Theory Term_Abstraction
section‹Term Abstraction›
theory Term_Abstraction
imports Transactions
begin
subsection ‹Definitions›
fun to_abs ("α⇩0") where
"α⇩0 [] _ = {}"
| "α⇩0 ((Fun (Val m) [],Fun (Set s) S)#D) n =
(if m = n then insert s (α⇩0 D n) else α⇩0 D n)"
| "α⇩0 (_#D) n = α⇩0 D n"
fun abs_apply_term (infixl "⋅⇩α" 67) where
"Var x ⋅⇩α α = Var x"
| "Fun (Val n) T ⋅⇩α α = Fun (Abs (α n)) (map (λt. t ⋅⇩α α) T)"
| "Fun f T ⋅⇩α α = Fun f (map (λt. t ⋅⇩α α) T)"
definition abs_apply_list (infixl "⋅⇩α⇩l⇩i⇩s⇩t" 67) where
"M ⋅⇩α⇩l⇩i⇩s⇩t α ≡ map (λt. t ⋅⇩α α) M"
definition abs_apply_terms (infixl "⋅⇩α⇩s⇩e⇩t" 67) where
"M ⋅⇩α⇩s⇩e⇩t α ≡ (λt. t ⋅⇩α α) ` M"
definition abs_apply_pairs (infixl "⋅⇩α⇩p⇩a⇩i⇩r⇩s" 67) where
"F ⋅⇩α⇩p⇩a⇩i⇩r⇩s α ≡ map (λ(s,t). (s ⋅⇩α α, t ⋅⇩α α)) F"
definition abs_apply_strand_step (infixl "⋅⇩α⇩s⇩t⇩p" 67) where
"s ⋅⇩α⇩s⇩t⇩p α ≡ (case s of
(l,send⟨ts⟩) ⇒ (l,send⟨ts ⋅⇩α⇩l⇩i⇩s⇩t α⟩)
| (l,receive⟨ts⟩) ⇒ (l,receive⟨ts ⋅⇩α⇩l⇩i⇩s⇩t α⟩)
| (l,⟨ac: t ≐ t'⟩) ⇒ (l,⟨ac: (t ⋅⇩α α) ≐ (t' ⋅⇩α α)⟩)
| (l,insert⟨t,t'⟩) ⇒ (l,insert⟨t ⋅⇩α α,t' ⋅⇩α α⟩)
| (l,delete⟨t,t'⟩) ⇒ (l,delete⟨t ⋅⇩α α,t' ⋅⇩α α⟩)
| (l,⟨ac: t ∈ t'⟩) ⇒ (l,⟨ac: (t ⋅⇩α α) ∈ (t' ⋅⇩α α)⟩)
| (l,∀X⟨∨≠: F ∨∉: F'⟩) ⇒ (l,∀X⟨∨≠: (F ⋅⇩α⇩p⇩a⇩i⇩r⇩s α) ∨∉: (F' ⋅⇩α⇩p⇩a⇩i⇩r⇩s α)⟩))"
definition abs_apply_strand (infixl "⋅⇩α⇩s⇩t" 67) where
"S ⋅⇩α⇩s⇩t α ≡ map (λx. x ⋅⇩α⇩s⇩t⇩p α) S"
subsection ‹Lemmata›
lemma to_abs_alt_def:
"α⇩0 D n = {s. ∃S. (Fun (Val n) [], Fun (Set s) S) ∈ set D}"
by (induct D n rule: to_abs.induct) auto
lemma abs_term_apply_const[simp]:
"is_Val f ⟹ Fun f [] ⋅⇩α a = Fun (Abs (a (the_Val f))) []"
"¬is_Val f ⟹ Fun f [] ⋅⇩α a = Fun f []"
by (cases f; auto)+
lemma abs_fv: "fv (t ⋅⇩α a) = fv t"
by (induct t a rule: abs_apply_term.induct) auto
lemma abs_eq_if_no_Val:
assumes "∀f ∈ funs_term t. ¬is_Val f"
shows "t ⋅⇩α a = t ⋅⇩α b"
using assms
proof (induction t)
case (Fun f T) thus ?case by (cases f) simp_all
qed simp
lemma abs_list_set_is_set_abs_set: "set (M ⋅⇩α⇩l⇩i⇩s⇩t α) = (set M) ⋅⇩α⇩s⇩e⇩t α"
unfolding abs_apply_list_def abs_apply_terms_def by simp
lemma abs_set_empty[simp]: "{} ⋅⇩α⇩s⇩e⇩t α = {}"
unfolding abs_apply_terms_def by simp
lemma abs_in:
assumes "t ∈ M"
shows "t ⋅⇩α α ∈ M ⋅⇩α⇩s⇩e⇩t α"
using assms unfolding abs_apply_terms_def
by (induct t α rule: abs_apply_term.induct) blast+
lemma abs_set_union: "(A ∪ B) ⋅⇩α⇩s⇩e⇩t a = (A ⋅⇩α⇩s⇩e⇩t a) ∪ (B ⋅⇩α⇩s⇩e⇩t a)"
unfolding abs_apply_terms_def
by auto
lemma abs_subterms: "subterms (t ⋅⇩α α) = subterms t ⋅⇩α⇩s⇩e⇩t α"
proof (induction t)
case (Fun f T) thus ?case by (cases f) (auto simp add: abs_apply_terms_def)
qed (simp add: abs_apply_terms_def)
lemma abs_subterms_in: "s ∈ subterms t ⟹ s ⋅⇩α a ∈ subterms (t ⋅⇩α a)"
proof (induction t)
case (Fun f T) thus ?case by (cases f) auto
qed simp
lemma abs_ik_append: "(ik⇩s⇩s⇩t (A@B) ⋅⇩s⇩e⇩t I) ⋅⇩α⇩s⇩e⇩t a = (ik⇩s⇩s⇩t A ⋅⇩s⇩e⇩t I) ⋅⇩α⇩s⇩e⇩t a ∪ (ik⇩s⇩s⇩t B ⋅⇩s⇩e⇩t I) ⋅⇩α⇩s⇩e⇩t a"
unfolding abs_apply_terms_def ik⇩s⇩s⇩t_def
by fastforce
lemma to_abs_in:
assumes "(Fun (Val n) [], Fun (Set s) []) ∈ set D"
shows "s ∈ α⇩0 D n"
using assms by (induct rule: to_abs.induct) auto
lemma to_abs_empty_iff_notin_db:
"Fun (Val n) [] ⋅⇩α α⇩0 D = Fun (Abs {}) [] ⟷ (∄s S. (Fun (Val n) [], Fun (Set s) S) ∈ set D)"
by (simp add: to_abs_alt_def)
lemma to_abs_list_insert:
assumes "Fun (Val n) [] ≠ t"
shows "α⇩0 D n = α⇩0 (List.insert (t,s) D) n"
using assms to_abs_alt_def[of D n] to_abs_alt_def[of "List.insert (t,s) D" n]
by auto
lemma to_abs_list_insert':
"insert s (α⇩0 D n) = α⇩0 (List.insert (Fun (Val n) [], Fun (Set s) S) D) n"
using to_abs_alt_def[of D n]
to_abs_alt_def[of "List.insert (Fun (Val n) [], Fun (Set s) S) D" n]
by auto
lemma to_abs_list_remove_all:
assumes "Fun (Val n) [] ≠ t"
shows "α⇩0 D n = α⇩0 (List.removeAll (t,s) D) n"
using assms to_abs_alt_def[of D n] to_abs_alt_def[of "List.removeAll (t,s) D" n]
by auto
lemma to_abs_list_remove_all':
"α⇩0 D n - {s} = α⇩0 (filter (λd. ∄S. d = (Fun (Val n) [], Fun (Set s) S)) D) n"
using to_abs_alt_def[of D n]
to_abs_alt_def[of "filter (λd. ∄S. d = (Fun (Val n) [], Fun (Set s) S)) D" n]
by auto
lemma to_abs_db⇩s⇩s⇩t_append:
assumes "∀u s. insert⟨u, s⟩ ∈ set B ⟶ Fun (Val n) [] ≠ u ⋅ ℐ"
and "∀u s. delete⟨u, s⟩ ∈ set B ⟶ Fun (Val n) [] ≠ u ⋅ ℐ"
shows "α⇩0 (db'⇩s⇩s⇩t A ℐ D) n = α⇩0 (db'⇩s⇩s⇩t (A@B) ℐ D) n"
using assms
proof (induction B rule: List.rev_induct)
case (snoc b B)
hence IH: "α⇩0 (db'⇩s⇩s⇩t A ℐ D) n = α⇩0 (db'⇩s⇩s⇩t (A@B) ℐ D) n" by auto
have *: "∀u s. b = insert⟨u,s⟩ ⟶ Fun (Val n) [] ≠ u ⋅ ℐ"
"∀u s. b = delete⟨u,s⟩ ⟶ Fun (Val n) [] ≠ u ⋅ ℐ"
using snoc.prems by simp_all
show ?case
proof (cases b)
case (Insert u s)
hence **: "db'⇩s⇩s⇩t (A@B@[b]) ℐ D = List.insert (u ⋅ ℐ,s ⋅ ℐ) (db'⇩s⇩s⇩t (A@B) ℐ D)"
using db⇩s⇩s⇩t_append[of "A@B" "[b]"] by simp
have "Fun (Val n) [] ≠ u ⋅ ℐ" using *(1) Insert by auto
thus ?thesis using IH ** to_abs_list_insert by metis
next
case (Delete u s)
hence **: "db'⇩s⇩s⇩t (A@B@[b]) ℐ D = List.removeAll (u ⋅ ℐ,s ⋅ ℐ) (db'⇩s⇩s⇩t (A@B) ℐ D)"
using db⇩s⇩s⇩t_append[of "A@B" "[b]"] by simp
have "Fun (Val n) [] ≠ u ⋅ ℐ" using *(2) Delete by auto
thus ?thesis using IH ** to_abs_list_remove_all by metis
qed (simp_all add: db⇩s⇩s⇩t_no_upd_append[of "[b]" "A@B"] IH)
qed simp
lemma to_abs_neq_imp_db_update:
assumes "α⇩0 (db⇩s⇩s⇩t A I) n ≠ α⇩0 (db⇩s⇩s⇩t (A@B) I) n"
shows "∃u s. u ⋅ I = Fun (Val n) [] ∧ (insert⟨u,s⟩ ∈ set B ∨ delete⟨u,s⟩ ∈ set B)"
proof -
{ fix D have ?thesis when "α⇩0 D n ≠ α⇩0 (db'⇩s⇩s⇩t B I D) n" using that
proof (induction B I D rule: db'⇩s⇩s⇩t.induct)
case 2 thus ?case
by (metis db'⇩s⇩s⇩t.simps(2) list.set_intros(1,2) subst_apply_pair_pair to_abs_list_insert)
next
case 3 thus ?case
by (metis db'⇩s⇩s⇩t.simps(3) list.set_intros(1,2) subst_apply_pair_pair to_abs_list_remove_all)
qed simp_all
} thus ?thesis using assms by (metis db⇩s⇩s⇩t_append db⇩s⇩s⇩t_def)
qed
lemma abs_term_subst_eq:
fixes δ θ::"(('a,'b,'c,'d) prot_fun, ('e,'f prot_atom) term × nat) subst"
assumes "∀x ∈ fv t. δ x ⋅⇩α a = θ x ⋅⇩α b"
and "∄n T. Fun (Val n) T ∈ subterms t"
shows "t ⋅ δ ⋅⇩α a = t ⋅ θ ⋅⇩α b"
using assms
proof (induction t)
case (Fun f T) thus ?case
proof (cases f)
case (Val n)
hence False using Fun.prems(2) by blast
thus ?thesis by metis
qed auto
qed simp
lemma abs_term_subst_eq':
fixes δ θ::"(('a,'b,'c,'d) prot_fun, ('e,'f prot_atom) term × nat) subst"
assumes "∀x ∈ fv t. δ x ⋅⇩α a = θ x"
and "∄n T. Fun (Val n) T ∈ subterms t"
shows "t ⋅ δ ⋅⇩α a = t ⋅ θ"
using assms
proof (induction t)
case (Fun f T) thus ?case
proof (cases f)
case (Val n)
hence False using Fun.prems(2) by blast
thus ?thesis by metis
qed auto
qed simp
lemma abs_val_in_funs_term:
assumes "f ∈ funs_term t" "is_Val f"
shows "Abs (α (the_Val f)) ∈ funs_term (t ⋅⇩α α)"
using assms by (induct t α rule: abs_apply_term.induct) auto
end