Theory Word_Lib.Norm_Words
section "Normalising Word Numerals"
theory Norm_Words
imports Signed_Words
begin
text ‹
Normalise word numerals, including negative ones apart from @{term "-1"}, to the
interval ‹[0..2^len_of 'a)›. Only for concrete word lengths.
›
lemma bintrunc_numeral:
"(take_bit :: nat ⇒ int ⇒ int) (numeral k) x = of_bool (odd x) + 2 * (take_bit :: nat ⇒ int ⇒ int) (pred_numeral k) (x div 2)"
by (simp add: numeral_eq_Suc take_bit_Suc mod_2_eq_odd)
lemma neg_num_bintr:
"(- numeral x :: 'a::len word) = word_of_int (take_bit LENGTH('a) (- numeral x))"
by transfer simp
ML ‹
fun is_refl \<^Const_>‹Pure.eq _ for x y› = (x = y)
| is_refl _ = false;
fun signed_dest_wordT \<^Type>‹word \<^Type>‹signed T›› = Word_Lib.dest_binT T
| signed_dest_wordT T = Word_Lib.dest_wordT T
fun typ_size_of t = signed_dest_wordT (type_of (Thm.term_of t));
fun num_len \<^Const_>‹Num.Bit0 for n› = num_len n + 1
| num_len \<^Const_>‹Num.Bit1 for n› = num_len n + 1
| num_len \<^Const_>‹Num.One› = 1
| num_len \<^Const_>‹numeral _ for t› = num_len t
| num_len \<^Const_>‹uminus _ for t› = num_len t
| num_len t = raise TERM ("num_len", [t])
fun unsigned_norm is_neg _ ctxt ct =
(if is_neg orelse num_len (Thm.term_of ct) > typ_size_of ct then let
val btr = if is_neg
then @{thm neg_num_bintr} else @{thm num_abs_bintr}
val th = [Thm.reflexive ct, mk_eq btr] MRS transitive_thm
val ss = simpset_of (@{context} addsimps @{thms bintrunc_numeral} delsimps @{thms take_bit_minus_one_eq_mask})
val cnv = simplify (put_simpset ss ctxt) th
in if is_refl (Thm.prop_of cnv) then NONE else SOME cnv end
else NONE)
handle TERM ("num_len", _) => NONE
| TYPE ("dest_binT", _, _) => NONE
›
simproc_setup
unsigned_norm ("numeral n::'a::len word") = ‹unsigned_norm false›
simproc_setup
unsigned_norm_neg0 ("-numeral (num.Bit0 num)::'a::len word") = ‹unsigned_norm true›
simproc_setup
unsigned_norm_neg1 ("-numeral (num.Bit1 num)::'a::len word") = ‹unsigned_norm true›
lemma minus_one_norm:
"(-1 :: 'a :: len word) = of_nat (2 ^ LENGTH('a) - 1)"
by (simp add:of_nat_diff)
lemmas minus_one_norm_num =
minus_one_norm [where 'a="'b::len bit0"] minus_one_norm [where 'a="'b::len0 bit1"]
context
begin
private lemma "f (7 :: 2 word) = f 3" by simp
private lemma "f 7 = f (3 :: 2 word)" by simp
private lemma "f (-2) = f (21 + 1 :: 3 word)" by simp
private lemma "f (-2) = f (13 + 1 :: 'a::len word)"
apply simp
oops
private lemma "f (-2) = f (0xFFFFFFFE :: 32 word)" by simp
private lemma "(-1 :: 2 word) = 3" by simp
private lemma "f (-2) = f (0xFFFFFFFE :: 32 signed word)" by simp
text ‹
We leave @{term "-1"} untouched by default, because it is often useful
and its normal form can be large.
To include it in the normalisation, add @{thm [source] minus_one_norm_num}.
The additional normalisation is restricted to concrete numeral word lengths,
like the rest.
›
context
notes minus_one_norm_num [simp]
begin
private lemma "f (-1) = f (15 :: 4 word)" by simp
private lemma "f (-1) = f (7 :: 3 word)" by simp
private lemma "f (-1) = f (0xFFFF :: 16 word)" by simp
private lemma "f (-1) = f (0xFFFF + 1 :: 'a::len word)"
apply simp
oops
end
end
end