ is_Receive a) (unlabel B)) ∧
(∀n. Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t A ⟶ Fun (Val n) [] ∉ ik⇩l⇩s⇩s⇩t B) ∧
(∀n. Fun (Val n) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t B ⟶ Fun (Val n) [] ∈ ik⇩l⇩s⇩s⇩t B) ∧
N = {n. Fun (Val n) [] ∈ ik⇩l⇩s⇩s⇩t B} ∧
checks_not_k B ∧
(∀l a. (l,a) ∈ set B ∧ is_Insert a ⟶
(l = l2 ∧ (∃n. a = insert⟨Fun (Val n) [],⟨k⟩⇩s⟩)))"
(is "∃B. A@B ∈ ?reach P ∧ B ∈ ?reach P ∧ ?Q1 B ∧ ?Q2 B ∧ ?Q3 B ∧ ?Q4 B ∧ ?Q5 B ∧ ?Q6 N B ∧
checks_not_k B ∧ ?Q7 B")
using N
proof (induction N rule: finite_induct)
case empty
define B where "B ≡ []::('fun,'atom,'sets,'lbl) prot_constr"
have 0: "A@B ∈ ?reach P" "B ∈ ?reach P"
using A unfolding B_def by auto
have 1: "?Q1 B" "?Q2 B" "?Q3 B" "?Q4 B" "?Q6 {} B"
unfolding B_def by auto
have 2: "checks_not_k B"
using reachable_constraints_initial_value_transaction_aux[OF P 0(1)] T(7)
unfolding checks_not_k_def by presburger
have 3: "?Q5 B" "?Q7 B"
unfolding B_def by simp_all
show ?case using 0 1 2 3 by blast
next
case (insert n N)
obtain B where B:
"A@B ∈ reachable_constraints P" "B ∈ reachable_constraints P"
"?Q1 B" "?Q2 B" "?Q3 B" "?Q4 B" "?Q5 B" "?Q6 N B" "checks_not_k B" "?Q7 B"
using insert.IH insert.prems by blast
define ξ where "ξ ≡ Var::('fun,'atom,'sets,'lbl) prot_subst"
define σ where "σ ≡ Var(x := Fun (Val n) [])::('fun,'atom,'sets,'lbl) prot_subst"
have σ: "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (A@B))"
proof (unfold transaction_fresh_subst_def; intro conjI)
have "subst_range σ = {Fun (Val n) []}" unfolding σ_def by simp
moreover have "Fun (Val n) [] ∉ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (A@B))"
using insert.prems insert.hyps(2) B(7,8) ik⇩s⇩s⇩t_trms⇩s⇩s⇩t_subset[of "unlabel B"]
unfolding unlabel_append trms⇩s⇩s⇩t_append by blast
ultimately show "∀t ∈ subst_range σ. t ∉ subterms⇩s⇩e⇩t (trms⇩l⇩s⇩s⇩t (A@B))" by fastforce
next
show "subst_domain σ = set (transaction_fresh T)" using T(6) unfolding σ_def by auto
next
show "∀t ∈ subst_range σ. t ∉ subterms⇩s⇩e⇩t (trms_transaction T)"
using T(5,7) unfolding σ_def T(6) by fastforce
qed (force simp add: T(3) σ_def wt⇩s⇩u⇩b⇩s⇩t_def)+
hence σ': "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t B)"
unfolding transaction_fresh_subst_def by fastforce
have ξ: "transaction_decl_subst ξ T"
using T(6) unfolding ξ_def transaction_decl_subst_def by fastforce
obtain α::"('fun,'atom,'sets,'lbl) prot_subst" where α:
"transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (A@B))"
unfolding transaction_renaming_subst_def by blast
hence α': "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t B)"
unfolding transaction_renaming_subst_def by auto
define θ where "θ ≡ ξ ∘⇩s σ ∘⇩s α"
define C where "C ≡ dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t θ)"
have θx: "θ x = Fun (Val n) []" unfolding θ_def ξ_def σ_def subst_compose by force
have "dual⇩l⇩s⇩s⇩t (transaction_receive T ⋅⇩l⇩s⇩s⇩t θ) = []" "dual⇩l⇩s⇩s⇩t (transaction_checks T ⋅⇩l⇩s⇩s⇩t θ) = []"
using T(6) unfolding θ_def ξ_def σ_def by auto
moreover have
"(T_upds = [] ∧ dual⇩l⇩s⇩s⇩t (transaction_updates T ⋅⇩l⇩s⇩s⇩t θ) = []) ∨
(T_upds ≠ [] ∧ dual⇩l⇩s⇩s⇩t (transaction_updates T ⋅⇩l⇩s⇩s⇩t θ) = [(l2,insert⟨θ x, ⟨k⟩⇩s⟩)])"
using subst_lsst_cons[of "(l2,insert⟨Var x,⟨k⟩⇩s⟩)" "[]" θ] T(6,7) unfolding dual⇩l⇩s⇩s⇩t_subst by auto
hence "(T_upds = [] ∧ dual⇩l⇩s⇩s⇩t (transaction_updates T ⋅⇩l⇩s⇩s⇩t θ) = []) ∨
(T_upds ≠ [] ∧ dual⇩l⇩s⇩s⇩t (transaction_updates T ⋅⇩l⇩s⇩s⇩t θ) = [(l2,insert⟨Fun (Val n) [],⟨k⟩⇩s⟩)])"
unfolding θ_def ξ_def σ_def by (auto simp: subst_compose)
moreover have "dual⇩l⇩s⇩s⇩t (transaction_send T ⋅⇩l⇩s⇩s⇩t θ) = [(l1, receive⟨T_ts ⋅⇩l⇩i⇩s⇩t θ⟩)]"
using subst_lsst_cons[of "(l1, receive⟨T_ts⟩)" "[]" θ] T(6) unfolding dual⇩l⇩s⇩s⇩t_subst by auto
hence "dual⇩l⇩s⇩s⇩t (transaction_send T ⋅⇩l⇩s⇩s⇩t θ) = [(l1, receive⟨T_ts ⋅⇩l⇩i⇩s⇩t θ⟩)]"
by auto
ultimately have C:
"(T_upds = [] ∧ C = [(l1, receive⟨T_ts ⋅⇩l⇩i⇩s⇩t θ⟩)]) ∨
(T_upds ≠ [] ∧ C = [(l2, insert⟨Fun (Val n) [],⟨k⟩⇩s⟩), (l1, receive⟨T_ts ⋅⇩l⇩i⇩s⇩t θ⟩)])"
unfolding C_def transaction_dual_subst_unfold by force
have C': "Fun (Val n) [] ∈ set (T_ts ⋅⇩l⇩i⇩s⇩t θ)" "Fun (Val n) [] ∈ ik⇩l⇩s⇩s⇩t C"
using T(2) in_ik⇩s⇩s⇩t_iff[of _ "unlabel C"] C
unfolding θ_def ξ_def σ_def by (force, force)
have "fv (t ⋅ θ) = {}" when t: "t ⊑⇩s⇩e⇩t set T_ts" for t
proof -
have "fv t ⊆ {x}" using t T(4) fv_subset_subterms by blast
hence "fv (t ⋅ ξ ∘⇩s σ) = {}" unfolding ξ_def σ_def by (induct t) auto
thus ?thesis unfolding θ_def by (metis subst_ground_ident_compose(2))
qed
hence 1: "ground (set (T_ts ⋅⇩l⇩i⇩s⇩t θ))" by auto
have 2: "m = n" when m: "Fun (Val m) [] ⊑⇩s⇩e⇩t ik⇩l⇩s⇩s⇩t C" for m
proof -
have "Fun (Val m) [] ⊑⇩s⇩e⇩t set (T_ts ⋅⇩l⇩i⇩s⇩t θ)"
using m C in_ik⇩s⇩s⇩t_iff[of _ "unlabel C"] by fastforce
hence *: "Fun (Val m) [] ⊑⇩s⇩e⇩t set T_ts ⋅⇩s⇩e⇩t θ" by simp
show ?thesis using const_subterms_subst_cases[OF *] T(4,5) θx by fastforce
qed
have C_trms: "trms⇩l⇩s⇩s⇩t C ⊆ {Fun (Val n) [],⟨k⟩⇩s} ∪ ik⇩l⇩s⇩s⇩t C"
using C in_ik⇩s⇩s⇩t_iff[of _ "unlabel C"] by fastforce
have 3: "m = n" when m: "Fun (Val m) [] ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t C" for m
using m 2[of m] C_trms by fastforce
have Q1: "?Q1 (B@C)" using B(3) C 1 by auto
have Q2: "?Q2 (B@C)" using B(4) C by force
have Q3: "?Q3 (B@C)" using B(5) C by force
have Q4: "?Q4 (B@C)" using B(6) insert.prems C 2 unfolding unlabel_append ik⇩s⇩s⇩t_append by blast
have Q5: "?Q5 (B@C)" using B(7) C' 3 unfolding unlabel_append ik⇩s⇩s⇩t_append trms⇩s⇩s⇩t_append by blast
have Q6: "?Q6 (insert n N) (B@C)" using B(8) C' 2 unfolding unlabel_append ik⇩s⇩s⇩t_append by blast
have Q7: "?Q7 (B@C)" using B(10) C by fastforce
have Q8: "checks_not_k (B@C)" using B(9) C unfolding checks_not_k_def by force
have "B@C ∈ reachable_constraints P" "A@B@C ∈ reachable_constraints P"
using reachable_constraints.step[OF B(1) T(1) ξ σ α]
reachable_constraints.step[OF B(2) T(1) ξ σ' α']
unfolding θ_def[symmetric] C_def[symmetric] by simp_all
thus ?case using Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 by blast
qed
end
subsection ‹Equivalence Between the Symbolic Protocol Model and a Ground Protocol Model›
context
begin
subsubsection ‹Intermediate Step: Equivalence to a Ground Protocol Model with Renaming›
private definition "consts_of X = {t. t ⊑⇩s⇩e⇩t X ∧ (∃c. t = Fun c [])}"
private fun mk_symb where
"mk_symb (ξ, σ, I, T, α) = dual⇩l⇩s⇩s⇩t((transaction_strand T) ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
private fun T_symb :: " _ ⇒ ('fun,'atom,'sets,'lbl) prot_constr" where
"T_symb w = concat (map mk_symb w)"
private definition "narrow σ S = (λx. if x ∈ S then σ x else Var x)"
private fun mk_invαI where
"mk_invαI n (ξ, σ, I, T) =
narrow ((var_rename_inv n) ∘⇩s I) (fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s var_rename n))"
private fun invαI where
"invαI ns w = foldl (∘⇩s) Var (map2 mk_invαI ns w)"
private fun mk_I where
"mk_I (ξ, σ, I, T, α) = narrow I (fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
private fun comb_I where
"comb_I w = fold (∘⇩s) (map mk_I w) (λx. Fun OccursSec [])"
private abbreviation "ground_term t ≡ ground {t}"
private lemma ground_term_def2: "ground_term t ⟷ (fv t = {})"
by auto
private definition "ground_strand s ≡ fv⇩l⇩s⇩s⇩t s = {}"
private fun ground_step :: "(_, _) stateful_strand_step ⇒ bool" where
"ground_step s ⟷ fv⇩s⇩s⇩t⇩p s = {}"
private fun ground_lstep :: "_ strand_label × (_, _) stateful_strand_step ⇒ bool" where
"ground_lstep (l,s) ⟷ fv⇩s⇩s⇩t⇩p s = {}"
private inductive_set ground_protocol_states_aux::
"('fun,'atom,'sets,'lbl) prot ⇒
(('fun,'atom,'sets,'lbl) prot_terms ×
(('fun,'atom,'sets,'lbl) prot_term × ('fun,'atom,'sets,'lbl) prot_term) set
× _ set × _ set × _ list) set"
for P::"('fun,'atom,'sets,'lbl) prot"
where
init:
"({},{},{},{},[]) ∈ ground_protocol_states_aux P"
| step:
"⟦(IK,DB,trms,vars,w) ∈ ground_protocol_states_aux P;
T ∈ set P;
transaction_decl_subst ξ T;
transaction_fresh_subst σ T trms;
transaction_renaming_subst α P vars;
A = dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α);
strand_sem_stateful IK DB (unlabel A) I;
interpretation⇩s⇩u⇩b⇩s⇩t I;
wf⇩t⇩r⇩m⇩s (subst_range I)
⟧ ⟹ (IK ∪ ((ik⇩l⇩s⇩s⇩t A) ⋅⇩s⇩e⇩t I), dbupd⇩s⇩s⇩t (unlabel A) I DB,
trms ∪ trms⇩l⇩s⇩s⇩t A, vars ∪ vars⇩l⇩s⇩s⇩t A,
w@[(ξ, σ, I, T, α)]) ∈ ground_protocol_states_aux P"
private lemma T_symb_append':
" T_symb (w@w') = T_symb w @ T_symb w'"
proof (induction w arbitrary: w')
case Nil
then show ?case
by auto
next
case (Cons a w)
then show ?case
by auto
qed
private lemma T_symb_append:
"T_symb (w@[(ξ, σ, I, T, α)]) = T_symb w @ dual⇩l⇩s⇩s⇩t((transaction_strand T) ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using T_symb_append'[of w "[(ξ, σ, I, T,α)]"] by auto
private lemma ground_step_subst:
assumes "ground_step a"
shows "a = a ⋅⇩s⇩s⇩t⇩p σ"
using assms
proof (induction a)
case (NegChecks Y F F')
then have FY: "fv⇩p⇩a⇩i⇩r⇩s F - set Y = {}"
unfolding ground_step.simps
unfolding fv⇩s⇩s⇩t⇩p.simps by auto
{
have "∀t s. (t,s) ∈ set F ⟶ t ⋅ (rm_vars (set Y) σ) = t"
proof (rule, rule, rule)
fix t s
assume "(t, s) ∈ set F"
then show "t ⋅ rm_vars (set Y) σ = t"
using FY by fastforce
qed
moreover
have "∀t s. (t,s) ∈ set F ⟶ s ⋅ (rm_vars (set Y) σ) = s"
proof (rule, rule, rule)
fix t s
assume "(t, s) ∈ set F"
then show "s ⋅ rm_vars (set Y) σ = s"
using FY by fastforce
qed
ultimately
have "∀f ∈ set F. f ⋅⇩p (rm_vars (set Y) σ) = f"
by auto
then have "F = F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set Y) σ"
by (metis (no_types, lifting) map_idI split_cong subst_apply_pairs_def)
}
moreover
from NegChecks have F'Y: "fv⇩p⇩a⇩i⇩r⇩s F' - set Y = {}"
unfolding ground_step.simps
unfolding fv⇩s⇩s⇩t⇩p.simps by auto
{
have "∀t s. (t,s) ∈ set F' ⟶ t ⋅ (rm_vars (set Y) σ) = t"
proof (rule, rule, rule)
fix t s
assume "(t, s) ∈ set F'"
then show "t ⋅ rm_vars (set Y) σ = t"
using F'Y by fastforce
qed
moreover
have "∀t s. (t,s) ∈ set F' ⟶ s ⋅ (rm_vars (set Y) σ) = s"
proof (rule, rule, rule)
fix t s
assume "(t, s) ∈ set F'"
then show "s ⋅ rm_vars (set Y) σ = s"
using F'Y by fastforce
qed
ultimately
have "∀f ∈ set F'. f ⋅⇩p (rm_vars (set Y) σ) = f"
by auto
then have "F' = F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set Y) σ"
by (simp add: map_idI subst_apply_pairs_def)
}
ultimately
show ?case
by simp
qed (auto simp add: map_idI subst_ground_ident)
private lemma ground_lstep_subst:
assumes "ground_lstep a"
shows "a = a ⋅⇩l⇩s⇩s⇩t⇩p σ"
using assms by (cases a) (auto simp add: ground_step_subst)
private lemma subst_apply_term_rm_vars_swap:
assumes "∀x∈fv t - set X. I x = I' x"
shows "t ⋅ rm_vars (set X) I = t ⋅ rm_vars (set X) I'"
using assms by (induction t) auto
private lemma subst_apply_pairs_rm_vars_swap:
assumes "∀x∈⋃ (fv⇩p⇩a⇩i⇩r ` set ps) - set X. I x = I' x"
shows "ps ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) I = ps ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) I'"
proof -
have "∀p ∈ set ps. p ⋅⇩p rm_vars (set X) I = p ⋅⇩p rm_vars (set X) I'"
proof
fix p
assume "p ∈ set ps"
obtain t s where "p = (t,s)"
by (cases p) auto
have "∀x∈fv t - set X. I x = I' x"
by (metis DiffD1 DiffD2 DiffI ‹p = (t, s)› ‹p ∈ set ps› assms fv⇩p⇩a⇩i⇩r⇩s.elims fv⇩p⇩a⇩i⇩r⇩s_inI(4))
then have "t ⋅ rm_vars (set X) I = t ⋅ rm_vars (set X) I'"
using subst_apply_term_rm_vars_swap by blast
have "∀x∈fv s - set X. I x = I' x"
by (metis DiffD1 DiffD2 DiffI ‹p = (t, s)› ‹p ∈ set ps› assms fv⇩p⇩a⇩i⇩r⇩s.elims fv⇩p⇩a⇩i⇩r⇩s_inI(5))
then have "s ⋅ rm_vars (set X) I = s ⋅ rm_vars (set X) I'"
using subst_apply_term_rm_vars_swap by blast
show "p ⋅⇩p rm_vars (set X) I = p ⋅⇩p rm_vars (set X) I'"
using ‹p = (t, s)› ‹s ⋅ rm_vars (set X) I = s ⋅ rm_vars (set X) I'›
‹t ⋅ rm_vars (set X) I = t ⋅ rm_vars (set X) I'›
by fastforce
qed
then show ?thesis
unfolding subst_apply_pairs_def by auto
qed
private lemma subst_apply_stateful_strand_step_swap:
assumes "∀x∈fv⇩s⇩s⇩t⇩p T. I x = I' x"
shows "T ⋅⇩s⇩s⇩t⇩p I = T ⋅⇩s⇩s⇩t⇩p I'"
using assms
proof (induction T)
case (Send ts)
then show ?case
using term_subst_eq by fastforce
next
case (NegChecks X F G)
then have "∀x ∈ ⋃(fv⇩p⇩a⇩i⇩r ` set F) ∪ ⋃(fv⇩p⇩a⇩i⇩r ` set G) - set X. I x = I' x"
by auto
then show ?case
using subst_apply_pairs_rm_vars_swap[of F]
subst_apply_pairs_rm_vars_swap[of G]
by auto
qed (simp_all add: term_subst_eq_conv)
private lemma subst_apply_labeled_stateful_strand_step_swap:
assumes "∀x ∈ fv⇩s⇩s⇩t⇩p (snd T). I x = I' x"
shows "T ⋅⇩l⇩s⇩s⇩t⇩p I = T ⋅⇩l⇩s⇩s⇩t⇩p I'"
using assms subst_apply_stateful_strand_step_swap
by (metis prod.exhaust_sel subst_apply_labeled_stateful_strand_step.simps)
private lemma subst_apply_labeled_stateful_strand_swap:
assumes "∀x ∈ fv⇩l⇩s⇩s⇩t T. I x = I' x"
shows "T ⋅⇩l⇩s⇩s⇩t I = T ⋅⇩l⇩s⇩s⇩t I'"
using assms
proof (induction T)
case Nil
then show ?case
by auto
next
case (Cons a T)
then show ?case
using subst_apply_labeled_stateful_strand_step_swap
by (metis UnCI fv⇩s⇩s⇩t_Cons subst_lsst_cons unlabel_Cons(2))
qed
private lemma transaction_renaming_subst_not_in_fv⇩l⇩s⇩s⇩t:
fixes ξ σ α::"('fun,'atom,'sets,'lbl) prot_subst"
and A::"('fun,'atom,'sets,'lbl) prot_constr"
assumes "x ∈ fv⇩l⇩s⇩s⇩t A"
assumes "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
shows "x ∉ fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
proof -
have 0: "x ∉ fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s α)"
when x: "x ∈ vars⇩l⇩s⇩s⇩t A"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
for x
and A::"('fun,'atom,'sets,'lbl) prot_constr"
and ξ α::"('fun,'atom,'sets,'lbl) prot_subst"
proof -
have "x ∉ range_vars α"
using x α transaction_renaming_subst_vars_disj(6) by blast
moreover
have "subst_domain α = UNIV"
using α transaction_renaming_subst_is_renaming(4) by blast
ultimately
show ?thesis
using subst_fv_dom_img_subset[of _ α] fv⇩s⇩s⇩t_subst_obtain_var subst_compose unlabel_subst
by (metis (no_types, opaque_lifting) subset_iff top_greatest)
qed
have 1: "x ∉ fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s α)"
when x: "x ∈ fv⇩l⇩s⇩s⇩t A"
and α: "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t A)"
for x
and A::"('fun,'atom,'sets,'lbl) prot_constr"
and ξ α::"('fun,'atom,'sets,'lbl) prot_subst"
using α x 0 by (metis Un_iff vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t)
show ?thesis using 1 assms by metis
qed
private lemma wf_comb_I_Nil: "wf⇩t⇩r⇩m⇩s (subst_range (comb_I []))"
by auto
private lemma comb_I_append:
"comb_I (w @ [(ξ, σ, I, T, α)]) = (mk_I (ξ, σ, I, T, α) ∘⇩s (comb_I w))"
by auto
private lemma reachable_constraints_if_ground_protocol_states_aux:
assumes "(IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P"
shows "T_symb w ∈ reachable_constraints P
∧ constr_sem_stateful (comb_I w) (unlabel (T_symb w))
∧ IK = ik⇩l⇩s⇩s⇩t ((T_symb w) ⋅⇩l⇩s⇩s⇩t (comb_I w))
∧ DB = dbupd⇩s⇩s⇩t (unlabel ((T_symb w))) (comb_I w) {}
∧ trms = trms⇩l⇩s⇩s⇩t (T_symb w)
∧ vars = vars⇩l⇩s⇩s⇩t (T_symb w)
∧ interpretation⇩s⇩u⇩b⇩s⇩t (comb_I w)
∧ wf⇩t⇩r⇩m⇩s (subst_range (comb_I w))"
using assms
proof (induction rule: ground_protocol_states_aux.induct)
case init
show ?case
using wf_comb_I_Nil by auto
next
case (step IK DB trms vars w T ξ σ α A I)
then have step': "T_symb w ∈ reachable_constraints P"
"strand_sem_stateful {} {} (unlabel (T_symb w)) (comb_I w)"
"IK = ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t comb_I w)"
"DB = dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {}"
"trms = trms⇩l⇩s⇩s⇩t (T_symb w)"
"vars = vars⇩l⇩s⇩s⇩t (T_symb w)"
"interpretation⇩s⇩u⇩b⇩s⇩t (comb_I w)"
"wf⇩t⇩r⇩m⇩s (subst_range (comb_I w))"
by auto
define w' where "w' = w @ [(ξ, σ, I, T, α)]"
have interps_w: "∀x ∈ fv⇩l⇩s⇩s⇩t (T_symb w). (comb_I w) x = (comb_I w') x"
proof
fix x
assume "x ∈ fv⇩l⇩s⇩s⇩t (T_symb w)"
then have "x ∉ fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
using step(5) transaction_renaming_subst_not_in_fv⇩l⇩s⇩s⇩t unfolding step'(6) by blast
then have "mk_I (ξ, σ, I, T, α) x = Var x"
unfolding mk_I.simps narrow_def by metis
then have "comb_I w x = (mk_I (ξ, σ, I, T, α) ∘⇩s (comb_I (w))) x"
by (simp add: subst_compose)
then show "comb_I w x = comb_I w' x"
unfolding w'_def by auto
qed
have interps_T: "∀x ∈ fv⇩s⇩s⇩t (unlabel (mk_symb (ξ, σ, I, T, α))). I x = (comb_I w') x"
proof
fix x
assume "x ∈ fv⇩s⇩s⇩t (unlabel (mk_symb (ξ, σ, I, T, α)))"
then have a: "x ∈ (fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
by (metis fv⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq mk_symb.simps)
have "(comb_I w') x = (mk_I (ξ, σ, I, T, α) ∘⇩s (comb_I (w))) x"
unfolding w'_def by auto
also
have "... = ((mk_I (ξ, σ, I, T, α)) x) ⋅ comb_I w"
unfolding subst_compose by auto
also
have "... = (narrow I (fv⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)) x) ⋅ comb_I w"
using a by auto
also
have "... = (I x) ⋅ comb_I w"
by (metis a narrow_def)
also
have "... = I x"
by (metis UNIV_I ground_subst_range_empty_fv step.hyps(8) subst_compose
subst_ground_ident_compose(1))
finally
show "I x = (comb_I w') x"
by auto
qed
have "T_symb w' ∈ reachable_constraints P"
proof -
have "T_symb w ∈ reachable_constraints P"
using step'(1) .
moreover
have "T ∈ set P"
using step(2) by auto
moreover
have "transaction_decl_subst ξ T"
using step(3) by auto
moreover
have "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t (T_symb w))"
using step(4) step'(5) by auto
moreover
have "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t (T_symb w))"
using step(5) step'(6) by auto
ultimately
have "(T_symb w) @ mk_symb (ξ, σ, I, T, α) ∈ reachable_constraints P"
using reachable_constraints.step[of "T_symb w" P T ξ σ α] by auto
then show "T_symb w' ∈ reachable_constraints P"
unfolding w'_def by auto
qed
moreover
have "strand_sem_stateful {} {} (unlabel (T_symb w')) (comb_I w')"
proof -
have "strand_sem_stateful {} {} (unlabel (T_symb w)) (comb_I w')"
proof -
have "strand_sem_stateful {} {} (unlabel (T_symb w)) (comb_I w)"
using step'(2) by auto
then show "strand_sem_stateful {} {} (unlabel (T_symb w)) (comb_I w')"
using interps_w strand_sem_model_swap by blast
qed
moreover
have "strand_sem_stateful
(ik⇩l⇩s⇩s⇩t (T_symb w) ⋅⇩s⇩e⇩t comb_I w')
(dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w') {})
(unlabel (mk_symb (ξ, σ, I, T, α)))
(comb_I w')"
proof -
have "A = (mk_symb (ξ, σ, I, T, α))"
unfolding step(6) by auto
moreover
have "strand_sem_stateful
(ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t comb_I w))
(dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {})
(unlabel A)
I"
using step'(3) step'(4) step.hyps(7) by force
moreover
{
have "∀x∈fv⇩s⇩e⇩t (ik⇩l⇩s⇩s⇩t (T_symb w)). comb_I w x = comb_I w' x"
using interps_w by (metis fv_ik⇩s⇩s⇩t_is_fv⇩s⇩s⇩t)
then have "∀x∈fv t. comb_I w x = comb_I w' x" when t: "t ∈ ik⇩l⇩s⇩s⇩t (T_symb w)" for t
using t by auto
then have "t ⋅ comb_I w' = t ⋅ comb_I w" when t: "t ∈ ik⇩l⇩s⇩s⇩t (T_symb w)" for t
using t term_subst_eq[of t "comb_I w'" "comb_I w"] by metis
then have "ik⇩l⇩s⇩s⇩t (T_symb w) ⋅⇩s⇩e⇩t comb_I w' = ik⇩l⇩s⇩s⇩t (T_symb w) ⋅⇩s⇩e⇩t comb_I w"
by auto
also
have "... = ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t comb_I w)"
by (metis ik⇩s⇩s⇩t_subst unlabel_subst)
finally
have "ik⇩l⇩s⇩s⇩t (T_symb w) ⋅⇩s⇩e⇩t comb_I w' = ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t comb_I w)"
by auto
}
moreover
{
have "dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {} =
dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w') {}"
by (metis db⇩s⇩s⇩t_subst_swap[OF interps_w] db⇩s⇩s⇩t_set_is_dbupd⇩s⇩s⇩t empty_set)
}
ultimately
have "strand_sem_stateful
(ik⇩l⇩s⇩s⇩t (T_symb w) ⋅⇩s⇩e⇩t comb_I w')
(dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w') {})
(unlabel (mk_symb (ξ, σ, I, T, α)))
I"
by force
then show "strand_sem_stateful
(ik⇩l⇩s⇩s⇩t (T_symb w) ⋅⇩s⇩e⇩t comb_I w')
(dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w') {})
(unlabel (mk_symb (ξ, σ, I, T, α)))
(comb_I w')"
using interps_T strand_sem_model_swap[of "unlabel (mk_symb (ξ, σ, I, T, α))" I "comb_I w'"]
by force
qed
ultimately
show "strand_sem_stateful {} {} (unlabel (T_symb w')) (comb_I w')"
using strand_sem_append_stateful[
of "{}" "{}" "unlabel (T_symb w)" "unlabel (mk_symb (ξ, σ, I, T, α))" "(comb_I w')"]
unfolding w'_def by auto
qed
moreover
have "IK ∪ (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I) = ik⇩l⇩s⇩s⇩t (T_symb w' ⋅⇩l⇩s⇩s⇩t comb_I w')"
proof -
have AI: "ik⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t I) = ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I"
by (metis ik⇩s⇩s⇩t_subst unlabel_subst)
have "ik⇩l⇩s⇩s⇩t (T_symb w' ⋅⇩l⇩s⇩s⇩t comb_I w') =
ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t comb_I w') ∪ ik⇩l⇩s⇩s⇩t (T_symb [(ξ, σ, I, T, α)] ⋅⇩l⇩s⇩s⇩t comb_I w')"
unfolding w'_def by (simp add: subst_lsst_append)
also
have "... = ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t comb_I w') ∪ ik⇩l⇩s⇩s⇩t (T_symb [(ξ, σ, I, T, α)] ⋅⇩l⇩s⇩s⇩t I)"
by (metis T_symb_append T_symb_append' interps_T mk_symb.simps self_append_conv2
subst_apply_labeled_stateful_strand_swap)
also
have "... = ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t comb_I w) ∪ ik⇩l⇩s⇩s⇩t (T_symb [(ξ, σ, I, T, α)] ⋅⇩l⇩s⇩s⇩t I)"
by (metis interps_w subst_apply_labeled_stateful_strand_swap)
also
have "... = IK ∪ ik⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t I)"
using step'(3) step.hyps(6) by auto
also
have "... = IK ∪ (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I)"
unfolding AI by auto
finally
show "IK ∪ (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I) = ik⇩l⇩s⇩s⇩t (T_symb w' ⋅⇩l⇩s⇩s⇩t comb_I w')"
using step'(3) step(6) T_symb.simps mk_symb.simps by auto
qed
moreover
have "dbupd⇩s⇩s⇩t (unlabel A) I DB = dbupd⇩s⇩s⇩t (unlabel (T_symb w')) (comb_I w') {}"
proof -
have "dbupd⇩s⇩s⇩t (unlabel A) I DB =
dbupd⇩s⇩s⇩t (unlabel A) I (dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {})"
using step'(4) by auto
moreover
have "... = dbupd⇩s⇩s⇩t (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))) I
(dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {})"
using step(6) by auto
moreover
have "... = dbupd⇩s⇩s⇩t (unlabel (mk_symb (ξ, σ, I, T, α))) I
(dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {})"
by auto
moreover
have "... = dbupd⇩s⇩s⇩t (unlabel (mk_symb (ξ, σ, I, T, α))) (comb_I w')
(dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {})"
by (metis (no_types, lifting) db⇩s⇩s⇩t_subst_swap[OF interps_T] db⇩s⇩s⇩t_set_is_dbupd⇩s⇩s⇩t empty_set)
moreover
have "... = dbupd⇩s⇩s⇩t (unlabel (mk_symb (ξ, σ, I, T, α))) (comb_I w')
(dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w') {})"
by (metis (no_types, lifting) db⇩s⇩s⇩t_subst_swap[OF interps_w] db⇩s⇩s⇩t_set_is_dbupd⇩s⇩s⇩t empty_set)
moreover
have "... = dbupd⇩s⇩s⇩t (unlabel (T_symb w) @ unlabel (mk_symb (ξ, σ, I, T, α))) (comb_I w') {}"
using dbupd⇩s⇩s⇩t_append by metis
moreover
have "... = dbupd⇩s⇩s⇩t (unlabel ((T_symb w) @ mk_symb (ξ, σ, I, T, α))) (comb_I w') {}"
by auto
moreover
have "... = dbupd⇩s⇩s⇩t (unlabel (T_symb w')) (comb_I w') {}"
unfolding w'_def by auto
ultimately
show "dbupd⇩s⇩s⇩t (unlabel A) I DB = dbupd⇩s⇩s⇩t (unlabel (T_symb w')) (comb_I w') {}"
by auto
qed
moreover
have "trms ∪ trms⇩l⇩s⇩s⇩t A = trms⇩l⇩s⇩s⇩t (T_symb w')"
proof -
have "trms ∪ trms⇩l⇩s⇩s⇩t A = trms⇩l⇩s⇩s⇩t (T_symb w) ∪ trms⇩l⇩s⇩s⇩t A"
using step'(5) by auto
moreover
have "... = trms⇩l⇩s⇩s⇩t (T_symb w) ∪ trms⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using step(6) by auto
moreover
have "... = trms⇩l⇩s⇩s⇩t (T_symb w) ∪ trms⇩l⇩s⇩s⇩t (T_symb [(ξ, σ, I, T, α)])"
by auto
moreover
have "... = trms⇩l⇩s⇩s⇩t (T_symb w @ T_symb [(ξ, σ, I, T, α)])"
by auto
moreover
have "... = trms⇩l⇩s⇩s⇩t (T_symb w')"
unfolding w'_def by auto
ultimately
show "trms ∪ trms⇩l⇩s⇩s⇩t A = trms⇩l⇩s⇩s⇩t (T_symb w')"
by auto
qed
moreover
have "vars ∪ vars⇩l⇩s⇩s⇩t A = vars⇩l⇩s⇩s⇩t (T_symb w')"
proof -
have "vars ∪ vars⇩l⇩s⇩s⇩t A = vars⇩l⇩s⇩s⇩t (T_symb w) ∪ vars⇩l⇩s⇩s⇩t A"
using step'(6) by fastforce
moreover
have "... = vars⇩l⇩s⇩s⇩t (T_symb w) ∪ vars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
using step(6) by auto
moreover
have "... = vars⇩l⇩s⇩s⇩t (T_symb w) ∪ vars⇩l⇩s⇩s⇩t (T_symb [(ξ, σ, I, T, α)])"
by auto
moreover
have "... = vars⇩l⇩s⇩s⇩t (T_symb w @ T_symb [(ξ, σ, I, T, α)])"
by auto
moreover
have "... = vars⇩l⇩s⇩s⇩t (T_symb w')"
unfolding w'_def by auto
ultimately
show "vars ∪ vars⇩l⇩s⇩s⇩t A = vars⇩l⇩s⇩s⇩t (T_symb w')"
using step(6) by auto
qed
moreover
have interp_comb_I_w': "interpretation⇩s⇩u⇩b⇩s⇩t (comb_I w')"
using interpretation_comp(1) step'(7) unfolding w'_def by auto
moreover
have "wf⇩t⇩r⇩m⇩s (subst_range (comb_I w'))"
proof
fix t
assume "t ∈ subst_range (comb_I w')"
then have "∃x. x ∈ subst_domain (comb_I w') ∧ t = comb_I w' x"
by auto
then obtain x where "x ∈ subst_domain (comb_I w')" "t = comb_I w' x"
by auto
then show "wf⇩t⇩r⇩m t"
by (metis (no_types, lifting) w'_def interp_comb_I_w' comb_I_append ground_subst_dom_iff_img
mk_I.simps narrow_def step'(8) step.hyps(8) step.hyps(9) subst_compose_def
wf_trm_Var wf_trm_subst)
qed
ultimately
show ?case
unfolding w'_def by auto
qed
private lemma ground_protocol_states_aux_if_reachable_constraints:
assumes "A ∈ reachable_constraints P"
assumes "constr_sem_stateful I (unlabel A)"
assumes "interpretation⇩s⇩u⇩b⇩s⇩t I"
assumes "wf⇩t⇩r⇩m⇩s (subst_range I)"
shows "∃w. (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I, dbupd⇩s⇩s⇩t (unlabel A) I {}, trms⇩l⇩s⇩s⇩t A, vars⇩l⇩s⇩s⇩t A, w)
∈ ground_protocol_states_aux P"
using assms
proof (induction rule: reachable_constraints.induct)
case init
then show ?case
using ground_protocol_states_aux.init by auto
next
case (step 𝒜 T ξ σ α)
have "∃w. (ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t I, dbupd⇩s⇩s⇩t (unlabel 𝒜) I {}, trms⇩l⇩s⇩s⇩t 𝒜, vars⇩l⇩s⇩s⇩t 𝒜, w)
∈ ground_protocol_states_aux P"
by (metis local.step(6,7,8,9) step.IH strand_sem_append_stateful unlabel_append)
then obtain w where w_p:
"(ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t I, dbupd⇩s⇩s⇩t (unlabel 𝒜) I {}, trms⇩l⇩s⇩s⇩t 𝒜, vars⇩l⇩s⇩s⇩t 𝒜, w)
∈ ground_protocol_states_aux P"
by auto
define w' where "w' = w@[(ξ, σ, I, T, α)]"
define 𝒜' where "𝒜' = 𝒜@dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
let ?T = "unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))"
have "T ∈ set P"
using step.hyps(2) .
moreover
have "transaction_decl_subst ξ T"
using step.hyps(3) .
moreover
have "transaction_fresh_subst σ T (trms⇩l⇩s⇩s⇩t 𝒜)"
using step.hyps(4) .
moreover
have "transaction_renaming_subst α P (vars⇩l⇩s⇩s⇩t 𝒜)"
using step.hyps(5) .
moreover
have "strand_sem_stateful (ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t I) (dbupd⇩s⇩s⇩t (unlabel 𝒜) I {}) ?T I"
using step(7) strand_sem_append_stateful[of "{}" "{}" "unlabel 𝒜" ?T I]
by auto
moreover
have "interpretation⇩s⇩u⇩b⇩s⇩t I"
using assms(3) .
moreover
have "wf⇩t⇩r⇩m⇩s (subst_range I)"
using step.prems(3) by fastforce
ultimately
have "((ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t I) ∪ (ik⇩s⇩s⇩t ?T ⋅⇩s⇩e⇩t I),
dbupd⇩s⇩s⇩t ?T I (dbupd⇩s⇩s⇩t (unlabel 𝒜) I {}),
trms⇩l⇩s⇩s⇩t 𝒜 ∪ trms⇩s⇩s⇩t ?T,
vars⇩l⇩s⇩s⇩t 𝒜 ∪ vars⇩s⇩s⇩t ?T,
w@[(ξ, σ, I, T, α)])
∈ ground_protocol_states_aux P"
using ground_protocol_states_aux.step[
OF w_p,
of T ξ σ α "dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)" I]
by metis
moreover
have "ik⇩l⇩s⇩s⇩t 𝒜' ⋅⇩s⇩e⇩t I = (ik⇩l⇩s⇩s⇩t 𝒜 ⋅⇩s⇩e⇩t I) ∪ (ik⇩s⇩s⇩t ?T ⋅⇩s⇩e⇩t I)"
unfolding 𝒜'_def by auto
moreover
have "dbupd⇩s⇩s⇩t (unlabel 𝒜') I {} = dbupd⇩s⇩s⇩t ?T I (dbupd⇩s⇩s⇩t (unlabel 𝒜) I {})"
unfolding 𝒜'_def by (simp add: dbupd⇩s⇩s⇩t_append)
moreover
have "trms⇩l⇩s⇩s⇩t 𝒜' = trms⇩l⇩s⇩s⇩t 𝒜 ∪ trms⇩s⇩s⇩t ?T"
unfolding 𝒜'_def by auto
moreover
have "vars⇩l⇩s⇩s⇩t 𝒜' = vars⇩l⇩s⇩s⇩t 𝒜 ∪ vars⇩s⇩s⇩t ?T"
unfolding 𝒜'_def by auto
ultimately
have "(ik⇩l⇩s⇩s⇩t 𝒜' ⋅⇩s⇩e⇩t I, dbupd⇩s⇩s⇩t (unlabel 𝒜') I {}, trms⇩l⇩s⇩s⇩t 𝒜', vars⇩l⇩s⇩s⇩t 𝒜', w')
∈ ground_protocol_states_aux P"
using w'_def by auto
then show ?case
unfolding 𝒜'_def w'_def by auto
qed
private lemma protocol_model_equivalence_aux1:
"{(IK, DB) | IK DB. ∃w trms vars. (IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P} =
{(ik⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t I), dbupd⇩s⇩s⇩t (unlabel A) I {}) | A I.
A ∈ reachable_constraints P ∧ strand_sem_stateful {} {} (unlabel A) I ∧
interpretation⇩s⇩u⇩b⇩s⇩t I ∧ wf⇩t⇩r⇩m⇩s (subst_range I)}"
proof (rule; rule; rule)
fix IK DB
assume "(IK, DB) ∈
{(IK, DB) | IK DB. ∃w trms vars. (IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P}"
then have "∃w trms vars. (IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P"
by auto
then obtain w trms vars where "(IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P"
by auto
then have reachable:
"T_symb w ∈ reachable_constraints P"
"strand_sem_stateful {} {} (unlabel (T_symb w)) (comb_I w)"
"IK = ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t comb_I w)"
"DB = dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {}"
"trms = trms⇩l⇩s⇩s⇩t (T_symb w)"
"vars = vars⇩l⇩s⇩s⇩t (T_symb w)"
"interpretation⇩s⇩u⇩b⇩s⇩t (comb_I w)"
"wf⇩t⇩r⇩m⇩s (subst_range (comb_I w))"
using reachable_constraints_if_ground_protocol_states_aux[of IK DB trms vars w P] by auto
then have
"IK = ik⇩l⇩s⇩s⇩t (T_symb w ⋅⇩l⇩s⇩s⇩t (comb_I w))"
"DB = dbupd⇩s⇩s⇩t (unlabel (T_symb w)) (comb_I w) {}"
"T_symb w ∈ reachable_constraints P"
"strand_sem_stateful {} {} (unlabel (T_symb w)) (comb_I w)"
"interpretation⇩s⇩u⇩b⇩s⇩t (comb_I w) ∧ wf⇩t⇩r⇩m⇩s (subst_range (comb_I w))"
by auto
then show "∃A I. (IK, DB) = (ik⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t I), dbupd⇩s⇩s⇩t (unlabel A) I {}) ∧
A ∈ reachable_constraints P ∧ strand_sem_stateful {} {} (unlabel A) I ∧
interpretation⇩s⇩u⇩b⇩s⇩t I ∧ wf⇩t⇩r⇩m⇩s (subst_range I)"
by blast
next
fix IK DB
assume "(IK, DB) ∈
{(ik⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t I), dbupd⇩s⇩s⇩t (unlabel A) I {}) | A I.
A ∈ reachable_constraints P ∧ strand_sem_stateful {} {} (unlabel A) I ∧
interpretation⇩s⇩u⇩b⇩s⇩t I ∧ wf⇩t⇩r⇩m⇩s (subst_range I)}"
then obtain A I where A_I_p:
"IK = ik⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t I)"
"DB = dbupd⇩s⇩s⇩t (unlabel A) I {}"
"A ∈ reachable_constraints P"
"strand_sem_stateful {} {} (unlabel A) I"
"interpretation⇩s⇩u⇩b⇩s⇩t I"
"wf⇩t⇩r⇩m⇩s (subst_range I)"
by auto
then have "∃w. (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I, dbupd⇩s⇩s⇩t (unlabel A) I {}, trms⇩l⇩s⇩s⇩t A, vars⇩l⇩s⇩s⇩t A, w)
∈ ground_protocol_states_aux P"
using ground_protocol_states_aux_if_reachable_constraints[of A P I] by auto
then have "∃w. (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I, DB, trms⇩l⇩s⇩s⇩t A, vars⇩l⇩s⇩s⇩t A, w) ∈ ground_protocol_states_aux P"
using A_I_p by blast
then have "∃w. (ik⇩s⇩s⇩t (unlabel A ⋅⇩s⇩s⇩t I), DB, trms⇩l⇩s⇩s⇩t A, vars⇩l⇩s⇩s⇩t A, w) ∈ ground_protocol_states_aux P"
by (simp add: ik⇩s⇩s⇩t_subst)
then have "(∃w trms vars. (IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P)"
by (metis (no_types) A_I_p(1) unlabel_subst)
then show "∃IK' DB'. (IK, DB) = (IK', DB') ∧
(∃w trms vars. (IK', DB', trms, vars, w) ∈ ground_protocol_states_aux P)"
by auto
qed
subsubsection ‹The Protocol Model Equivalence Proof›
private lemma subst_ground_term_ident:
assumes "ground_term t"
shows "t ⋅ I = t"
using assms by (simp add: subst_ground_ident)
private lemma subst_comp_rm_vars_eq:
fixes δ :: "('fun,'atom,'sets,'lbl) prot_subst"
fixes α :: "('fun,'atom,'sets,'lbl) prot_subst"
fixes I :: "('fun,'atom,'sets,'lbl) prot_subst"
assumes "subst_domain δ = set X ∧ ground (subst_range δ)"
shows "(δ ∘⇩s α) = (δ ∘⇩s (rm_vars (set X) α))"
proof (rule ext)
fix x
show "(δ ∘⇩s α) x = (δ ∘⇩s rm_vars (set X) α) x"
proof (cases "x ∈ set X")
case True
have gt: "ground_term (δ x)"
using True assms by auto
have "(δ ∘⇩s α) x = (δ x) ⋅ α"
using subst_compose by metis
also
have "... = δ x"
using gt subst_ground_term_ident by blast
also
have "... = (δ x) ⋅ (rm_vars (set X) α)"
using gt subst_ground_term_ident by fastforce
also
have "... = (δ ∘⇩s (rm_vars (set X) α)) x"
using subst_compose by metis
ultimately
show ?thesis
by auto
next
case False
have delta_x: "δ x = Var x"
using False assms by blast
have "(rm_vars (set X) α) x = α x"
using False by auto
have "(δ ∘⇩s α) x = (δ x) ⋅ α"
using subst_compose by metis
also
have "... = (Var x) ⋅ α"
using delta_x by presburger
also
have "... = (Var x) ⋅ (rm_vars (set X) α)"
using False by force
also
have "... = (δ x) ⋅ (rm_vars (set X) α)"
using delta_x by presburger
also
have "... = (δ ∘⇩s (rm_vars (set X) α)) x"
using subst_compose by metis
finally
show ?thesis
by auto
qed
qed
private lemma subst_comp_rm_vars_commute:
assumes "∀x∈set X. ∀y. α y ≠ Var x"
assumes "subst_range α ⊆ range Var"
assumes "subst_domain δ = set X"
assumes "ground (subst_range δ)"
shows "(δ ∘⇩s (rm_vars (set X) α)) = (rm_vars (set X) α ∘⇩s δ)"
proof (rule ext)
fix x
show "(δ ∘⇩s rm_vars (set X) α) x = (rm_vars (set X) α ∘⇩s δ) x"
proof (cases "x ∈ set X")
case True
then have gt: "ground_term (δ x)"
using True assms(3,4) by auto
have "(δ ∘⇩s (rm_vars (set X) α)) x = δ x ⋅ rm_vars (set X) α"
by (simp add: subst_compose)
also
have "... = δ x"
using gt by auto
also
have "... = ((rm_vars (set X) α) x) ⋅ δ"
by (simp add: True)
also
have "... = (rm_vars (set X) α ∘⇩s δ) x"
by (simp add: subst_compose)
finally
show ?thesis .
next
case False
have δ_x: "δ x = Var x"
using False assms(3) by blast
obtain y where y_p: "α x = Var y"
by (meson assms(2) image_iff subsetD subst_imgI)
then have "y ∉ set X"
using assms(1) by blast
then show ?thesis
using assms(3,4) subst_domI False δ_x y_p
by (metis (mono_tags, lifting) subst_comp_notin_dom_eq subst_compose)
qed
qed
private lemma negchecks_model_substitution_lemma_1:
fixes α :: "('fun,'atom,'sets,'lbl) prot_subst"
fixes I :: "('fun,'atom,'sets,'lbl) prot_subst"
assumes "negchecks_model (α ∘⇩s I) DB X F F'"
assumes "subst_range α ⊆ range Var"
assumes "∀x∈set X. ∀y. α y ≠ Var x"
shows "negchecks_model I DB X (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α) (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α)"
unfolding negchecks_model_def
proof (rule, rule)
fix δ :: "('fun,'atom,'sets,'lbl) prot_subst"
assume a: "subst_domain δ = set X ∧ ground (subst_range δ)"
have "(∃(t, s)∈set F. t ⋅ δ ∘⇩s (α ∘⇩s I) ≠ s ⋅ δ ∘⇩s (α ∘⇩s I)) ∨
(∃(t, s)∈set F'. (t, s) ⋅⇩p δ ∘⇩s (α ∘⇩s I) ∉ DB)"
using a assms(1) unfolding negchecks_model_def by auto
then show "(∃(t, s)∈set (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α). t ⋅ δ ∘⇩s I ≠ s ⋅ δ ∘⇩s I) ∨
(∃(t, s)∈set (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α). (t, s) ⋅⇩p δ ∘⇩s I ∉ DB)"
proof
assume "∃(t, s)∈set F. t ⋅ δ ∘⇩s (α ∘⇩s I) ≠ s ⋅ δ ∘⇩s (α ∘⇩s I)"
then obtain t s where t_s_p: "(t, s)∈set F" "t ⋅ δ ∘⇩s (α ∘⇩s I) ≠ s ⋅ δ ∘⇩s (α ∘⇩s I)"
by auto
from this(2) have "t ⋅ δ ∘⇩s ((rm_vars (set X) α) ∘⇩s I) ≠ s ⋅ δ ∘⇩s ((rm_vars (set X) α) ∘⇩s I)"
using assms(3) a using subst_comp_rm_vars_eq[of δ X α] subst_compose_assoc
by (metis (no_types, lifting))
then have "t ⋅ (rm_vars (set X) α) ∘⇩s ( δ ∘⇩s I) ≠ s ⋅ (rm_vars (set X) α) ∘⇩s (δ ∘⇩s I)"
using subst_comp_rm_vars_commute[of X α δ, OF assms(3) assms(2)] a
by (metis (no_types, lifting) subst_compose_assoc[symmetric])
then have "t ⋅ (rm_vars (set X) α) ⋅ ( δ ∘⇩s I) ≠ s ⋅ (rm_vars (set X) α) ⋅ (δ ∘⇩s I)"
by auto
moreover
have "(t ⋅ rm_vars (set X) α, s ⋅ rm_vars (set X) α) ∈ set (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α)"
using subst_apply_pairs_pset_subst t_s_p(1) by fastforce
ultimately
have "∃(t, s)∈set (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α). t ⋅ δ ∘⇩s I ≠ s ⋅ δ ∘⇩s I"
by auto
then show ?thesis
by auto
next
assume "∃(t, s)∈set F'. (t, s) ⋅⇩p δ ∘⇩s (α ∘⇩s I) ∉ DB"
then obtain t s where t_s_p: "(t, s) ∈ set F'" "(t, s) ⋅⇩p δ ∘⇩s (α ∘⇩s I) ∉ DB"
by auto
from this(2) have "(t, s) ⋅⇩p δ ∘⇩s (rm_vars (set X) α ∘⇩s I) ∉ DB"
using assms(3) a subst_comp_rm_vars_eq[OF a]
by (metis (no_types, lifting) case_prod_conv subst_subst_compose)
then have "(t, s) ⋅⇩p rm_vars (set X) α ∘⇩s (δ ∘⇩s I) ∉ DB"
using a subst_comp_rm_vars_commute[of X α δ, OF assms(3) assms(2)]
by (metis (no_types, lifting) case_prod_conv subst_compose_assoc)
then have "(t ⋅ rm_vars (set X) α, s ⋅ rm_vars (set X) α) ⋅⇩p δ ∘⇩s I ∉ DB"
by auto
moreover
have "(t ⋅ rm_vars (set X) α, s ⋅ rm_vars (set X) α) ∈ set (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α)"
using t_s_p(1) subst_apply_pairs_pset_subst by fastforce
ultimately
have "(∃(t, s) ∈ set (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α). (t, s) ⋅⇩p δ ∘⇩s I ∉ DB)"
by auto
then show ?thesis
by auto
qed
qed
private lemma negchecks_model_substitution_lemma_2:
fixes α :: "('fun,'atom,'sets,'lbl) prot_subst"
fixes I :: "('fun,'atom,'sets,'lbl) prot_subst"
assumes "negchecks_model I DB X (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α) (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α)"
assumes "subst_range α ⊆ range Var"
assumes "∀x∈set X. ∀y. α y ≠ Var x"
shows "negchecks_model (α ∘⇩s I) DB X F F'"
unfolding negchecks_model_def
proof (rule, rule)
fix δ :: "('fun,'atom,'sets,'lbl) prot_subst"
assume a: "subst_domain δ = set X ∧ ground (subst_range δ)"
have "(∃(t, s)∈set (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α). t ⋅ δ ∘⇩s I ≠ s ⋅ δ ∘⇩s (I)) ∨
(∃(t, s)∈set (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α). (t, s) ⋅⇩p δ ∘⇩s I ∉ DB)"
using a assms(1)unfolding negchecks_model_def by auto
then show "(∃(t, s)∈set F. t ⋅ δ ∘⇩s (α ∘⇩s I) ≠ s ⋅ δ ∘⇩s (α ∘⇩s I)) ∨
(∃(t, s)∈set F'. (t, s) ⋅⇩p δ ∘⇩s (α ∘⇩s I) ∉ DB)"
proof
assume "∃(t, s)∈set (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α). t ⋅ δ ∘⇩s I ≠ s ⋅ δ ∘⇩s (I)"
then obtain t s where t_s_p: "(t, s) ∈ set (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α)" "t ⋅ δ ∘⇩s I ≠ s ⋅ δ ∘⇩s I"
by auto
then have "∃t' s'. t = t' ⋅ rm_vars (set X) α ∧ s = s' ⋅ rm_vars (set X) α ∧ (t',s') ∈ set F"
unfolding subst_apply_pairs_def by auto
then obtain t' s' where t'_s'_p:
"t = t' ⋅ rm_vars (set X) α"
"s = s' ⋅ rm_vars (set X) α"
"(t',s') ∈ set F"
by auto
then have "t' ⋅ rm_vars (set X) α ⋅ δ ∘⇩s I ≠ s' ⋅ rm_vars (set X) α ⋅ δ ∘⇩s I"
using t_s_p by auto
then have "t' ⋅ δ ⋅ rm_vars (set X) α ∘⇩s I ≠ s' ⋅ δ ⋅ rm_vars (set X) α ∘⇩s I"
using a subst_comp_rm_vars_commute[OF assms(3,2)] by (metis (no_types, lifting) subst_subst)
then have "t' ⋅ δ ⋅ α ∘⇩s I ≠ s' ⋅ δ ⋅ α ∘⇩s I"
using subst_comp_rm_vars_eq[OF a] by (metis (no_types, lifting) subst_subst)
moreover
from t_s_p(1) have "(t', s') ∈ set F"
using subst_apply_pairs_pset_subst t'_s'_p by fastforce
ultimately
have "∃(t, s)∈set F. t ⋅ δ ∘⇩s (α ∘⇩s I) ≠ s ⋅ δ ∘⇩s (α ∘⇩s I)"
by auto
then show ?thesis
by auto
next
assume "∃(t, s)∈set (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α). (t, s) ⋅⇩p δ ∘⇩s I ∉ DB"
then obtain t s where t_s_p:
"(t, s) ∈ set (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α)"
"(t ⋅ δ ∘⇩s I, s ⋅ δ ∘⇩s I) ∉ DB"
by auto
then have "∃t' s'. t = t' ⋅ rm_vars (set X) α ∧ s = s' ⋅ rm_vars (set X) α ∧ (t',s') ∈ set F'"
unfolding subst_apply_pairs_def by auto
then obtain t' s' where t'_s'_p:
"t = t' ⋅ rm_vars (set X) α"
"s = s' ⋅ rm_vars (set X) α"
"(t',s') ∈ set F'"
by auto
then have "(t' ⋅ rm_vars (set X) α ⋅ δ ∘⇩s I, s' ⋅ rm_vars (set X) α ⋅ δ ∘⇩s I) ∉ DB"
using t_s_p by auto
then have "(t' ⋅ δ ⋅ rm_vars (set X) α ∘⇩s I, s' ⋅ δ ⋅ rm_vars (set X) α ∘⇩s I) ∉ DB"
using a subst_comp_rm_vars_commute[OF assms(3,2)]
by (metis (no_types, lifting) subst_subst)
then have "(t' ⋅ δ ⋅ α ∘⇩s I , s' ⋅ δ ⋅ α ∘⇩s I) ∉ DB"
using subst_comp_rm_vars_eq[OF a] by (metis (no_types, lifting) subst_subst)
moreover
from t_s_p(1) have "(t', s') ∈ set F'"
using subst_apply_pairs_pset_subst t'_s'_p by fastforce
ultimately
have "∃(t, s)∈set F'. (t, s) ⋅⇩p δ ∘⇩s (α ∘⇩s I) ∉ DB"
by auto
then show ?thesis
by auto
qed
qed
private lemma negchecks_model_substitution_lemma:
fixes α :: "('fun,'atom,'sets,'lbl) prot_subst"
fixes I :: "('fun,'atom,'sets,'lbl) prot_subst"
assumes "subst_range α ⊆ range Var"
assumes "∀x∈set X. ∀y. α y ≠ Var x"
shows "negchecks_model (α ∘⇩s I) DB X F F' ⟷
negchecks_model I DB X (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α) (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α)"
using assms negchecks_model_substitution_lemma_1[of α I DB X F F']
negchecks_model_substitution_lemma_2[of I DB X F α F'] assms
by auto
private lemma strand_sem_stateful_substitution_lemma:
fixes α :: "('fun,'atom,'sets,'lbl) prot_subst"
fixes I :: "('fun,'atom,'sets,'lbl) prot_subst"
assumes "subst_range α ⊆ range Var"
assumes "∀x ∈ bvars⇩s⇩s⇩t T. ∀y. α y ≠ Var x"
shows "strand_sem_stateful IK DB (T ⋅⇩s⇩s⇩t α) I = strand_sem_stateful IK DB T (α ∘⇩s I)"
using assms
proof (induction T arbitrary: IK DB)
case Nil
then show ?case by auto
next
case (Cons a T)
then show ?case
proof (induction a)
case (Receive ts)
have "((λx. x ⋅ α ⋅ I) ` (set ts)) ∪ IK = ((λt. t ⋅ α) ` set ts ⋅⇩s⇩e⇩t I) ∪ IK"
by blast
then show ?case
using Receive by (force simp add: subst_sst_cons)
next
case (NegChecks X F F')
have bounds: "∀x∈bvars⇩s⇩s⇩t T. ∀y. α y ≠ Var x"
using NegChecks by auto
have "∀x∈bvars⇩s⇩s⇩t ([∀X⟨∨≠: F ∨∉: F'⟩]). ∀y. α y ≠ Var x"
using NegChecks by auto
then have bounds2: "∀x∈set X. ∀y. α y ≠ Var x"
by simp
have "negchecks_model I DB X (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α) (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α) ⟷
negchecks_model (α ∘⇩s I) DB X F F'"
using NegChecks.prems(2) bounds2 negchecks_model_substitution_lemma by blast
moreover
have "strand_sem_stateful IK DB (T ⋅⇩s⇩s⇩t α) I ⟷ strand_sem_stateful IK DB T (α ∘⇩s I)"
using Cons NegChecks(2) bounds by blast
ultimately
show ?case
by (simp add: subst_sst_cons)
qed (force simp add: subst_sst_cons)+
qed
private lemma ground_subst_rm_vars_subst_compose_dist:
assumes "ground (subst_range ξσ)"
shows "(rm_vars (set X) (ξσ ∘⇩s α)) = (rm_vars (set X) ξσ ∘⇩s rm_vars (set X) α)"
proof (rule ext)
fix x
show "rm_vars (set X) (ξσ ∘⇩s α) x = (rm_vars (set X) ξσ ∘⇩s rm_vars (set X) α) x"
proof (cases "x ∈ set X")
case True
then show ?thesis
by (simp add: subst_compose)
next
case False
note False_outer = False
show ?thesis
proof (cases "x ∈ subst_domain ξσ")
case True
then show ?thesis
by (metis (mono_tags, lifting) False assms ground_subst_range_empty_fv
subst_ground_ident_compose(1))
next
case False
have "ξσ x = Var x"
using False by blast
then show ?thesis
using False_outer by (simp add: subst_compose)
qed
qed
qed
private lemma stateful_strand_ground_subst_comp:
assumes "ground (subst_range ξσ)"
shows "T ⋅⇩s⇩s⇩t ξσ ∘⇩s α = (T ⋅⇩s⇩s⇩t ξσ) ⋅⇩s⇩s⇩t α"
using assms by (meson disjoint_iff ground_subst_no_var stateful_strand_subst_comp)
private lemma labelled_stateful_strand_ground_subst_comp:
assumes "ground (subst_range ξσ)"
shows "T ⋅⇩l⇩s⇩s⇩t ξσ ∘⇩s α = (T ⋅⇩l⇩s⇩s⇩t ξσ) ⋅⇩l⇩s⇩s⇩t α"
using assms by (metis Int_empty_left ground_range_vars labeled_stateful_strand_subst_comp)
private lemma transaction_fresh_subst_ground_subst_range:
assumes "transaction_fresh_subst σ T trms"
shows "ground (subst_range σ)"
using assms by (metis range_vars_alt_def transaction_fresh_subst_range_vars_empty)
private lemma transaction_decl_subst_ground_subst_range:
assumes "transaction_decl_subst ξ T"
shows "ground (subst_range ξ)"
proof -
have ξ_ground: "∀x ∈ subst_domain ξ. ground_term (ξ x)"
using assms transaction_decl_subst_domain transaction_decl_subst_grounds_domain by force
show ?thesis
proof (rule ccontr)
assume "fv⇩s⇩e⇩t (subst_range ξ) ≠ {}"
then have "∃x ∈ subst_domain ξ. fv (ξ x) ≠ {}"
by auto
then obtain x where x_p: "x ∈ subst_domain ξ ∧ fv (ξ x) ≠ {}"
by meson
moreover
have "ground_term (ξ x)"
using ξ_ground x_p by auto
ultimately
show "False"
by auto
qed
qed
private lemma fresh_transaction_decl_subst_ground_subst_range:
assumes "transaction_fresh_subst σ T trms"
assumes "transaction_decl_subst ξ T"
shows "ground (subst_range (ξ ∘⇩s σ))"
proof -
have "ground (subst_range ξ)"
using assms transaction_decl_subst_ground_subst_range by blast
moreover
have "ground (subst_range σ)"
using assms
using transaction_fresh_subst_ground_subst_range by blast
ultimately
show "ground (subst_range (ξ ∘⇩s σ))"
by (metis (no_types, opaque_lifting) Diff_iff all_not_in_conv empty_iff empty_subsetI
range_vars_alt_def range_vars_subst_compose_subset subset_antisym sup_bot.right_neutral)
qed
private lemma strand_sem_stateful_substitution_lemma':
assumes "transaction_renaming_subst α P vars"
assumes "transaction_fresh_subst σ T trms"
assumes "transaction_decl_subst ξ T"
assumes "finite vars"
assumes "T ∈ set P"
shows "strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α))) I
⟷ strand_sem_stateful IK DB (unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ))) (α ∘⇩s I)"
proof -
have α_Var: "subst_range α ⊆ range Var"
using assms(1) transaction_renaming_subst_is_renaming(5) by blast
have "(∀x∈vars⇩l⇩s⇩s⇩t (transaction_strand T). ∀y. α y ≠ Var x)"
using assms(4,2) transaction_renaming_subst_vars_transaction_neq assms(1) assms(5) by blast
then have "(∀x∈bvars⇩l⇩s⇩s⇩t (transaction_strand T). ∀y. α y ≠ Var x)"
by (metis UnCI vars⇩s⇩s⇩t_is_fv⇩s⇩s⇩t_bvars⇩s⇩s⇩t)
then have T_Vars: "(∀x∈bvars⇩l⇩s⇩s⇩t (dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ)). ∀y. α y ≠ Var x)"
by (metis bvars⇩l⇩s⇩s⇩t_subst bvars⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq)
have ground_ξ_σ: "ground (subst_range (ξ ∘⇩s σ))"
using fresh_transaction_decl_subst_ground_subst_range
using assms(2) assms(3) by blast
from assms(1) ground_ξ_σ have
"unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T) ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α) =
unlabel ((dual⇩l⇩s⇩s⇩t (transaction_strand T) ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ) ⋅⇩l⇩s⇩s⇩t α)"
using stateful_strand_ground_subst_comp[of _ "unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T))"]
by (simp add: dual⇩l⇩s⇩s⇩t_subst unlabel_subst)
then show ?thesis
using strand_sem_stateful_substitution_lemma α_Var T_Vars
by (metis dual⇩l⇩s⇩s⇩t_subst subst_lsst_unlabel)
qed
inductive_set ground_protocol_states::
"('fun,'atom,'sets,'lbl) prot ⇒
(('fun,'atom,'sets,'lbl) prot_terms ×
(('fun,'atom,'sets,'lbl) prot_term × ('fun,'atom,'sets,'lbl) prot_term) set
×
_ set
) set"
for P::"('fun,'atom,'sets,'lbl) prot"
where
init:
"({},{},{}) ∈ ground_protocol_states P"
| step:
"⟦(IK,DB,consts) ∈ ground_protocol_states P;
T ∈ set P;
transaction_decl_subst ξ T;
transaction_fresh_subst σ T consts;
A = dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ);
strand_sem_stateful IK DB (unlabel A) I;
interpretation⇩s⇩u⇩b⇩s⇩t I;
wf⇩t⇩r⇩m⇩s (subst_range I)
⟧ ⟹ (IK ∪ ((ik⇩l⇩s⇩s⇩t A) ⋅⇩s⇩e⇩t I), dbupd⇩s⇩s⇩t (unlabel A) I DB,
consts ∪ {t. t ⊑⇩s⇩e⇩t trms⇩l⇩s⇩s⇩t A ∧ (∃c. t = Fun c [])}) ∈ ground_protocol_states P"
private lemma transaction_fresh_subst_consts_of_iff:
"transaction_fresh_subst σ T (consts_of trms) ⟷ transaction_fresh_subst σ T trms"
proof (cases "transaction_fresh_subst σ T (consts_of trms) ∨ transaction_fresh_subst σ T trms")
case True
then have "∀t ∈ subst_range σ. ∃c. t = Fun c []"
unfolding transaction_fresh_subst_def by auto
have "(∀t ∈ subst_range σ. t ∈ subterms⇩s⇩e⇩t (consts_of trms) ⟷ t ∈ subterms⇩s⇩e⇩t trms)"
proof
fix t
assume "t ∈ subst_range σ"
then obtain c where c_p: "t = Fun c []"
using ‹∀t∈subst_range σ. ∃c. t = Fun c []› by blast
have "Fun c [] ∈ subterms⇩s⇩e⇩t (consts_of trms) ⟷ Fun c [] ∈ subterms⇩s⇩e⇩t trms"
unfolding consts_of_def by auto
then show "t ∈ subterms⇩s⇩e⇩t (consts_of trms) ⟷ t ∈ subterms⇩s⇩e⇩t trms"
using c_p by auto
qed
then show ?thesis
using transaction_fresh_subst_def by force
next
case False
then show ?thesis by auto
qed
private lemma transaction_renaming_subst_inv:
assumes "transaction_renaming_subst α P X "
shows "∃αinv. α ∘⇩s αinv = Var ∧ wf⇩t⇩r⇩m⇩s (subst_range αinv)"
using var_rename_inv_comp transaction_renaming_subst_def assms subst_apply_term_empty subst_term_eqI
by (metis var_rename_wf⇩t⇩r⇩m⇩s_range(2))
private lemma consts_of_union_distr:
"consts_of (trms1 ∪ trms2) = consts_of trms1 ∪ consts_of trms2"
unfolding consts_of_def by auto
private lemma ground_protocol_states_aux_finite_vars:
assumes "(IK,DB,trms,vars,w) ∈ ground_protocol_states_aux P"
shows "finite vars"
using assms by (induction rule: ground_protocol_states_aux.induct) auto
private lemma dbupd⇩s⇩s⇩t_substitution_lemma:
"dbupd⇩s⇩s⇩t T (α ∘⇩s I) DB = dbupd⇩s⇩s⇩t (T ⋅⇩s⇩s⇩t α) I DB"
proof (induction T arbitrary: DB)
case Nil
then show ?case
by auto
next
case (Cons a T)
then show ?case
by (induction a) (simp_all add: subst_apply_stateful_strand_def)
qed
private lemma subst_Var_const_subterm_subst:
assumes "subst_range α ⊆ range Var"
shows "Fun c [] ⊑ t ⟷ Fun c [] ⊑ t ⋅ α"
using assms
proof (induction t)
case (Var x)
then show ?case
by (metis is_Var_def subtermeq_Var_const(1) term.discI(2) var_renaming_is_Fun_iff)
next
case (Fun f ts)
then show ?case
by auto
qed
private lemma subst_Var_consts_of:
assumes "subst_range α ⊆ range Var"
shows "consts_of T = consts_of (T ⋅⇩s⇩e⇩t α)"
proof (rule antisym; rule subsetI)
fix x
assume "x ∈ consts_of T"
then obtain t c where t_c_p: "t ∈ T ∧ x ⊑ t ∧ x = Fun c []"
unfolding consts_of_def by auto
moreover
have "x ⊑ t ⋅ α"
using t_c_p by (meson assms subst_Var_const_subterm_subst)
ultimately
show "x ∈ consts_of (T ⋅⇩s⇩e⇩t α)"
unfolding consts_of_def by auto
next
fix x
assume "x ∈ consts_of (T ⋅⇩s⇩e⇩t α)"
then obtain t c where t_c_p: "t ∈ T ∧ x ⊑ t ⋅ α ∧ x = Fun c []"
unfolding consts_of_def by auto
moreover
have "x ⊑ t"
using t_c_p by (meson assms subst_Var_const_subterm_subst)
ultimately
show "x ∈ consts_of T"
unfolding consts_of_def by auto
qed
private lemma fst_set_subst_apply_set:
"fst ` set F ⋅⇩s⇩e⇩t α = fst ` (set F ⋅⇩p⇩s⇩e⇩t α)"
by (induction F) auto
private lemma snd_set_subst_apply_set:
"snd ` set F ⋅⇩s⇩e⇩t α = snd ` (set F ⋅⇩p⇩s⇩e⇩t α)"
by (induction F) auto
private lemma trms⇩p⇩a⇩i⇩r⇩s_fst_snd:
"trms⇩p⇩a⇩i⇩r⇩s F = fst ` set F ∪ snd ` set F"
by (auto simp add: rev_image_eqI)
private lemma consts_of_trms⇩s⇩s⇩t⇩p_range_Var:
assumes "subst_range α ⊆ range Var"
shows "consts_of (trms⇩s⇩s⇩t⇩p a) = consts_of (trms⇩s⇩s⇩t⇩p (a ⋅⇩s⇩s⇩t⇩p α))"
using assms
proof (induction a)
case (NegChecks X F F')
have α_subs_rng_Var: "subst_range (rm_vars (set X) α) ⊆ range Var"
using assms by auto
have "consts_of (trms⇩p⇩a⇩i⇩r⇩s F) = consts_of (fst ` set F ∪ snd ` set F)"
using trms⇩p⇩a⇩i⇩r⇩s_fst_snd by metis
also
have "... = consts_of (fst ` set F) ∪ consts_of (snd ` set F)"
using consts_of_union_distr by blast
also
have "... = consts_of ((fst ` set F) ⋅⇩s⇩e⇩t rm_vars (set X) α) ∪
consts_of ((snd ` set F) ⋅⇩s⇩e⇩t rm_vars (set X) α)"
using α_subs_rng_Var subst_Var_consts_of[of "rm_vars (set X) α" "fst ` set F"]
subst_Var_consts_of[of "rm_vars (set X) α" "snd ` set F"]
by auto
also
have "... = consts_of (((fst ` set F) ⋅⇩s⇩e⇩t rm_vars (set X) α) ∪
((snd ` set F) ⋅⇩s⇩e⇩t rm_vars (set X) α))"
using consts_of_union_distr by auto
also
have "... = consts_of (fst ` set (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α) ∪
snd ` set (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α))"
unfolding subst_apply_pairs_def fst_set_subst_apply_set snd_set_subst_apply_set by simp
also
have "... = consts_of (trms⇩p⇩a⇩i⇩r⇩s (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α))"
using trms⇩p⇩a⇩i⇩r⇩s_fst_snd[of "F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α"]
by metis
finally
have 1: "consts_of (trms⇩p⇩a⇩i⇩r⇩s F) = consts_of (trms⇩p⇩a⇩i⇩r⇩s (F ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α))"
by auto
have "consts_of (trms⇩p⇩a⇩i⇩r⇩s F') = consts_of (fst ` set F' ∪ snd ` set F')"
using trms⇩p⇩a⇩i⇩r⇩s_fst_snd by metis
also
have "... = consts_of (fst ` set F') ∪ consts_of (snd ` set F')"
using consts_of_union_distr by blast
also
have "... = consts_of ((fst ` set F') ⋅⇩s⇩e⇩t rm_vars (set X) α) ∪
consts_of ((snd ` set F') ⋅⇩s⇩e⇩t rm_vars (set X) α)"
using subst_Var_consts_of[of "rm_vars (set X) α" "fst ` set F'"] α_subs_rng_Var
subst_Var_consts_of[of "rm_vars (set X) α" "snd ` set F'"]
by auto
also
have "... = consts_of ((fst ` set F' ⋅⇩s⇩e⇩t rm_vars (set X) α) ∪
(snd ` set F' ⋅⇩s⇩e⇩t rm_vars (set X) α))"
using consts_of_union_distr by auto
also
have "... = consts_of (fst ` set (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α) ∪
snd ` set (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α))"
unfolding subst_apply_pairs_def fst_set_subst_apply_set snd_set_subst_apply_set by simp
also
have "... = consts_of (trms⇩p⇩a⇩i⇩r⇩s (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α))"
using trms⇩p⇩a⇩i⇩r⇩s_fst_snd[of "F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α"]
by metis
finally have 2: "consts_of (trms⇩p⇩a⇩i⇩r⇩s F') = consts_of (trms⇩p⇩a⇩i⇩r⇩s (F' ⋅⇩p⇩a⇩i⇩r⇩s rm_vars (set X) α))"
by auto
show ?case
using 1 2 by (simp add: consts_of_union_distr)
qed (use subst_Var_consts_of[of _ "{_, _}", OF assms] subst_Var_consts_of[OF assms] in auto)
private lemma consts_of_trms⇩s⇩s⇩t_range_Var:
assumes "subst_range α ⊆ range Var"
shows "consts_of (trms⇩s⇩s⇩t T) = consts_of (trms⇩s⇩s⇩t (T ⋅⇩s⇩s⇩t α))"
proof (induction T)
case Nil
then show ?case by auto
next
case (Cons a T)
have "consts_of (trms⇩s⇩s⇩t (a # T)) = consts_of (trms⇩s⇩s⇩t [a] ∪ trms⇩s⇩s⇩t T)"
by simp
also
have "... = consts_of (trms⇩s⇩s⇩t [a]) ∪ consts_of (trms⇩s⇩s⇩t T)"
using consts_of_union_distr by simp
also
have "... = consts_of (trms⇩s⇩s⇩t⇩p a) ∪ consts_of (trms⇩s⇩s⇩t T)"
by simp
also
have "... = consts_of (trms⇩s⇩s⇩t⇩p (a ⋅⇩s⇩s⇩t⇩p α)) ∪ consts_of (trms⇩s⇩s⇩t T)"
using consts_of_trms⇩s⇩s⇩t⇩p_range_Var[OF assms] by simp
also
have "... = consts_of (trms⇩s⇩s⇩t ([a] ⋅⇩s⇩s⇩t α)) ∪ consts_of (trms⇩s⇩s⇩t T)"
by (simp add: subst_apply_stateful_strand_def)
also
have "... = consts_of (trms⇩s⇩s⇩t ([a] ⋅⇩s⇩s⇩t α)) ∪ consts_of (trms⇩s⇩s⇩t (T ⋅⇩s⇩s⇩t α))"
using local.Cons by simp
also
have "... = consts_of (trms⇩s⇩s⇩t (a # T ⋅⇩s⇩s⇩t α))"
by (simp add: consts_of_union_distr subst_sst_cons)
finally
show ?case
by simp
qed
private lemma consts_of_trms⇩l⇩s⇩s⇩t_range_Var:
assumes "subst_range α ⊆ range Var"
shows "consts_of (trms⇩l⇩s⇩s⇩t T) = consts_of (trms⇩l⇩s⇩s⇩t (T ⋅⇩l⇩s⇩s⇩t α))"
using consts_of_trms⇩s⇩s⇩t_range_Var[of α "unlabel T"]
by (metis assms unlabel_subst)
private lemma transaction_renaming_subst_range:
assumes "transaction_renaming_subst α P vars"
shows "subst_range α ⊆ range Var"
using assms unfolding transaction_renaming_subst_def var_rename_def by auto
private lemma protocol_models_equiv3':
assumes "(IK,DB,trms,vars,w) ∈ ground_protocol_states_aux P"
shows "(IK,DB, consts_of trms) ∈ ground_protocol_states P"
using assms
proof (induction rule: ground_protocol_states_aux.induct)
case init
then show ?case
using ground_protocol_states.init unfolding consts_of_def by force
next
case (step IK DB trms vars w T ξ σ α A I)
have fin_vars: "finite vars"
using ground_protocol_states_aux_finite_vars step by auto
have ground_ξσ: "ground (subst_range (ξ ∘⇩s σ))"
using fresh_transaction_decl_subst_ground_subst_range using step.hyps(3) step.hyps(4) by blast
have α_Var: "subst_range α ⊆ range Var"
using step(5) transaction_renaming_subst_range by metis
define I' where "I' = α ∘⇩s I"
define A' where "A' = dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ)"
have "(IK, DB, consts_of trms) ∈ ground_protocol_states P"
using step by force
moreover
have T_in_P: "T ∈ set P"
using step by force
moreover
have "transaction_decl_subst ξ T"
using step by force
moreover
have "transaction_fresh_subst σ T (consts_of trms)"
using step transaction_fresh_subst_consts_of_iff by force
moreover
have "A' = dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ)"
using A'_def .
moreover
have "strand_sem_stateful IK DB (unlabel A') I'"
using step(7) step(4) step(5) step(3) T_in_P fin_vars unfolding A'_def I'_def step(6)
using strand_sem_stateful_substitution_lemma'
by auto
moreover
have "interpretation⇩s⇩u⇩b⇩s⇩t I'"
using step(8) unfolding I'_def
by (meson interpretation_comp(1))
moreover
have "wf⇩t⇩r⇩m⇩s (subst_range I')"
using step(9) unfolding I'_def
using step.hyps(5) transaction_renaming_subst_range_wf_trms wf_trms_subst_compose by blast
ultimately
have "(IK ∪ (ik⇩l⇩s⇩s⇩t A' ⋅⇩s⇩e⇩t I'), dbupd⇩s⇩s⇩t (unlabel A') I' DB,
consts_of trms ∪ consts_of (trms⇩l⇩s⇩s⇩t A')) ∈ ground_protocol_states P"
using ground_protocol_states.step[of IK DB "consts_of trms" P T ξ σ A' I']
unfolding consts_of_def by blast
moreover
have "ik⇩l⇩s⇩s⇩t A' ⋅⇩s⇩e⇩t I' = ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I"
proof -
have "ik⇩l⇩s⇩s⇩t A' ⋅⇩s⇩e⇩t I' = ik⇩l⇩s⇩s⇩t A' ⋅⇩s⇩e⇩t α ∘⇩s I"
unfolding A'_def I'_def step(6) by auto
also
have "... = ik⇩l⇩s⇩s⇩t ((A' ⋅⇩l⇩s⇩s⇩t α) ⋅⇩l⇩s⇩s⇩t I)"
unfolding unlabel_subst[symmetric] ik⇩s⇩s⇩t_subst by auto
also
have "... = ik⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t I)"
unfolding A'_def step(6)
using labelled_stateful_strand_ground_subst_comp[of _ "transaction_strand T", OF ground_ξσ]
by (simp add: dual⇩l⇩s⇩s⇩t_subst)
also
have "... = ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I"
by (metis ik⇩s⇩s⇩t_subst unlabel_subst)
finally
show "ik⇩l⇩s⇩s⇩t A' ⋅⇩s⇩e⇩t I' = ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I"
by auto
qed
moreover
have "dbupd⇩s⇩s⇩t (unlabel A') I' DB = dbupd⇩s⇩s⇩t (unlabel A) I DB"
proof -
have "dbupd⇩s⇩s⇩t (unlabel A') I' DB =
dbupd⇩s⇩s⇩t (unlabel A') (α ∘⇩s I) DB"
unfolding A'_def I'_def step(6) using step by auto
also
have "... = dbupd⇩s⇩s⇩t (unlabel A' ⋅⇩s⇩s⇩t α) I DB"
using dbupd⇩s⇩s⇩t_substitution_lemma by metis
also
have "... = dbupd⇩s⇩s⇩t (unlabel A) I DB"
unfolding A'_def step(6)
using stateful_strand_ground_subst_comp[of _ "unlabel (dual⇩l⇩s⇩s⇩t (transaction_strand T))"]
ground_ξσ by (simp add: dual⇩l⇩s⇩s⇩t_subst_unlabel)
finally
show "dbupd⇩s⇩s⇩t (unlabel A') I' DB = dbupd⇩s⇩s⇩t (unlabel A) I DB"
by auto
qed
moreover
have "consts_of (trms⇩l⇩s⇩s⇩t A') = consts_of (trms⇩l⇩s⇩s⇩t A)"
by (metis (no_types, lifting) A'_def α_Var consts_of_trms⇩l⇩s⇩s⇩t_range_Var ground_ξσ
labelled_stateful_strand_ground_subst_comp step.hyps(6) trms⇩s⇩s⇩t_unlabel_dual⇩l⇩s⇩s⇩t_eq)
ultimately
show ?case
using consts_of_union_distr by metis
qed
private lemma protocol_models_equiv4':
assumes "(IK, DB, csts) ∈ ground_protocol_states P"
shows "∃trms w vars. (IK,DB,trms,vars,w) ∈ ground_protocol_states_aux P
∧ csts = consts_of trms
∧ vars = vars⇩l⇩s⇩s⇩t (T_symb w)"
using assms
proof (induction rule: ground_protocol_states.induct)
case init
have "({}, {}, {}, {}, []) ∈ ground_protocol_states_aux P"
using ground_protocol_states_aux.init by blast
moreover
have "{} = consts_of {}"
unfolding consts_of_def by auto
moreover
have "{} = vars⇩l⇩s⇩s⇩t (T_symb [])"
by auto
ultimately
show ?case
by metis
next
case (step IK DB "consts" T ξ σ A I)
then obtain trms w vars where trms_w_vars_p:
"(IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P"
"consts = consts_of trms"
"vars = vars⇩l⇩s⇩s⇩t (T_symb w)"
by auto
have "∃α. transaction_renaming_subst α P vars"
unfolding transaction_renaming_subst_def by blast
then obtain α :: "('fun,'atom,'sets,'lbl) prot_subst"
where α_p: "transaction_renaming_subst α P vars"
by blast
then obtain αinv where αinv_p: "α ∘⇩s αinv = Var ∧ wf⇩t⇩r⇩m⇩s (subst_range αinv)"
using transaction_renaming_subst_inv[of α P vars] by auto
define A' where "A' = dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
define I' where "I' = αinv ∘⇩s I"
define trms' where "trms' = trms ∪ trms⇩l⇩s⇩s⇩t A'"
define vars' where "vars' = vars ∪ vars⇩l⇩s⇩s⇩t A'"
define w' where "w' = w @ [(ξ, σ, I', T, α)]"
define IK' where "IK' = IK ∪ (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I)"
define DB' where "DB' = dbupd⇩s⇩s⇩t (unlabel A) I DB"
have P_state: "(IK', DB' , trms', vars', w') ∈ ground_protocol_states_aux P"
proof -
have 1: "(IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P"
using ‹(IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P› by blast
moreover
have "T ∈ set P"
using step(2) .
moreover
have "transaction_decl_subst ξ T"
using step(3) .
moreover
have fresh_σ: "transaction_fresh_subst σ T trms"
using step(4) trms_w_vars_p(2)
using transaction_fresh_subst_consts_of_iff by auto
moreover
have "transaction_renaming_subst α P vars"
using α_p .
moreover
have "A' = dual⇩l⇩s⇩s⇩t (transaction_strand T ⋅⇩l⇩s⇩s⇩t ξ ∘⇩s σ ∘⇩s α)"
unfolding A'_def by auto
moreover
have "strand_sem_stateful IK DB (unlabel A') I'"
proof -
have fin_vars: "finite vars"
using 1 ground_protocol_states_aux_finite_vars by blast
show "strand_sem_stateful IK DB (unlabel A') I'"
using step(6) strand_sem_stateful_substitution_lemma'[OF α_p fresh_σ step(3) fin_vars]
step(2) unfolding A'_def step(5)
by (metis (no_types, lifting) I'_def αinv_p subst_compose_assoc var_comp(2))
qed
moreover
have "interpretation⇩s⇩u⇩b⇩s⇩t I'"
using step(7) by (simp add: I'_def interpretation_substI subst_compose)
moreover
have "wf⇩t⇩r⇩m⇩s (subst_range I')"
using I'_def αinv_p step.hyps(8) wf_trms_subst_compose by blast
moreover
have "dbupd⇩s⇩s⇩t (unlabel A) I DB = dbupd⇩s⇩s⇩t (unlabel A') I' DB"
proof -
have "dbupd⇩s⇩s⇩t (unlabel A) I DB = dbupd⇩s⇩s⇩t (unlabel A) (α ∘⇩s αinv ∘⇩s I) DB"
by (simp add: αinv_p)
also
have "... = dbupd⇩s⇩s⇩t (unlabel A') (αinv ∘⇩s I) DB"
unfolding A'_def step(5)
by (metis (no_types, lifting) dbupd⇩s⇩s⇩t_substitution_lemma dual⇩l⇩s⇩s⇩t_subst_unlabel
subst_compose_assoc)
also
have "... = dbupd⇩s⇩s⇩t (unlabel A') I' DB"
unfolding A'_def I'_def by auto
finally
show ?thesis
by auto
qed
moreover
have "IK ∪ (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I) = IK ∪ (ik⇩l⇩s⇩s⇩t A' ⋅⇩s⇩e⇩t I')"
proof -
have "IK ∪ (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I) = IK ∪ (ik⇩l⇩s⇩s⇩t A ⋅⇩s⇩e⇩t (α ∘⇩s αinv) ∘⇩s I)"
using αinv_p by auto
also
have "... = IK ∪ (ik⇩l⇩s⇩s⇩t A' ⋅⇩s⇩e⇩t I')"
unfolding A'_def step(5) unlabel_subst[symmetric] ik⇩s⇩s⇩t_subst dual⇩l⇩s⇩s⇩t_subst I'_def by auto
finally
show ?thesis
by auto
qed
ultimately
show "(IK', DB' , trms', vars', w') ∈ ground_protocol_states_aux P"
using ground_protocol_states_aux.step[of IK DB trms vars w P T ξ σ α A' I']
unfolding trms'_def vars'_def w'_def IK'_def DB'_def by auto
qed
moreover
have "consts ∪ consts_of (trms⇩l⇩s⇩s⇩t A) = consts_of trms'"
proof -
have α_Var: "subst_range α ⊆ range Var"
using α_p transaction_renaming_subst_range by blast
have ground_ξσ: "ground (subst_range (ξ ∘⇩s σ))"
using fresh_transaction_decl_subst_ground_subst_range using step.hyps(3) step.hyps(4) by blast
have "consts ∪ consts_of (trms⇩l⇩s⇩s⇩t A) = (consts_of trms) ∪ consts_of (trms⇩l⇩s⇩s⇩t A)"
using trms_w_vars_p(2) by blast
also
have "... = (consts_of trms) ∪ consts_of (trms⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t α))"
using consts_of_trms⇩l⇩s⇩s⇩t_range_Var[of α, OF α_Var, of A] by auto
also
have "... = (consts_of trms) ∪ consts_of (trms⇩l⇩s⇩s⇩t A')"
using step(5) A'_def ground_ξσ
using labelled_stateful_strand_ground_subst_comp[of _ "(dual⇩l⇩s⇩s⇩t (transaction_strand T))"]
by (simp add: dual⇩l⇩s⇩s⇩t_subst)
also
have "... = consts_of (trms ∪ trms⇩l⇩s⇩s⇩t A')"
using consts_of_union_distr by blast
also
have "... = consts_of trms'"
unfolding trms'_def by auto
finally
show "?thesis"
by auto
qed
moreover
have "vars' = vars⇩l⇩s⇩s⇩t (T_symb w')"
using P_state reachable_constraints_if_ground_protocol_states_aux by auto
ultimately
show ?case
unfolding DB'_def IK'_def consts_of_def[symmetric] by metis
qed
private lemma protocol_model_equivalence_aux2:
"{(IK, DB) | IK DB. ∃csts. (IK, DB, csts) ∈ ground_protocol_states P} =
{(IK, DB) | IK DB. ∃w trms vars. (IK, DB, trms, vars, w) ∈ ground_protocol_states_aux P}"
using protocol_models_equiv4' protocol_models_equiv3' by meson
theorem protocol_model_equivalence:
"{(IK, DB) | IK DB. ∃csts. (IK, DB, csts) ∈ ground_protocol_states P} =
{(ik⇩l⇩s⇩s⇩t (A ⋅⇩l⇩s⇩s⇩t I), dbupd⇩s⇩s⇩t (unlabel A) I {}) | A I.
A ∈ reachable_constraints P ∧ strand_sem_stateful {} {} (unlabel A) I ∧
interpretation⇩s⇩u⇩b⇩s⇩t I ∧ wf⇩t⇩r⇩m⇩s (subst_range I)}"
using protocol_model_equivalence_aux2 protocol_model_equivalence_aux1 by auto
end
end
end