Theory Word_Lib.Word_Lib_Sumo
section ‹Ancient comprehensive Word Library›
theory Word_Lib_Sumo
imports
"HOL-Library.Word"
Aligned
Bit_Comprehension
Bit_Comprehension_Int
Bit_Shifts_Infix_Syntax
Bits_Int
Bitwise_Signed
Bitwise
Enumeration_Word
Generic_set_bit
Hex_Words
Least_significant_bit
More_Arithmetic
More_Divides
More_Sublist
Even_More_List
More_Misc
Strict_part_mono
Legacy_Aliases
Most_significant_bit
Next_and_Prev
Norm_Words
Reversed_Bit_Lists
Rsplit
Signed_Words
Syntax_Bundles
Sgn_Abs
Typedef_Morphisms
Type_Syntax
Word_EqI
Word_Lemmas
Word_8
Word_16
Word_32
Word_Syntax
Signed_Division_Word
Singleton_Bit_Shifts
More_Word_Operations
Many_More
begin
unbundle bit_operations_syntax
unbundle bit_projection_infix_syntax
declare word_induct2[induct type]
declare word_nat_cases[cases type]
declare signed_take_bit_Suc [simp]
lemmas of_int_and_nat = unsigned_of_nat unsigned_of_int signed_of_int signed_of_nat
bundle no_take_bit
begin
declare of_int_and_nat[simp del]
end
lemmas bshiftr1_def = bshiftr1_eq
lemmas is_down_def = is_down_eq
lemmas is_up_def = is_up_eq
lemmas mask_def = mask_eq
lemmas scast_def = scast_eq
lemmas shiftl1_def = shiftl1_eq
lemmas shiftr1_def = shiftr1_eq
lemmas sshiftr1_def = sshiftr1_eq
lemmas sshiftr_def = sshiftr_eq_funpow_sshiftr1
lemmas to_bl_def = to_bl_eq
lemmas ucast_def = ucast_eq
lemmas unat_def = unat_eq_nat_uint
lemmas word_cat_def = word_cat_eq
lemmas word_reverse_def = word_reverse_eq_of_bl_rev_to_bl
lemmas word_roti_def = word_roti_eq_word_rotr_word_rotl
lemmas word_rotl_def = word_rotl_eq
lemmas word_rotr_def = word_rotr_eq
lemmas word_sle_def = word_sle_eq
lemmas word_sless_def = word_sless_eq
lemmas uint_0 = uint_nonnegative
lemmas uint_lt = uint_bounded
lemmas uint_mod_same = uint_idem
lemmas of_nth_def = word_set_bits_def
lemmas of_nat_word_eq_iff = word_of_nat_eq_iff
lemmas of_nat_word_eq_0_iff = word_of_nat_eq_0_iff
lemmas of_int_word_eq_iff = word_of_int_eq_iff
lemmas of_int_word_eq_0_iff = word_of_int_eq_0_iff
lemmas word_next_def = word_next_unfold
lemmas word_prev_def = word_prev_unfold
lemmas is_aligned_def = is_aligned_iff_dvd_nat
lemmas word_and_max_simps =
word8_and_max_simp
word16_and_max_simp
word32_and_max_simp
lemma distinct_lemma: "f x ≠ f y ⟹ x ≠ y" by auto
lemmas and_bang = word_and_nth
lemmas sdiv_int_def = signed_divide_int_def
lemmas smod_int_def = signed_modulo_int_def
lemma word_fixed_sint_1[simp]:
"sint (1::8 word) = 1"
"sint (1::16 word) = 1"
"sint (1::32 word) = 1"
"sint (1::64 word) = 1"
by (auto simp: sint_word_ariths)
declare of_nat_diff [simp]
notation (input)
bit ("testBit")
lemmas cast_simps = cast_simps ucast_down_bl
end