Theory Relative_Security
section ‹Relative Security›
text ‹ This theory formalizes the general notion of relative security,
applicable to possibly infinite traces. ›
theory Relative_Security
imports Relative_Security_fin "Preliminaries/Trivia"
begin
no_notation relcomp (infixr "O" 75)
no_notation relcompp (infixr "OO" 75)
subsection ‹Leakage models and attacker models ›
locale Leakage_Mod = System_Mod istate validTrans final
for istate :: "'state ⇒ bool" and validTrans :: "'state × 'state ⇒ bool" and final :: "'state ⇒ bool"
+
fixes S :: "'state llist ⇒ 'secret llist"
and A :: "'state ltrace ⇒ 'act llist"
and O :: "'state ltrace ⇒ 'obs llist"
and lleakVia :: "'state llist ⇒ 'state llist ⇒ 'leak ⇒ bool"
locale Attacker_Mod = System_Mod istate validTrans final
for istate :: "'state ⇒ bool" and validTrans :: "'state × 'state ⇒ bool" and final :: "'state ⇒ bool"
+
fixes S :: "'state llist ⇒ 'secret llist"
and A :: "'state ltrace ⇒ 'act llist"
and O :: "'state ltrace ⇒ 'obs llist"
begin
fun lleakVia :: "'state llist ⇒ 'state llist ⇒ 'secret llist × 'secret llist ⇒ bool"
where
"lleakVia tr tr' (sl,sl') = (S tr = sl ∧ S tr' = sl' ∧ A tr = A tr' ∧ O tr ≠ O tr')"
lemmas lleakVia_def = lleakVia.simps
end
sublocale Attacker_Mod < Leakage_Mod
where lleakVia = lleakVia
by standard
subsection ‹Locales for increasingly concrete notions of relative security ›
locale Relative_Security'' =
Van: Leakage_Mod istateV validTransV finalV SV AV OV lleakViaV
+
Opt: Leakage_Mod istateO validTransO finalO SO AO OO lleakViaO
for validTransV :: "'stateV × 'stateV ⇒ bool"
and istateV :: "'stateV ⇒ bool" and finalV :: "'stateV ⇒ bool"
and SV :: "'stateV llist ⇒ 'secret llist"
and AV :: "'stateV ltrace ⇒ 'actV llist"
and OV :: "'stateV ltrace ⇒ 'obsV llist"
and lleakViaV :: "'stateV llist ⇒ 'stateV llist ⇒ 'leak ⇒ bool"
and validTransO :: "'stateO × 'stateO ⇒ bool"
and istateO :: "'stateO ⇒ bool" and finalO :: "'stateO ⇒ bool"
and SO :: "'stateO llist ⇒ 'secret llist"
and AO :: "'stateO ltrace ⇒ 'actO llist"
and OO :: "'stateO ltrace ⇒ 'obsO llist"
and lleakViaO :: "'stateO llist ⇒ 'stateO llist ⇒ 'leak ⇒ bool"
and corrState :: "'stateV ⇒ 'stateO ⇒ bool"
begin
definition lrsecure :: bool where
"lrsecure ≡ ∀l s1 tr1 s2 tr2.
istateO s1 ∧ Opt.lvalidFromS s1 tr1 ∧ Opt.lcompletedFrom s1 tr1 ∧
istateO s2 ∧ Opt.lvalidFromS s2 tr2 ∧ Opt.lcompletedFrom s2 tr2 ∧
lleakViaO tr1 tr2 l
⟶
(∃sv1 trv1 sv2 trv2.
istateV sv1 ∧ istateV sv2 ∧ corrState sv1 s1 ∧ corrState sv2 s2 ∧
Van.lvalidFromS sv1 trv1 ∧ Van.lcompletedFrom sv1 trv1 ∧
Van.lvalidFromS sv2 trv2 ∧ Van.lcompletedFrom sv2 trv2 ∧
lleakViaV trv1 trv2 l)"
end
locale Relative_Security' =
Van: Attacker_Mod istateV validTransV finalV SV AV OV
+
Opt: Attacker_Mod istateO validTransO finalO SO AO OO
for validTransV :: "'stateV × 'stateV ⇒ bool"
and istateV :: "'stateV ⇒ bool" and finalV :: "'stateV ⇒ bool"
and SV :: "'stateV llist ⇒ 'secret llist"
and AV :: "'stateV ltrace ⇒ 'actV llist"
and OV :: "'stateV ltrace ⇒ 'obsV llist"
and validTransO :: "'stateO × 'stateO ⇒ bool"
and istateO :: "'stateO ⇒ bool" and finalO :: "'stateO ⇒ bool"
and SO :: "'stateO llist ⇒ 'secret llist"
and AO :: "'stateO ltrace ⇒ 'actO llist"
and OO :: "'stateO ltrace ⇒ 'obsO llist"
and corrState :: "'stateV ⇒ 'stateO ⇒ bool"
sublocale Relative_Security' < Relative_Security''
where lleakViaV = Van.lleakVia and lleakViaO = Opt.lleakVia
by standard
context Relative_Security'
begin
lemma lrsecure_def2:
"lrsecure ⟷
(∀s1 tr1 s2 tr2.
istateO s1 ∧ Opt.lvalidFromS s1 tr1 ∧ Opt.lcompletedFrom s1 tr1 ∧
istateO s2 ∧ Opt.lvalidFromS s2 tr2 ∧ Opt.lcompletedFrom s2 tr2 ∧
AO tr1 = AO tr2 ∧ OO tr1 ≠ OO tr2
⟶
(∃sv1 trv1 sv2 trv2.
istateV sv1 ∧ istateV sv2 ∧ corrState sv1 s1 ∧ corrState sv2 s2 ∧
Van.lvalidFromS sv1 trv1 ∧ Van.lcompletedFrom sv1 trv1 ∧
Van.lvalidFromS sv2 trv2 ∧ Van.lcompletedFrom sv2 trv2 ∧
SV trv1 = SO tr1 ∧ SV trv2 = SO tr2 ∧
AV trv1 = AV trv2 ∧ OV trv1 ≠ OV trv2))"
unfolding lrsecure_def
unfolding Van.lleakVia_def Opt.lleakVia_def
by auto metis
end
context Statewise_Attacker_Mod begin
definition lA :: "'state ltrace ⇒ 'act llist" where
"lA tr ≡ lfiltermap isInt getAct (lbutlast tr)"
sublocale lA: LfiltermapBL isInt getAct lA
apply standard unfolding lA_def ..
lemma lA: "lcompletedFrom s tr ⟹ lA tr = lmap getAct (lfilter isInt tr)"
apply(cases "lfinite tr")
subgoal unfolding lA.lmap_lfilter lbutlast_def
by simp (metis final_not_isInt lbutlast_lfinite lcompletedFrom_def lfilter_llist_of lfiltermap_lmap_lfilter lfinite_lfiltermap_butlast llast_llist_of llist_of_list_of lmap_llist_of)
subgoal unfolding lA.lmap_lfilter lbutlast_def by auto .
definition lO :: "'state ltrace ⇒ 'obs llist" where
"lO tr ≡ lfiltermap isInt getObs (lbutlast tr)"
sublocale lO: LfiltermapBL isInt getObs lO
apply standard unfolding lO_def ..
lemma lO: "lcompletedFrom s tr ⟹ lO tr = lmap getObs (lfilter isInt tr)"
apply(cases "lfinite tr")
subgoal unfolding lO.lmap_lfilter lbutlast_def
by simp (metis List_Filtermap.filtermap_def butlast.simps(1) filtermap_butlast final_not_isInt lcompletedFrom_def lfilter_llist_of llist_of_list_of lmap_llist_of)
subgoal unfolding lO.lmap_lfilter lbutlast_def by auto .
definition lS :: "'state llist ⇒ 'secret llist" where
"lS tr ≡ lfiltermap isSec getSec (lbutlast tr)"
sublocale lS: LfiltermapBL isSec getSec lS
apply standard unfolding lS_def ..
lemma lS: "lcompletedFrom s tr ⟹ lS tr = lmap getSec (lfilter isSec tr)"
apply(cases "lfinite tr")
subgoal unfolding lS.lmap_lfilter lbutlast_def
by simp (metis List_Filtermap.filtermap_def filtermap_butlast final_not_isSec lcompletedFrom_def lfilter_llist_of llist_of_eq_LNil_conv llist_of_list_of lmap_llist_of)
subgoal unfolding lS.lmap_lfilter lbutlast_def by auto .
end
sublocale Statewise_Attacker_Mod < Attacker_Mod
where S = lS and A = lA and O = lO
by standard
sublocale Rel_Sec < Relative_Security'
where SV = Van.lS and AV = Van.lA and OV = Van.lO
and SO = Opt.lS and AO = Opt.lA and OO = Opt.lO
by standard
context Rel_Sec
begin
abbreviation lcompletedFromV :: "'stateV ⇒ 'stateV llist ⇒ bool" where "lcompletedFromV ≡ Van.lcompletedFrom"
abbreviation lcompletedFromO :: "'stateO ⇒ 'stateO llist ⇒ bool" where "lcompletedFromO ≡ Opt.lcompletedFrom"
lemma eqSec_lS_Cons':
"eqSec trnO trnA ⟹
(Van.lS (trnO $ trO') = Opt.lS (trnA $ trA')) ⟹ Van.lS trO' = Opt.lS trA'"
apply(cases "trO' = [[]]")
subgoal apply(cases "trA' = [[]]")
subgoal by auto
subgoal unfolding eqSec_def by auto .
subgoal apply(cases "trA' = [[]]")
subgoal by auto
subgoal unfolding eqSec_def by auto . .
lemma eqSec_lS_Cons[simp]:
"eqSec trnO trnA ⟹ trO' = [[]] ⟷ trA' = [[]] ⟹
(Van.lS (trnO $ trO') = Opt.lS (trnA $ trA')) ⟷ (Van.lS trO' = Opt.lS trA')"
apply(cases "trO' = [[]]")
subgoal apply(cases "trA' = [[]]")
subgoal by auto
subgoal unfolding eqSec_def by auto .
subgoal apply(cases "trA' = [[]]")
subgoal by auto
subgoal unfolding eqSec_def by auto . .
end
end