Theory Word_Lib.Next_and_Prev
section‹Increment and Decrement Machine Words Without Wrap-Around›
theory Next_and_Prev
imports
Aligned
begin
text ‹Previous and next words addresses, without wrap around.›
lift_definition word_next :: ‹'a::len word ⇒ 'a word›
is ‹λk. if 2 ^ LENGTH('a) dvd k + 1 then - 1 else k + 1›
by (simp flip: take_bit_eq_0_iff) (metis take_bit_add)
lift_definition word_prev :: ‹'a::len word ⇒ 'a word›
is ‹λk. if 2 ^ LENGTH('a) dvd k then 0 else k - 1›
by (simp flip: take_bit_eq_0_iff) (metis take_bit_diff)
lemma word_next_unfold:
‹word_next w = (if w = - 1 then - 1 else w + 1)›
by transfer (simp flip: take_bit_eq_mask_iff_exp_dvd)
lemma word_prev_unfold:
‹word_prev w = (if w = 0 then 0 else w - 1)›
by transfer (simp flip: take_bit_eq_0_iff)
lemma [code]:
‹Word.the_int (word_next w :: 'a::len word) =
(if w = - 1 then Word.the_int w else Word.the_int w + 1)›
by transfer
(simp add: mask_eq_exp_minus_1 take_bit_incr_eq flip: take_bit_eq_mask_iff_exp_dvd)
lemma [code]:
‹Word.the_int (word_prev w :: 'a::len word) =
(if w = 0 then Word.the_int w else Word.the_int w - 1)›
by transfer (simp add: take_bit_eq_0_iff take_bit_decr_eq)
lemma word_adjacent_union:
"word_next e = s' ⟹ s ≤ e ⟹ s' ≤ e' ⟹ {s..e} ∪ {s'..e'} = {s .. e'}"
apply (simp add: word_next_unfold ivl_disj_un_two_touch split: if_splits)
apply (drule sym)
apply simp
apply (subst word_atLeastLessThan_Suc_atLeastAtMost_union)
apply (simp_all add: word_Suc_le)
done
end