Theory Word_Lib.Sgn_Abs
theory Sgn_Abs
imports Most_significant_bit
begin
section ‹@{const sgn} and @{const abs} for @{typ "'a word"}›
subsection ‹Instances›
text ‹@{const sgn} on words returns -1, 0, or 1.›
instantiation word :: (len) sgn
begin
definition sgn_word :: ‹'a word ⇒ 'a word› where
‹sgn w = (if w = 0 then 0 else if 0 <s w then 1 else -1)›
instance ..
end
lemma word_sgn_0[simp]:
"sgn 0 = (0::'a::len word)"
by (simp add: sgn_word_def)
lemma word_sgn_1[simp]:
"sgn 1 = (1::'a::len word)"
by (simp add: sgn_word_def)
lemma word_sgn_max_word[simp]:
"sgn (- 1) = (-1::'a::len word)"
by (clarsimp simp: sgn_word_def word_sless_alt)
lemmas word_sgn_numeral[simp] = sgn_word_def[where w="numeral w" for w]
text ‹@{const abs} on words is the usual definition.›
instantiation word :: (len) abs
begin
definition abs_word :: ‹'a word ⇒ 'a word› where
‹abs w = (if w ≤s 0 then -w else w)›
instance ..
end
lemma word_abs_0[simp]:
"¦0¦ = (0::'a::len word)"
by (simp add: abs_word_def)
lemma word_abs_1[simp]:
"¦1¦ = (1::'a::len word)"
by (simp add: abs_word_def)
lemma word_abs_max_word[simp]:
"¦- 1¦ = (1::'a::len word)"
by (clarsimp simp: abs_word_def word_sle_eq)
lemma word_abs_msb:
"¦w¦ = (if msb w then -w else w)" for w::"'a::len word"
by (simp add: abs_word_def msb_word_iff_sless_0 word_sless_eq)
lemmas word_abs_numeral[simp] = word_abs_msb[where w="numeral w" for w]
subsection ‹Properties›
lemma word_sgn_0_0:
"sgn a = 0 ⟷ a = 0" for a::"'a::len word"
by (simp add: sgn_word_def)
lemma word_sgn_1_pos:
"1 < LENGTH('a) ⟹ sgn a = 1 ⟷ 0 <s a" for a::"'a::len word"
unfolding sgn_word_def by simp
lemma word_sgn_1_neg:
"sgn a = - 1 ⟷ a <s 0"
unfolding sgn_word_def
using sint_1_cases by force
lemma word_sgn_pos[simp]:
"0 <s a ⟹ sgn a = 1"
by (simp add: sgn_word_def)
lemma word_sgn_neg[simp]:
"a <s 0 ⟹ sgn a = - 1"
by (simp only: word_sgn_1_neg)
lemma word_abs_sgn:
"¦k¦ = k * sgn k" for k :: "'a::len word"
unfolding sgn_word_def abs_word_def
by auto
lemma word_sgn_greater[simp]:
"0 <s sgn a ⟷ 0 <s a" for a::"'a::len word"
by (smt (verit) signed_eq_0_iff sint_1_cases sint_n1 word_sgn_0_0 word_sgn_neg word_sgn_pos
word_sless_alt)
lemma word_sgn_less[simp]:
"sgn a <s 0 ⟷ a <s 0" for a::"'a::len word"
unfolding sgn_word_def
using degenerate_word signed.antisym_conv3 word_sless_alt by force
lemma word_abs_sgn_eq_1[simp]:
"a ≠ 0 ⟹ ¦sgn a¦ = 1" for a::"'a::len word"
unfolding abs_word_def sgn_word_def
by (clarsimp simp: word_sle_eq)
lemma word_abs_sgn_eq:
"¦sgn a¦ = (if a = 0 then 0 else 1)" for a::"'a::len word"
by clarsimp
lemma word_sgn_mult_self_eq[simp]:
"sgn a * sgn a = of_bool (a ≠ 0)" for a::"'a::len word"
by (cases "0 <s a"; simp)
end