Theory Trivia
section ‹Trivia›
text ‹ This theory contains some preliminary facts about lists and lazy-lists, including
coinduction for filtermap. ›
theory Trivia
imports Main "HOL-Library.Sublist" More_LazyLists.LazyList_Filtermap
begin
subsection ‹Facts about lists›
lemma butlast_append2[simp]: "butlast (ys @ [y, y']) = (ys @ [y])"
by (metis butlast_append butlast_snoc list.discI two_singl_Rcons)
lemma less2_induct[case_names less]:
assumes "(⋀(x::nat) (a::nat). (⋀y b. y < x ⟹ P y b) ⟹ (⋀b. b < a ⟹ P x b) ⟹ P x a)"
shows "P x a"
proof-
define R where "R = {((y::nat,b::nat),(x,a)) . y < x ∨ y = x ∧ b < a}"
have 0: "R = lex_prod {(x,y) . x < y} {(x,y) . x < y}"
unfolding R_def by auto
have 1: "wf R" unfolding 0 by (simp add: wf wf_lex_prod)
define Q where "Q ≡ λ(x,a). P x a"
{fix xa have "Q xa" apply(rule wf_induct[OF 1])
using assms unfolding Q_def R_def by auto
}
thus ?thesis unfolding Q_def by auto
qed
lemma less2_induct'[case_names less]:
assumes "(⋀(x::'a::wellorder) (a::'w::wellorder). (⋀y b. y < x ⟹ P y b) ⟹ (⋀b. b < a ⟹ P x b) ⟹ P x a)"
shows "P x a"
proof-
define R where "R = {((y::'a::wellorder,b::'w::wellorder),(x,a)) . y < x ∨ y = x ∧ b < a}"
have 0: "R = lex_prod {(x,y) . x < y} {(x,y) . x < y}"
unfolding R_def by auto
have 1: "wf R" unfolding 0 by (simp add: wf wf_lex_prod)
define Q where "Q ≡ λ(x,a). P x a"
{fix xa have "Q xa" apply(rule wf_induct[OF 1])
using assms unfolding Q_def R_def by auto
}
thus ?thesis unfolding Q_def by auto
qed
lemma less2_induct''[consumes 1, case_names less]:
assumes W: "wf (W::'w rel)" and
"(⋀(x::'a::wellorder) a. (⋀y b. y < x ⟹ P y b) ⟹ (⋀b. (b,a) ∈ W ⟹ P x b) ⟹ P x a)"
shows "P x a"
proof-
define R where "R = {((y::'a::wellorder,b::'w),(x,a)) . y < x ∨ y = x ∧ (b,a) ∈ W}"
have 0: "R = lex_prod {(x,y) . x < y} {(x,y) . (x,y) ∈ W}"
unfolding R_def by auto
have 1: "wf R" unfolding 0 using W by (simp add: wf wf_lex_prod)
define Q where "Q ≡ λ(x,a). P x a"
{fix xa have "Q xa" apply(rule wf_induct[OF 1])
using assms unfolding Q_def R_def by auto
}
thus ?thesis unfolding Q_def by auto
qed
lemma drop_Suc: "n < length xs ⟹ drop n xs = Cons (nth xs n) (drop (Suc n) xs)"
by (simp add: Cons_nth_drop_Suc)
lemma append_take_nth_drop: "n < length xs ⟹
append (take n xs) (Cons (nth xs n) (drop (Suc n) xs)) = xs"
by (metis append_take_drop_id drop_Suc)
lemmas list_all_nth = list_all_length
lemma list_all_hd:
assumes ‹list_all P xs›
and ‹xs ≠ []›
shows ‹P (hd xs)›
using assms by (metis list.collapse list_all_simps(1))
lemma measure_induct2[case_names IH]:
fixes meas :: "'a ⇒ 'b ⇒ nat"
assumes "⋀x1 x2. (⋀y1 y2. meas y1 y2 < meas x1 x2 ⟹ S y1 y2) ⟹ S x1 x2"
shows "S x1 x2"
proof-
let ?m = "λ x1x2. meas (fst x1x2) (snd x1x2)" let ?S = "λ x1x2. S (fst x1x2) (snd x1x2)"
have "?S (x1,x2)"
apply(rule measure_induct[of ?m ?S])
using assms by (metis fst_conv snd_conv)
thus ?thesis by auto
qed
abbreviation lmember ("(_/ ∈∈ _)" [50, 51] 50) where "x ∈∈ xs ≡ x ∈ set xs"
abbreviation cmap :: "('b ⇒ 'a list) ⇒ 'b list ⇒ 'a list" where
"cmap ff aal ≡ concat (map ff aal)"
lemma cmap_empty:
assumes "∀ x. x ∈∈ xl ⟶ ff x = []"
shows "cmap ff xl = []"
using assms by (induct xl) auto
lemma cmap_cong_empty:
assumes "∀ x. ff x = [] ∧ gg x = []"
shows "cmap ff xl = cmap gg yl"
using assms by (auto simp: cmap_empty)
lemma list_ex_cmap:
"list_ex P (cmap f xs) ⟷ (∃ x. x ∈∈ xs ∧ list_ex P (f x))"
by (induction xs) auto
lemma not_list_ex_filter:
assumes "¬ list_ex P xs" shows "filter P xs = []"
using assms by (induct xs) auto
lemma cmap_filter_cong:
assumes "⋀ x u. x ∈∈ xs ⟹ u ∈∈ ff x ⟹ (q x ⟷ p u)"
and "⋀ x. x ∈∈ xs ⟹ q x ⟹ gg x = ff x"
shows "cmap ((filter p) o ff) xs = cmap gg (filter q xs)"
using assms by (induction xs) fastforce+
lemma cmap_cong:
assumes "xs = ys" and "⋀x. x ∈∈ xs ⟹ ff x = gg x"
shows "cmap ff xs = cmap gg ys"
using assms by (induction xs arbitrary: ys) auto
lemma cmap_empty_singl_filter[simp]:
"cmap (λx. if pred x then [x] else []) xl = filter pred xl"
by (induct xl) auto
fun these :: "'a option list ⇒ 'a list" where
"these [] = []"
| "these (None # xs) = these xs"
| "these (Some x # xs) = x # these xs"
lemma these_map_Some'[simp]: "these (map Some xs) = xs"
by (induct xs) auto
lemma these_map_Some[simp]: "these (map (Some o f) xs) = map f xs"
by (induct xs) auto
definition "takeUntil pred xs ≡
append (takeWhile (λx. ¬ pred x) xs) [hd (dropWhile (λx. ¬ pred x) xs)]"
definition "dropUntil pred xs ≡ tl (dropWhile (λx. ¬ pred x) xs)"
lemma append_takeUntil_dropUntil:
"∃x∈set xs. pred x ⟹ append (takeUntil pred xs) (dropUntil pred xs) = xs"
by (simp add: dropUntil_def takeUntil_def)
lemma takeUntil_not_Nil:
assumes "∃x∈set xs. pred x"
shows "takeUntil pred xs ≠ []"
by (simp add: takeUntil_def)
lemma takeUntil_ex_butlast:
assumes "∃x∈set xs. pred x" "y ∈ set (butlast (takeUntil pred xs))"
shows "¬ pred y"
using assms unfolding takeUntil_def
by (metis butlast_snoc set_takeWhileD)
lemma takeUntil_last:
assumes "∃x∈set xs. pred x"
shows "pred (last (takeUntil pred xs))"
using assms unfolding takeUntil_def
by (metis dropWhile_eq_Nil_conv hd_dropWhile last_snoc)
lemma takeUntil_last_butlast:
assumes "∃x∈set xs. pred x"
shows "takeUntil pred xs = append (butlast (takeUntil pred xs)) [last (takeUntil pred xs)]"
by (simp add: assms takeUntil_not_Nil)
subsection ‹Facts about lists›
text ‹The two-element datatype of turns will be used in the soundness proof for unwinding. ›
datatype turn = L | R
fun switch where "switch L = R" | "switch R = L"
instantiation turn :: wellorder
begin
definition less_eq_turn :: "turn ⇒ turn ⇒ bool" where
"less_eq_turn trn trn' ⟷ trn = trn' ∨ trn' = R"
definition less_turn :: "turn ⇒ turn ⇒ bool" where
"less_turn trn trn' ⟷ trn = L ∧ trn' = R"
instance apply standard unfolding less_eq_turn_def less_turn_def
using switch.cases by auto
end
declare less_eq_turn_def [simp] less_turn_def [simp]
definition TWW :: "((turn × enat × enat) × (turn × enat × enat)) set" where
"TWW ≡ {((trn,wL,wR), (trn',wL',wR')) | trn wL wR trn' wL' wR' .
trn < trn' ∨
trn = trn' ∧ (trn = L ∧ trn' = L ∧ wL < wL' ∨ trn = R ∧ trn' = R ∧ wR < wR')}"
lemma wf_TWW: "wf TWW"
proof-
define WL :: "((turn × enat × enat) × (turn × enat × enat)) set"
where "WL ≡ {((trn,wL,wR), (trn',wL',wR')) | trn wL wR trn' wL' wR' .
trn = L ∧ trn' = L ∧ wL < wL'}"
have "WL ⊆ inv_image {(w,w') . w < w'} (λ(trn,wL,wR). wL)"
unfolding WL_def inv_image_def by auto
hence wfWL: "wf WL" using wf wf_inv_image wf_subset by blast
define WR :: "((turn × enat × enat) × (turn × enat × enat)) set"
where "WR ≡ {((trn,wL,wR), (trn',wL',wR')) | trn wL wR trn' wL' wR' .
trn = R ∧ trn' = R ∧ wR < wR'}"
have "WR ⊆ inv_image {(w,w') . w < w'} (λ(trn,wL,wR). wR)"
unfolding WR_def inv_image_def by auto
hence wfWR: "wf WR" using wf wf_inv_image wf_subset by blast
have wfWW: "wf (WL ∪ WR)" apply(rule wf_Un)
using wfWL wfWR unfolding WL_def WR_def by auto
define f where "f ≡ λ(trn::turn,wL::enat,wR::enat). (trn,(trn,wL,wR))"
have TWW: "TWW = inv_image (lex_prod {(trn::turn,trn') . trn < trn'} (WL ∪ WR)) f"
unfolding TWW_def WL_def WR_def inv_image_def f_def by auto
show ?thesis unfolding TWW
using wf wfWW by blast
qed
subsection ‹Facts about filtermap on lazy lists ›
text ‹Soem customization of the coinduction principles for
filtermap equality -- to accommodate turns. ›
context TwoFuncPred
begin
lemmas sameFM_selectLNil = disjI1
lemmas sameFM_selectSingl = disjI2[OF disjI1]
lemmas sameFM_selectlappend = disjI2[OF disjI2[OF disjI1]]
lemmas sameFM_selectlmap_lfilter = disjI2[OF disjI2[OF disjI2]]
coinductive sameFM1 :: "turn ⇒ enat ⇒ enat ⇒ 'a llist ⇒ 'a' llist ⇒ bool" where
LNil:
"sameFM1 trn wL wR [[]] [[]]"
|
Singl:
"(pred a ⟷ pred' a') ⟹ (pred a ⟶ func a = func' a') ⟹ sameFM1 trn wL wR [[a]] [[a']]"
|
lappend:
"xs ≠ [] ⟹ xs' ≠ [] ⟹
map func (filter pred xs) = map func' (filter pred' xs') ⟹
sameFM1 trn' vL vR as as'
⟹ sameFM1 trn wL wR (lappend (llist_of xs) as) (lappend (llist_of xs') as')"
|
DelayL:
"vL < wL ⟹ map func (filter pred xs) = map func' (filter pred' xs') ⟹
sameFM1 L vL vR as as'
⟹ sameFM1 L wL wR (lappend (llist_of xs) as) (lappend (llist_of xs') as')"
|
DelayR:
"vR < wR ⟹ map func (filter pred xs) = map func' (filter pred' xs') ⟹
sameFM1 R vL vR as as'
⟹ sameFM1 R wL wR (lappend (llist_of xs) as) (lappend (llist_of xs') as')"
|
RL:
"map func (filter pred xs) = map func' (filter pred' xs') ⟹
sameFM1 L vL vR as as'
⟹ sameFM1 R wL wR (lappend (llist_of xs) as) (lappend (llist_of xs') as')"
lemmas sameFM1_selectLNil = disjI1
lemmas sameFM1_selectSingl = disjI2[OF disjI1]
lemmas sameFM1_selectlappend = disjI2[OF disjI2[OF disjI1]]
lemmas sameFM1_selectDelayL = disjI2[OF disjI2[OF disjI2[OF disjI1]]]
lemmas sameFM1_selectDelayR = disjI2[OF disjI2[OF disjI2[OF disjI2[OF disjI1]]]]
lemmas sameFM1_selectRL = disjI2[OF disjI2[OF disjI2[OF disjI2[OF disjI2]]]]
proposition sameFM1_lmap_lfilter:
assumes "sameFM1 trn wL wR as as'"
shows "lmap func (lfilter pred as) = lmap func' (lfilter pred' as')"
proof-
define P where "P ≡ λ(trn,wL,wR) as as'. sameFM1 trn wL wR as as'"
show ?thesis
apply(rule lmap_lfilter_lappend_coind_wf[OF wf_TWW, of P "(trn,wL,wR)"])
subgoal using assms unfolding P_def by simp
subgoal for w lxs lxs' apply (cases w)
unfolding P_def apply clarify apply (erule sameFM1.cases)
by (fastforce elim: sameFM1.cases simp: TWW_def less_turn_def)+ .
qed
coinductive sameFM2 :: "turn ⇒ enat ⇒ enat ⇒ 'a llist ⇒ 'a' llist ⇒ bool" where
LNil:
"sameFM2 trn wL wR [[]] [[]]"
|
Singl:
"(pred a ⟷ pred' a') ⟹ (pred a ⟶ func a = func' a') ⟹ sameFM2 trn wL wR [[a]] [[a']]"
|
lappend:
"xs ≠ [] ⟹ xs' ≠ [] ⟹
map func (filter pred xs) = map func' (filter pred' xs') ⟹
sameFM2 trn' vL vR as as'
⟹ sameFM2 trn wL wR (lappend (llist_of xs) as) (lappend (llist_of xs') as')"
|
DelayL:
"vL < wL ⟹ map func (filter pred xs) = map func' (filter pred' xs') ⟹
sameFM2 L vL vR as as'
⟹ sameFM2 L wL wR (lappend (llist_of xs) as) (lappend (llist_of xs') as')"
|
DelayR:
"vR < wR ⟹ map func (filter pred xs) = map func' (filter pred' xs') ⟹
sameFM2 R vL vR as as'
⟹ sameFM2 R wL wR (lappend (llist_of xs) as) (lappend (llist_of xs') as')"
|
LR:
"map func (filter pred xs) = map func' (filter pred' xs') ⟹
sameFM2 R vL vR as as'
⟹ sameFM2 L wL wR (lappend (llist_of xs) as) (lappend (llist_of xs') as')"
lemmas sameFM2_selectLNil = disjI1
lemmas sameFM2_selectSingl = disjI2[OF disjI1]
lemmas sameFM2_selectlappend = disjI2[OF disjI2[OF disjI1]]
lemmas sameFM2_selectDelayL = disjI2[OF disjI2[OF disjI2[OF disjI1]]]
lemmas sameFM2_selectDelayR = disjI2[OF disjI2[OF disjI2[OF disjI2[OF disjI1]]]]
lemmas sameFM2_selectLR = disjI2[OF disjI2[OF disjI2[OF disjI2[OF disjI2]]]]
lemma switch: "switch trn = (if trn = L then R else L)"
by(cases trn, auto)
lemma sameFM2_lmap_lfilter:
assumes "sameFM2 trn wL wR as as'"
shows "lmap func (lfilter pred as) = lmap func' (lfilter pred' as')"
proof-
define P where "P ≡ λ(trn,wR,wL) as as'. sameFM2 (switch trn) wL wR as as'"
show ?thesis
apply(rule lmap_lfilter_lappend_coind_wf[OF wf_TWW, of P "(switch trn,wR,wL)"])
subgoal using assms unfolding P_def
using switch switch.cases by auto
subgoal for w lxs lxs' apply (cases w) subgoal for trn wL wR
unfolding P_def apply clarify apply (erule sameFM2.cases)
subgoal by fastforce
subgoal using sameFM.Singl sameFM_lmap_lfilter by auto
subgoal by (smt (verit, best) case_prod_conv switch turn.exhaust)
subgoal unfolding TWW_def less_turn_def
by simp (metis (full_types) switch.elims)
subgoal unfolding TWW_def less_turn_def
by simp (metis (full_types) switch.elims)
subgoal unfolding TWW_def less_turn_def
by simp (metis (full_types) switch.elims) . . .
qed
end
subsection ‹More locale infrastructure for list-filtermap
and lazy-list-filtermap ›
text ‹Locale for applying filtermap to all-but-the-last elements of
a list ›
locale FiltermapBL =
fixes pred and func and filtermapBL
assumes FiltermapBL: "filtermapBL tr = filtermap pred func (butlast tr)"
begin
lemma map_filter: "filtermapBL tr = map func (filter pred (butlast tr))"
unfolding FiltermapBL filtermap_def ..
lemma simps[simp]:
"filtermapBL [] = []" "¬ pred s ⟹ filtermapBL (s # tr) = filtermapBL tr"
"pred s ⟹ tr ≠ [] ⟹ filtermapBL (s # tr) = func s # filtermapBL tr"
"filtermapBL [s] = []"
unfolding FiltermapBL by auto
lemma iff_Nil[simp]: "filtermapBL (s # tr) = [] ⟷ (¬ pred s ∨ tr = []) ∧ filtermapBL tr = []"
unfolding FiltermapBL by (cases "pred s", auto)
lemma Nil_iff: "[] = filtermapBL (s # tr) ⟷ (¬ pred s ∨ tr = []) ∧ filtermapBL tr = []"
unfolding FiltermapBL by (cases "pred s", auto)
lemma Cons_unfold: "filtermapBL (s # tr) = (if pred s then (if tr = [] then [] else func s # filtermapBL tr) else filtermapBL tr)"
by auto
lemma length: "length (filtermapBL tr) ≤ length tr"
unfolding FiltermapBL
by (metis diff_le_self dual_order.trans length_butlast length_filtermap)
lemma length_Nil[simp]: "length tr ≤ Suc 0 ⟹ filtermapBL tr = []"
unfolding FiltermapBL by (cases tr, auto)
lemma eq_Nil_iff:
"filtermapBL tr = [] ⟷ never pred (butlast tr)"
"[] = filtermapBL tr ⟷ never pred (butlast tr)"
by (metis FiltermapBL filtermap_Nil_never)+
lemma eq_Cons:
assumes 1: "filtermapBL tr = Cons obs obsl'"
shows "∃trv1 s tr'. tr = append trv1 (Cons s tr') ∧ never pred trv1 ∧
pred s ∧ func s = obs ∧ filtermapBL tr' = obsl'"
proof-
have "tr ≠ []" using 1 by auto
note 1 = this 1
have "¬ never pred (butlast tr)"
by (metis eq_Nil_iff(2) 1(2) list.distinct(1))
then obtain ii where ii: "ii < length (butlast tr) ∧ pred (nth (butlast tr) ii)"
unfolding list_all_nth by auto
define i where "i = (LEAST ii. ii < length (butlast tr) ∧ pred (nth (butlast tr) ii))"
have i: "i < length (butlast tr)" "pred (nth (butlast tr) i)"
and min_i: "⋀j. j < i ⟹ ¬ pred (nth (butlast tr) j)"
unfolding i_def
by (smt (verit, ccfv_SIG) LeastI_ex dual_order.strict_trans enat_ord_simps(2) ii not_less_Least)+
hence isInt: "pred (nth tr i)" by (simp add: nth_butlast)
have [simp]: "¬ length tr ≤ Suc i"
using i(1) by auto
show ?thesis
proof(rule exI[of _ "take i tr"], rule exI[of _ "nth tr i"],
rule exI[of _ "drop (Suc i) tr"],intro conjI)
show 2: "tr = take i tr @ tr ! i # drop (Suc i) tr"
apply(rule sym) apply(rule append_take_nth_drop)
using i(1) by auto
have "butlast tr = take i tr @ (butlast (tr ! i # drop (Suc i) tr))"
by (metis "2" butlast_append list.distinct(1))
hence 22: "butlast tr = take i tr @ (tr ! i # butlast (drop (Suc i) tr))" by simp
show 3: "never pred (take i tr)"
unfolding list_all_nth
by simp (metis i(1) min_i nth_butlast order_less_trans)
have 33: "map func (filter pred (take i tr)) = []"
by simp (metis "3" never_Nil_filter)
show 4: "pred (nth tr i)" by fact
show "func (nth tr i) = obs"
using 1 4 by(simp add: map_filter 22 33)
show "filtermapBL (drop (Suc i) tr) = obsl'"
using 1 4 by(simp add: map_filter 22 33)
qed
qed
end
text ‹Locale for applying filtermap to all-but-the-last elements of
a lazy list. (If the lazy list is infinite, it is applied to all.) ›
locale LfiltermapBL =
fixes pred and func and lfiltermapBL
assumes LfiltermapBL: "lfiltermapBL tr = lfiltermap pred func (lbutlast tr)"
begin
lemma lmap_lfilter: "lfiltermapBL tr = lmap func (lfilter pred (lbutlast tr))"
unfolding LfiltermapBL lfiltermap_lmap_lfilter ..
lemma simps[simp]:
"lfiltermapBL [[]] = [[]]" "¬ pred s ⟹ lfiltermapBL (s $ tr) = lfiltermapBL tr"
"pred s ⟹ tr ≠ [[]] ⟹ lfiltermapBL (s $ tr) = func s $ lfiltermapBL tr"
"lfiltermapBL [[s]] = [[]]"
unfolding LfiltermapBL lfiltermap_def
by auto (metis lbutlast_Cons lbutlast_LNil lbutlast_singl lfilter_LCons_seek)
lemma iff_Nil[simp]: "lfiltermapBL (s $ tr) = [[]] ⟷ (¬ pred s ∨ tr = [[]]) ∧ lfiltermapBL tr = [[]]"
unfolding LfiltermapBL lfiltermap_def
by (metis lbutlast_Cons lbutlast_LNil lbutlast_singl lfilter_LCons_found llist.distinct(1) lmap_eq_LNil lmap_lfilter simps(2))
lemma Nil_iff: "[[]] = lfiltermapBL (s $ tr) ⟷ (¬ pred s ∨ tr = [[]]) ∧ lfiltermapBL tr = [[]]"
apply(subst iff_Nil[symmetric]) by metis
lemma Cons_unfold: "lfiltermapBL (s $ tr) = (if pred s then (if tr = [[]] then [[]] else func s $ lfiltermapBL tr) else lfiltermapBL tr)"
by auto
lemma length: "llength (lfiltermapBL tr) ≤ llength tr"
unfolding LfiltermapBL lfiltermap_def
by simp (metis dual_order.trans epred_conv_minus ile_eSuc lbutlast_LNil llength_LCons
llength_lbutlast llength_lfilter_ile llength_ltl llist.exhaust_sel)
lemma eq_LNil_iff: "lfiltermapBL tr = [[]] ⟷ lnever pred (lbutlast tr)"
by (metis lmap_lfilter lfiltermap_LNil_never lfiltermap_lmap_lfilter)
lemma eq_LCons_infinite:
assumes 1: "llength tr = ∞" "lfiltermapBL tr = LCons obs obsl'"
shows "∃trv1 s tr'. tr = lappend (llist_of trv1) (LCons s tr') ∧ never pred trv1 ∧
pred s ∧ func s = obs ∧ lfiltermapBL tr' = obsl'"
proof-
have tr_bl: "lbutlast tr = tr"
by (meson assms(1) lbutlast_def llength_eq_infty_conv_lfinite)
have "¬ lnever pred tr"
by (metis assms(2) eq_LNil_iff llist.distinct(1) tr_bl)
then obtain ii where ii: "ii < llength tr ∧ pred (lnth tr ii)"
unfolding llist_all_lnth by auto
define i where "i = (LEAST ii. ii < llength tr ∧ pred (lnth tr ii))"
have i: "i < llength tr" "pred (lnth tr i)"
and min_i: "⋀j. j < i ⟹ ¬ pred (lnth tr j)"
unfolding i_def
by (smt (verit, ccfv_SIG) LeastI_ex dual_order.strict_trans enat_ord_simps(2) ii not_less_Least)+
have [simp]: "¬ llength tr ≤ i"
using i(1) by auto
show ?thesis
proof(rule exI[of _ "list_of (ltake i tr)"], rule exI[of _ "lnth tr i"],
rule exI[of _ "ldrop (Suc i) tr"], intro conjI)
show 2: "tr = lappend (llist_of (list_of (ltake (enat i) tr))) (lnth tr i $ ldrop (enat (Suc i)) tr)"
apply simp apply(rule sym) apply(rule lappend_ltake_lnth_ldrop)
using i(1) by auto
show 3: "never pred (list_of (ltake (enat i) tr))"
unfolding list_all_nth apply simp
by (simp add: i(1) length_list_of_conv_the_enat lnth_ltake min_i)
have 33: "lmap func (lfilter pred (ltake i tr)) = [[]]" apply simp
by (metis (no_types, lifting) enat_ord_simps(2) llength_ltake llist_all_lnth
lnever_LNil_lfilter lnth_ltake min_i min_less_iff_conj)
have [simp]: "min (enat i) (llength tr) = enat i"
by (simp add: assms(1))
have def2: "lfiltermapBL tr = lmap func (lfilter pred tr)"
unfolding lmap_lfilter tr_bl ..
show 4: "pred (lnth tr i)" by fact
show "func (lnth tr i) = obs"
using 1(2) unfolding def2 apply(subst (asm) 2)
using 4 apply simp unfolding lmap_lappend_distrib unfolding 33 by simp
have ll: "llength (ldrop (enat (Suc i)) tr) = ∞"
by (simp add: assms(1) ldrop_enat)
show "lfiltermapBL (ldrop (Suc i) tr) = obsl'"
using 1(2) unfolding def2 apply(subst (asm) 2)
using 4 apply simp unfolding lmap_lappend_distrib unfolding 33 apply simp
by (metis lmap_lfilter lbutlast_def ll llength_eq_infty_conv_lfinite)
qed
qed
lemma eq_LCons_finite:
assumes 1: "llength tr < ∞" "lfiltermapBL tr = LCons obs obsl'"
shows "∃trv1 s tr'. tr = lappend (llist_of trv1) (LCons s tr') ∧ never pred trv1 ∧
pred s ∧ func s = obs ∧ lfiltermapBL tr' = obsl'"
proof-
obtain ttr where tr: "tr = llist_of ttr" using 1(1)
using enat_ord_simps(4) llist_cases by blast
have [simp]: "ttr ≠ []" "tr ≠ [[]]"
using assms(2) tr by fastforce+
define ddef where "ddef ≡ λ tr. (if tr = [] then [] else filtermap pred func (butlast tr))"
have ii: "FiltermapBL pred func ddef" unfolding ddef_def FiltermapBL_def
by simp
have lo: "llength obsl' < ∞"
by (metis assms(1) assms(2) enat_ord_simps(4) leD length lfinite_code(2) llength_eq_infty_conv_lfinite)
define oobsl' where "oobsl' ≡ list_of obsl'"
have dd: "ddef ttr = Cons obs oobsl'"
unfolding ddef_def oobsl'_def apply simp
using 1(2) using LfiltermapBL_axioms[unfolded LfiltermapBL_def, rule_format, of tr]
apply simp
by (metis lfinite_code(2) lfinite_lfiltermap_filtermap lfinite_llist_of list_of_LCons list_of_llist_of llist_of_butlast tr)
obtain trv1 s tr' where 0: "ttr = trv1 @ s # tr' ∧ never pred trv1 ∧ pred s ∧ func s = obs ∧ ddef tr' = oobsl'"
using FiltermapBL.eq_Cons[OF ii dd] by auto
show ?thesis apply(rule exI[of _ trv1]) apply(rule exI[of _ s]) apply(rule exI[of _ "llist_of tr'"])
using 0 1(1) lo
by simp (metis ddef_def LfiltermapBL lappend_llist_of_llist_of lfiltermap_llist_of_filtermap
llength_eq_enat_lfiniteD llist_of.simps(1) llist_of.simps(2) llist_of_butlast llist_of_list_of oobsl'_def simps(1) tr)
qed
lemma eq_LCons:
assumes "lfiltermapBL tr = LCons obs obsl'"
shows "∃trv1 s tr'. tr = lappend (llist_of trv1) (LCons s tr') ∧ never pred trv1 ∧
pred s ∧ func s = obs ∧ lfiltermapBL tr' = obsl'"
using assms enat_ord_simps(4) eq_LCons_finite eq_LCons_infinite by blast
end
end