Theory TypeSafe

(*  Title:      JinjaThreads/J/SmallTypeSafe.thy
    Author:     Tobias Nipkow, Andreas Lochbihler
*)

section ‹Type Safety Proof›

theory TypeSafe
imports
  Progress
  DefAssPreservation
begin

subsection‹Basic preservation lemmas›

text‹First two easy preservation lemmas.›

theorem (in J_conf_read)
  shows red_preserves_hconf:
  " extTA,P,t  e,s -ta e',s'; P,E,hp s  e : T; hconf (hp s)   hconf (hp s')"
  and reds_preserves_hconf:
  " extTA,P,t  es,s [-ta→] es',s'; P,E,hp s  es [:] Ts; hconf (hp s)   hconf (hp s')"
proof (induct arbitrary: T E and Ts E rule: red_reds.inducts)
  case RedNew thus ?case
    by(auto intro: hconf_heap_ops_mono)
next
  case RedNewFail thus ?case
    by(auto intro: hconf_heap_ops_mono)
next
  case RedNewArray thus ?case
    by(auto intro: hconf_heap_ops_mono)
next
  case RedNewArrayFail thus ?case
    by(auto intro: hconf_heap_ops_mono)
next
  case (RedAAss h a U n i v U' h' l)
  from sint i < int n 0 <=s i
  have "nat (sint i) < n"
    by (simp add: word_sle_eq nat_less_iff)
  thus ?case using RedAAss
    by(fastforce elim: hconf_heap_write_mono intro: addr_loc_type.intros simp add: conf_def)
next
  case RedFAss thus ?case
    by(fastforce elim: hconf_heap_write_mono intro: addr_loc_type.intros simp add: conf_def)
next
  case RedCASSucceed thus ?case
    by(fastforce elim: hconf_heap_write_mono intro: addr_loc_type.intros simp add: conf_def)
next
  case (RedCallExternal s a U M Ts T' D vs ta va h' ta' e' s')
  hence "P,hp s  aM(vs) : T"
    by(fastforce simp add: external_WT'_iff dest: sees_method_fun)
  with RedCallExternal show ?case by(auto dest: external_call_hconf)
qed auto

theorem (in J_heap) red_preserves_lconf:
  " extTA,P,t  e,s -ta e',s'; P,E,hp s  e:T; P,hp s  lcl s (:≤) E   P,hp s'  lcl s' (:≤) E"
  and reds_preserves_lconf:
  " extTA,P,t  es,s [-ta→] es',s'; P,E,hp s  es[:]Ts; P,hp s  lcl s (:≤) E   P,hp s'  lcl s' (:≤) E"
proof(induct arbitrary: T E and Ts E rule:red_reds.inducts)
  case RedNew thus ?case
    by(fastforce intro:lconf_hext hext_heap_ops simp del: fun_upd_apply)
next
  case RedNewFail thus ?case
    by(auto intro:lconf_hext hext_heap_ops simp del: fun_upd_apply)
next
  case RedNewArray thus ?case
    by(fastforce intro:lconf_hext hext_heap_ops simp del: fun_upd_apply)
next
  case RedNewArrayFail thus ?case
    by(fastforce intro:lconf_hext hext_heap_ops simp del: fun_upd_apply)
next
  case RedLAss thus ?case 
    by(fastforce elim: lconf_upd simp add: conf_def simp del: fun_upd_apply )
next
  case RedAAss thus ?case
    by(fastforce intro:lconf_hext hext_heap_ops simp del: fun_upd_apply)
next
  case RedFAss thus ?case
    by(fastforce intro:lconf_hext hext_heap_ops simp del: fun_upd_apply)
next
  case RedCASSucceed thus ?case
    by(fastforce intro:lconf_hext hext_heap_ops simp del: fun_upd_apply)
next
  case (BlockRed e h x V vo ta e' h' x' T T' E)
  note red = extTA,P,t  e,(h, x(V := vo)) -ta e',(h', x')
  note IH = T E. P,E,hp (h, x(V := vo))  e : T;
               P,hp (h, x(V := vo))  lcl (h, x(V := vo)) (:≤) E
               P,hp (h', x')  lcl (h', x') (:≤) E
  note wt = P,E,hp (h, x)  {V:T=vo; e} : T'
  note lconf = P,hp (h, x)  lcl (h, x) (:≤) E
  from lconf_hext[OF lconf[simplified] red_hext_incr[OF red, simplified]]
  have "P,h'  x (:≤) E" .
  moreover from wt have "P,E(VT),h  e : T'" by(cases vo, auto)
  moreover from lconf wt have "P,h  x(V := vo) (:≤) E(V  T)"
    by(cases vo)(simp add: lconf_def,auto intro: lconf_upd2 simp add: conf_def)
  ultimately have "P,h'  x' (:≤) E(VT)" 
    by(auto intro: IH[simplified])
  with P,h'  x (:≤) E show ?case
    by(auto simp add: lconf_def split: if_split_asm)
next
  case (RedCallExternal s a U M Ts T' D vs ta va h' ta' e' s')
  from P,t  aM(vs),hp s -ta→ext va,h' have "hp s  h'" by(rule red_external_hext)
  with s' = (h', lcl s) P,hp s  lcl s (:≤) E show ?case by(auto intro: lconf_hext)
qed auto

text‹Combining conformance of heap and local variables:›

definition (in J_heap_conf_base) sconf :: "env  ('addr, 'heap) Jstate  bool" ("_  _ "   [51,51]50)
  where "E  s     let (h,l) = s in hconf h  P,h  l (:≤) E  preallocated h"

context J_conf_read begin

lemma red_preserves_sconf:
  " extTA,P,t  e,s -tas e',s'; P,E,hp s  e : T; E  s    E  s' "
apply(auto dest: red_preserves_hconf red_preserves_lconf simp add:sconf_def)
apply(fastforce dest: red_hext_incr intro: preallocated_hext)
done

lemma reds_preserves_sconf:
  " extTA,P,t  es,s [-ta→] es',s'; P,E,hp s  es [:] Ts; E  s    E  s' "
apply(auto dest: reds_preserves_hconf reds_preserves_lconf simp add: sconf_def)
apply(fastforce dest: reds_hext_incr intro: preallocated_hext)
done

end

lemma (in J_heap_base) wt_external_call:
  " conf_extRet P h va T; P,E,h  e : T   T'. P,E,h  extRet2J e va : T'  P  T'  T"
by(cases va)(auto simp add: conf_def)

subsection "Subject reduction"

theorem (in J_conf_read) assumes wf: "wf_J_prog P"
  shows subject_reduction:
  " extTA,P,t  e,s -ta e',s'; E  s ; P,E,hp s  e:T; P,hp s  t √t 
   T'. P,E,hp s'  e':T'  P  T'  T"
  and subjects_reduction:
  " extTA,P,t  es,s [-ta→] es',s'; E  s ; P,E,hp s  es[:]Ts; P,hp s  t √t 
   Ts'. P,E,hp s'  es'[:]Ts'  P  Ts' [≤] Ts"
proof (induct arbitrary: T E and Ts E rule:red_reds.inducts)
  case RedNew
  thus ?case by(auto dest: allocate_SomeD)
next
  case RedNewFail thus ?case unfolding sconf_def
    by(fastforce intro:typeof_OutOfMemory preallocated_heap_ops simp add: xcpt_subcls_Throwable[OF _ wf]) 
next
  case NewArrayRed
  thus ?case by fastforce
next
  case RedNewArray
  thus ?case by(auto dest: allocate_SomeD)
next
  case RedNewArrayNegative thus ?case unfolding sconf_def
    by(fastforce intro: preallocated_heap_ops simp add: xcpt_subcls_Throwable[OF _ wf]) 
next
  case RedNewArrayFail thus ?case unfolding sconf_def
    by(fastforce intro:typeof_OutOfMemory preallocated_heap_ops simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (CastRed e s ta e' s' C T E)
  have esse: "extTA,P,t  e,s -ta e',s'" 
    and IH: "T E. E  s ; P,E,hp s  e : T; P,hp s  t √t  T'. P,E,hp s'  e' : T'  P  T'  T"
    and hconf: "E  s "
    and wtc: "P,E,hp s  Cast C e : T" by fact+
  thus ?case
  proof(clarsimp)
    fix T'
    assume wte: "P,E,hp s  e : T'" "is_type P C"
    from wte and hconf and IH and P,hp s  t √t have "U. P,E,hp s'  e' : U  P  U  T'" by simp
    then obtain U where wtee: "P,E,hp s'  e' : U" and UsTT: "P  U  T'" by blast
    from wtee is_type P C have "P,E,hp s'  Cast C e' : C" by(rule WTrtCast)
    thus "T'. P,E,hp s'  Cast C e' : T'  P  T'  C" by blast
  qed
next
  case RedCast thus ?case
    by(clarsimp simp add: is_refT_def)
next
  case RedCastFail thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (InstanceOfRed e s ta e' s' U T E)
  have IH: "T E. E  s ; P,E,hp s  e : T; P,hp s  t √t  T'. P,E,hp s'  e' : T'  P  T'  T"
    and hconf: "E  s "
    and wtc: "P,E,hp s  e instanceof U : T" 
    and tconf: "P,hp s  t √t" by fact+
  from wtc obtain T' where "P,E,hp s  e : T'" by auto
  from IH[OF hconf this tconf] obtain T'' where "P,E,hp s'  e' : T''" by auto
  with wtc show ?case by auto
next
  case RedInstanceOf thus ?case
    by(clarsimp)
next
  case (BinOpRed1 e1 s ta e1' s' bop e2 T E)
  have red: "extTA,P,t  e1, s -ta e1', s'"
   and IH: "T E. E  s ; P,E,hp s  e1:T; P,hp s  t √t
                  U. P,E,hp s'  e1' : U  P  U  T"
   and conf: "E  s " and wt: "P,E,hp s  e1 «bop» e2 : T" 
   and tconf: "P,hp s  t √t" by fact+
  from wt obtain T1 T2 where wt1: "P,E,hp s  e1 : T1"
    and wt2: "P,E,hp s  e2 : T2" and wtbop: "P  T1«bop»T2 : T" by auto
  from IH[OF conf wt1 tconf] obtain T1' where wt1': "P,E,hp s'  e1' : T1'"
    and sub: "P  T1'  T1" by blast
  from WTrt_binop_widen_mono[OF wtbop sub widen_refl]
  obtain T' where wtbop': "P  T1'«bop»T2 : T'" and sub': "P  T'  T" by blast
  from wt1' WTrt_hext_mono[OF wt2 red_hext_incr[OF red]] wtbop'
  have "P,E,hp s'  e1' «bop» e2 : T'" by(rule WTrtBinOp)
  with sub' show ?case by blast
next
  case (BinOpRed2 e2 s ta e2' s' v1 bop T E)
  have red: "extTA,P,t  e2,s -ta e2',s'" by fact
  have IH: "E T. E  s ; P,E,hp s  e2:T; P,hp s  t √t
                  U. P,E,hp s'  e2' : U  P  U  T" 
    and tconf: "P,hp s  t √t" by fact+
  have conf: "E  s " and wt: "P,E,hp s  (Val v1) «bop» e2 : T" by fact+
  from wt obtain T1 T2 where wt1: "P,E,hp s  Val v1 : T1"
    and wt2: "P,E,hp s  e2 : T2" and wtbop: "P  T1«bop»T2 : T" by auto
  from IH[OF conf wt2 tconf] obtain T2' where wt2': "P,E,hp s'  e2' : T2'"
    and sub: "P  T2'  T2" by blast
  from WTrt_binop_widen_mono[OF wtbop widen_refl sub]
  obtain T' where wtbop': "P  T1«bop»T2' : T'" and sub': "P  T'  T" by blast
  from WTrt_hext_mono[OF wt1 red_hext_incr[OF red]] wt2' wtbop'
  have "P,E,hp s'  Val v1 «bop» e2' : T'" by(rule WTrtBinOp)
  with sub' show ?case by blast
next
  case (RedBinOp bop v1 v2 v s)
  from E  s  have preh: "preallocated (hp s)" by(cases s)(simp add: sconf_def)
  from P,E,hp s  Val v1 «bop» Val v2 : T obtain T1 T2
    where "typeof⇘hp sv1 = T1" "typeof⇘hp sv2 = T2" "P  T1«bop»T2 : T" by auto
  with wf preh have "P,hp s  v :≤ T" using binop bop v1 v2 = Inl v
    by(rule binop_type)
  thus ?case by(auto simp add: conf_def)
next
  case (RedBinOpFail bop v1 v2 a s)
  from E  s  have preh: "preallocated (hp s)" by(cases s)(simp add: sconf_def)
  from P,E,hp s  Val v1 «bop» Val v2 : T obtain T1 T2
    where "typeof⇘hp sv1 = T1" "typeof⇘hp sv2 = T2" "P  T1«bop»T2 : T" by auto
  with wf preh have "P,hp s  Addr a :≤ Class Throwable" using binop bop v1 v2 = Inr a
    by(rule binop_type)
  thus ?case by(auto simp add: conf_def)
next
  case RedVar thus ?case by (fastforce simp:sconf_def lconf_def conf_def)
next
  case LAssRed thus ?case by(blast intro:widen_trans)
next
  case RedLAss thus ?case by fastforce
next
  case (AAccRed1 a s ta a' s' i T E)
  have IH: "E T. E  s ; P,E,hp s  a : T; P,hp s  t √t  T'. P,E,hp s'  a' : T'  P  T'  T"
    and assa: "extTA,P,t  a,s -ta a',s'"
    and wt: "P,E,hp s  ai : T"
    and hconf: "E  s " 
    and tconf: "P,hp s  t √t" by fact+
  from wt have wti: "P,E,hp s  i : Integer" by auto
  from wti red_hext_incr[OF assa] have wti': "P,E,hp s'  i : Integer" by - (rule WTrt_hext_mono)
  { assume wta: "P,E,hp s  a : T⌊⌉"
    from IH[OF hconf wta tconf]
    obtain U where wta': "P,E,hp s'  a' : U" and UsubT: "P  U  T⌊⌉" by fastforce
    with wta' wti' have ?case by(cases U, auto simp add: widen_Array) }
  moreover
  { assume wta: "P,E,hp s  a : NT"
    from IH[OF hconf wta tconf] have "P,E,hp s'  a' : NT" by fastforce
    from this wti' have ?case
      by(fastforce intro:WTrtAAccNT) }
  ultimately show ?case using wt by auto
next
  case (AAccRed2 i s ta i' s' a T E)
  have IH: "E T. E  s ; P,E,hp s  i : T; P,hp s  t √t  T'. P,E,hp s'  i' : T'  P  T'  T"
    and issi: "extTA,P,t  i,s -ta i',s'"
    and wt: "P,E,hp s  Val ai : T"
    and sconf: "E  s " 
    and tconf: "P,hp s  t √t" by fact+
  from wt have wti: "P,E,hp s  i : Integer" by auto
  from wti IH sconf tconf have wti': "P,E,hp s'  i' : Integer" by blast
  from wt show ?case
  proof (rule WTrt_elim_cases)
    assume wta: "P,E,hp s  Val a : T⌊⌉"
    from wta red_hext_incr[OF issi] have wta': "P,E,hp s'  Val a : T⌊⌉" by (rule WTrt_hext_mono)
    from wta' wti' show ?case by(fastforce)
  next
    assume wta: "P,E,hp s  Val a : NT"
    from wta red_hext_incr[OF issi] have wta': "P,E,hp s'  Val a : NT" by (rule WTrt_hext_mono)
    from wta' wti' show ?case
      by(fastforce elim:WTrtAAccNT)
  qed
next
  case RedAAccNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case RedAAccBounds thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (RedAAcc h a T n i v l T' E)
  from E  (h, l)  have "hconf h" by(clarsimp simp add: sconf_def)
  from 0 <=s i sint i < int n
  have "nat (sint i) < n"
    by (simp add: word_sle_eq nat_less_iff)
  with typeof_addr h a = Array_type T n have "P,h  a@ACell (nat (sint i)) : T"
    by(auto intro: addr_loc_type.intros)
  from heap_read_conf[OF heap_read h a (ACell (nat (sint i))) v this] hconf h
  have "P,h  v :≤ T" by simp
  thus ?case using RedAAcc by(auto simp add: conf_def)
next
  case (AAssRed1 a s ta a' s' i e T E)
  have IH: "E T. E  s ; P,E,hp s  a : T; P,hp s  t √t  T'. P,E,hp s'  a' : T'  P  T'  T"
    and assa: "extTA,P,t  a,s -ta a',s'"
    and wt: "P,E,hp s  ai := e : T"
    and sconf: "E  s " 
    and tconf: "P,hp s  t √t" by fact+
  from wt have void: "T = Void" by blast
  from wt have wti: "P,E,hp s  i : Integer" by auto
  from wti red_hext_incr[OF assa] have wti': "P,E,hp s'  i : Integer" by - (rule WTrt_hext_mono)
  { assume wta: "P,E,hp s  a : NT"
    from IH[OF sconf wta tconf] have wta': "P,E,hp s'  a' : NT" by fastforce
    from wt wta obtain V where wte: "P,E,hp s  e : V" by(auto)
    from wte red_hext_incr[OF assa] have wte': "P,E,hp s'  e : V" by - (rule WTrt_hext_mono)
    from wta' wti' wte' void have ?case
      by(fastforce elim: WTrtAAssNT) }
  moreover
  { fix U
    assume wta: "P,E,hp s  a : U⌊⌉"
    from IH[OF sconf wta tconf]
    obtain U' where wta': "P,E,hp s'  a' : U'" and UsubT: "P  U'  U⌊⌉" by fastforce
    with wta' have ?case
    proof(cases U')
      case NT
      assume UNT: "U' = NT"
      from UNT wt wta obtain V where wte: "P,E,hp s  e : V" by(auto)
      from wte red_hext_incr[OF assa] have wte': "P,E,hp s'  e : V" by - (rule WTrt_hext_mono)
      from wta' UNT wti' wte' void show ?thesis
        by(fastforce elim: WTrtAAssNT)
    next
      case (Array A)
      have UA: "U' = A⌊⌉" by fact
      with UA UsubT wt wta obtain V where wte: "P,E,hp s  e : V" by auto
      from wte red_hext_incr[OF assa] have wte': "P,E,hp s'  e : V" by - (rule WTrt_hext_mono)
      with wta' wte' UA wti' void show ?thesis by (fast elim:WTrtAAss)
    qed(simp_all add: widen_Array) }
  ultimately show ?case using wt by blast
next
  case (AAssRed2 i s ta i' s' a e T E)
  have IH: "E T. E  s ; P,E,hp s  i : T; P,hp s  t √t   T'. P,E,hp s'  i' : T'  P  T'  T" 
    and issi: "extTA,P,t  i,s -ta i',s'" 
    and wt: "P,E,hp s  Val ai := e : T" 
    and sconf: "E  s " and tconf: "P,hp s  t √t" by fact+
  from wt have void: "T = Void" by blast
  from wt have wti: "P,E,hp s  i : Integer" by auto
  from IH[OF sconf wti tconf] have wti': "P,E,hp s'  i' : Integer" by fastforce
  from wt show ?case
  proof(rule WTrt_elim_cases)
    fix U T'
    assume wta: "P,E,hp s  Val a : U⌊⌉"
      and wte: "P,E,hp s  e : T'"
    from wte red_hext_incr[OF issi] have wte': "P,E,hp s'  e : T'" by - (rule WTrt_hext_mono)
    from wta red_hext_incr[OF issi] have wta': "P,E,hp s'  Val a : U⌊⌉" by - (rule WTrt_hext_mono)
    from wta' wti' wte' void show ?case by (fastforce elim:WTrtAAss)
  next
    fix T'
    assume wta: "P,E,hp s  Val a : NT"
      and wte: "P,E,hp s  e : T'"
    from wte red_hext_incr[OF issi] have wte': "P,E,hp s'  e : T'" by - (rule WTrt_hext_mono)
    from wta red_hext_incr[OF issi] have wta': "P,E,hp s'  Val a : NT" by - (rule WTrt_hext_mono)
    from wta' wti' wte' void show ?case by (fastforce elim:WTrtAAss)
  qed
next
  case (AAssRed3 e s ta e' s' a i T E)
  have IH: "E T. E  s ; P,E,hp s  e : T; P,hp s  t √t  T'. P,E,hp s'  e' : T'  P  T'  T" 
    and issi: "extTA,P,t  e,s -ta e',s'" 
    and wt: "P,E,hp s  Val aVal i := e : T" 
    and sconf: "E  s " and tconf: "P,hp s  t √t" by fact+
  from wt have void: "T = Void" by blast
  from wt have wti: "P,E,hp s  Val i : Integer" by auto
  from wti red_hext_incr[OF issi] have wti': "P,E,hp s'  Val i : Integer" by - (rule WTrt_hext_mono)
  from wt show ?case
  proof(rule WTrt_elim_cases)
    fix U T'
    assume wta: "P,E,hp s  Val a : U⌊⌉"
      and wte: "P,E,hp s  e : T'"
    from wta red_hext_incr[OF issi] have wta': "P,E,hp s'  Val a : U⌊⌉" by - (rule WTrt_hext_mono)
    from IH[OF sconf wte tconf]
    obtain V where wte': "P,E,hp s'  e' : V" by fastforce
    from wta' wti' wte' void show ?case by (fastforce elim:WTrtAAss)
  next
    fix T'
    assume wta: "P,E,hp s  Val a : NT"
      and wte: "P,E,hp s  e : T'"
    from wta red_hext_incr[OF issi] have wta': "P,E,hp s'  Val a : NT" by - (rule WTrt_hext_mono)
    from IH[OF sconf wte tconf]
    obtain V where wte': "P,E,hp s'  e' : V" by fastforce
    from wta' wti' wte' void show ?case by (fastforce elim:WTrtAAss)
  qed
next
  case RedAAssNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case RedAAssBounds thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case RedAAssStore thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case RedAAss thus ?case
    by(auto simp del:fun_upd_apply)
next
  case (ALengthRed a s ta a' s' T E)
  note IH = T'. E  s ; P,E,hp s  a : T'; P,hp s  t √t
       T''. P,E,hp s'  a' : T''  P  T''  T'
  from P,E,hp s  a∙length : T
  show ?case
  proof(rule WTrt_elim_cases)
    fix T'
    assume [simp]: "T = Integer"
      and wta: "P,E,hp s  a : T'⌊⌉"
    from wta E  s  IH P,hp s  t √t
    obtain T'' where wta': "P,E,hp s'  a' : T''" 
      and sub: "P  T''  T'⌊⌉" by blast
    from sub have "P,E,hp s'  a'∙length : Integer"
      unfolding widen_Array
    proof(rule disjE)
      assume "T'' = NT"
      with wta' show ?thesis by(auto)
    next
      assume "V. T'' = V⌊⌉  P  V  T'"
      then obtain V where "T'' = V⌊⌉" "P  V  T'" by blast
      with wta' show ?thesis by -(rule WTrtALength, simp)
    qed
    thus ?thesis by(simp)
  next
    assume "P,E,hp s  a : NT"
    with E  s  IH P,hp s  t √t
    obtain T'' where wta': "P,E,hp s'  a' : T''" 
      and sub: "P  T''  NT" by blast
    from sub have "T'' = NT" by auto
    with wta' show ?thesis by(auto)
  qed
next
  case (RedALength h a T n l T' E)
  from P,E,hp (h, l)  addr a∙length : T' typeof_addr h a = Array_type T n
  have [simp]: "T' = Integer" by(auto)
  thus ?case by(auto)
next
  case RedALengthNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (FAccRed e s ta e' s' F D T E)
  have IH: "E T. E  s ; P,E,hp s  e : T; P,hp s  t √t
                  U. P,E,hp s'  e' : U  P  U  T"
   and conf: "E  s " and wt: "P,E,hp s  eF{D} : T" 
   and tconf: "P,hp s  t √t" by fact+
  ― ‹Now distinguish the two cases how wt can have arisen.›
  { fix T' C fm
    assume wte: "P,E,hp s  e : T'"
      and icto: "class_type_of' T' = C"
      and has: "P  C has F:T (fm) in D"
    from IH[OF conf wte tconf]
    obtain U where wte': "P,E,hp s'  e' : U" and UsubC: "P  U  T'" by auto
    ― ‹Now distinguish what @{term U} can be.›
    with UsubC have ?case
    proof(cases "U = NT")
      case True
      thus ?thesis using wte' by(blast intro:WTrtFAccNT widen_refl) 
    next
      case False
      with icto UsubC obtain C' where icto': "class_type_of' U = C'"
        and C'subC: "P  C' * C"
        by(rule widen_is_class_type_of)
      from has_field_mono[OF has C'subC] wte' icto'
      show ?thesis by(auto intro!:WTrtFAcc) 
    qed }
  moreover
  { assume "P,E,hp s  e : NT"
    hence "P,E,hp s'  e' : NT" using IH[OF conf _ tconf] by fastforce
    hence ?case  by(fastforce intro:WTrtFAccNT widen_refl) }
  ultimately show ?case using wt by blast
next
  case RedFAcc thus ?case unfolding sconf_def
    by(fastforce dest: heap_read_conf intro: addr_loc_type.intros simp add: conf_def)
next
  case RedFAccNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (FAssRed1 e s ta e' s' F D e2)
  have red: "extTA,P,t  e,s -ta e',s'"
   and IH: "E T. E  s ; P,E,hp s  e : T; P,hp s  t √t
                  U. P,E,hp s'  e' : U  P  U  T"
   and conf: "E  s " and wt: "P,E,hp s  eF{D}:=e2 : T"
   and tconf: "P,hp s  t √t" by fact+
  from wt have void: "T = Void" by blast
  ― ‹We distinguish if @{term e} has type @{term NT} or a Class type›
  { assume "P,E,hp s  e : NT"
    hence "P,E,hp s'  e' : NT" using IH[OF conf _ tconf] by fastforce
    moreover obtain T2 where "P,E,hp s  e2 : T2" using wt by auto
    from this red_hext_incr[OF red] have  "P,E,hp s'  e2 : T2"
      by(rule WTrt_hext_mono)
    ultimately have ?case using void by(blast intro!:WTrtFAssNT)
  }
  moreover
  { fix T' C TF T2 fm
    assume wt1: "P,E,hp s  e : T'" and icto: "class_type_of' T' = C" and wt2: "P,E,hp s  e2 : T2"
      and has: "P  C has F:TF (fm) in D" and sub: "P  T2  TF"
    obtain U where wt1': "P,E,hp s'  e' : U" and UsubC: "P  U  T'"
      using IH[OF conf wt1 tconf] by blast
    have wt2': "P,E,hp s'  e2 : T2"
      by(rule WTrt_hext_mono[OF wt2 red_hext_incr[OF red]])
    ― ‹Is @{term U} the null type or a class type?›
    have ?case
    proof(cases "U = NT")
      case True
      with wt1' wt2' void show ?thesis by(blast intro!:WTrtFAssNT)
    next
      case False
      with icto UsubC obtain C' where icto': "class_type_of' U = C'"
        and "subclass": "P  C' * C" by(rule widen_is_class_type_of)
      have "P  C' has F:TF (fm) in D" by(rule has_field_mono[OF has "subclass"])
      with wt1' show ?thesis using wt2' sub void icto' by(blast intro:WTrtFAss)
    qed }
  ultimately show ?case using wt by blast
next
  case (FAssRed2 e2 s ta e2' s' v F D T E)
  have red: "extTA,P,t  e2,s -ta e2',s'"
   and IH: "E T. E  s ; P,E,hp s  e2 : T; P,hp s  t √t
                  U. P,E,hp s'  e2' : U  P  U  T"
   and conf: "E  s " and wt: "P,E,hp s  Val vF{D}:=e2 : T" 
   and tconf: "P,hp s  t √t" by fact+
  from wt have [simp]: "T = Void" by auto
  from wt show ?case
  proof (rule WTrt_elim_cases)
    fix U C TF T2 fm
    assume wt1: "P,E,hp s  Val v : U"
      and icto: "class_type_of' U = C"
      and has: "P  C has F:TF (fm) in D"
      and wt2: "P,E,hp s  e2 : T2" and TsubTF: "P  T2  TF"
    have wt1': "P,E,hp s'  Val v : U"
      by(rule WTrt_hext_mono[OF wt1 red_hext_incr[OF red]])
    obtain T2' where wt2': "P,E,hp s'  e2' : T2'" and T'subT: "P  T2'  T2"
      using IH[OF conf wt2 tconf] by blast
    have "P,E,hp s'  Val vF{D}:=e2' : Void"
      by(rule WTrtFAss[OF wt1' icto has wt2' widen_trans[OF T'subT TsubTF]])
    thus ?case by auto
  next
    fix T2 assume null: "P,E,hp s  Val v : NT" and wt2: "P,E,hp s  e2 : T2"
    from null have "v = Null" by simp
    moreover
    obtain T2' where "P,E,hp s'  e2' : T2'  P  T2'  T2"
      using IH[OF conf wt2 tconf] by blast
    ultimately show ?thesis by(fastforce intro:WTrtFAssNT)
  qed
next
  case RedFAss thus ?case by(auto simp del:fun_upd_apply)
next
  case RedFAssNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (CASRed1 e s ta e' s' D F e2 e3)
  from CASRed1.prems(2) consider (NT) T2 T3 where 
      "P,E,hp s  e : NT" "T = Boolean" "P,E,hp s  e2 : T2" "P,E,hp s  e3 : T3"
    | (RefT) U T' C fm T2 T3 where
      "P,E,hp s  e : U" "T = Boolean" "class_type_of' U = C" "P  C has F:T' (fm) in D"
      "P,E,hp s  e2 : T2" "P  T2  T'" "P,E,hp s  e3 : T3" "P  T3  T'" "volatile fm" by fastforce
  thus ?case
  proof cases
    case NT
    have "P,E,hp s'  e' : NT" using CASRed1.hyps(2)[OF CASRed1.prems(1) NT(1) CASRed1.prems(3)] by auto
    moreover from NT CASRed1.hyps(1)[THEN red_hext_incr]
    have "P,E,hp s'  e2 : T2" "P,E,hp s'  e3 : T3" by(auto intro: WTrt_hext_mono)
    ultimately show ?thesis using NT by(auto intro: WTrtCASNT)
  next
    case RefT
    from CASRed1.hyps(2)[OF CASRed1.prems(1) RefT(1) CASRed1.prems(3)]
    obtain U' where wt1: "P,E,hp s'  e' : U'" "P  U'  U" by blast
    from RefT CASRed1.hyps(1)[THEN red_hext_incr]
    have wt2: "P,E,hp s'  e2 : T2" and wt3: "P,E,hp s'  e3 : T3" by(auto intro: WTrt_hext_mono)
    show ?thesis
    proof(cases "U' = NT")
      case True
      with RefT wt1 wt2 wt3 show ?thesis by(auto intro: WTrtCASNT)
    next
      case False
      with RefT(3) wt1 obtain C' where icto': "class_type_of' U' = C'"
        and "subclass": "P  C' * C" by(blast intro: widen_is_class_type_of)
      have "P  C' has F:T' (fm) in D" by(rule has_field_mono[OF RefT(4) "subclass"])
      with RefT wt1 wt2 wt3 icto' show ?thesis by(auto intro!: WTrtCAS)
    qed
  qed
next
  case (CASRed2 e s ta e' s' v D F e3)
  consider (Null) "v = Null" | (Val) U C T' fm T2 T3 where
    "class_type_of' U = C" "P  C has F:T' (fm) in D" "volatile fm"
    "P,E,hp s  e : T2" "P  T2  T'" "P,E,hp s  e3 : T3" "P  T3  T'" "T = Boolean"
    "typeof⇘hp sv = U" using CASRed2.prems(2) by auto
  then show ?case 
  proof cases
    case Null
    then show ?thesis using CASRed2 
      by(force dest: red_hext_incr intro: WTrt_hext_mono WTrtCASNT)
  next
    case Val
    from CASRed2.hyps(1) have hext: "hp s  hp s'" by(auto dest: red_hext_incr)
    with Val(9) have "typeof⇘hp s'v = U" by(rule type_of_hext_type_of)
    moreover from CASRed2.hyps(2)[OF CASRed2.prems(1) Val(4) CASRed2.prems(3)] Val(5)
    obtain T2' where "P,E,hp s'  e' : T2'" "P  T2'  T'" by(auto intro: widen_trans)
    moreover from Val(6) hext have "P,E,hp s'  e3 : T3" by(rule WTrt_hext_mono)
    ultimately show ?thesis using Val by(auto intro: WTrtCAS)
  qed
next
  case (CASRed3 e s ta e' s' v D F v')
  consider (Null) "v = Null" | (Val) U C T' fm T2 T3 where 
    "T = Boolean" "class_type_of' U = C" "P  C has F:T' (fm) in D" "volatile fm"
    "P  T2  T'" "P,E,hp s  e : T3" "P  T3  T'"
    "typeof⇘hp sv = U" "typeof⇘hp sv' = T2"
    using CASRed3.prems(2) by auto
  then show ?case
  proof cases
    case Null
    then show ?thesis using CASRed3
      by(force dest: red_hext_incr intro: type_of_hext_type_of WTrtCASNT)
  next
    case Val
    from CASRed3.hyps(1) have hext: "hp s  hp s'" by(auto dest: red_hext_incr)
    with Val(8,9) have "typeof⇘hp s'v = U" "typeof⇘hp s'v' = T2"
      by(blast intro: type_of_hext_type_of)+
    moreover from CASRed3.hyps(2)[OF CASRed3.prems(1) Val(6) CASRed3.prems(3)] Val(7)
    obtain T3' where "P,E,hp s'  e' : T3'" "P  T3'  T'" by(auto intro: widen_trans)
    ultimately show ?thesis using Val by(auto intro: WTrtCAS)
  qed
next
  case CASNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (CallObj e s ta e' s' M es T E)
  have red: "extTA,P,t  e,s -ta e',s'"
   and IH: "E T. E  s ; P,E,hp s  e : T; P,hp s  t √t
                  U. P,E,hp s'  e' : U  P  U  T"
   and conf: "E  s " and wt: "P,E,hp s  eM(es) : T"
   and tconf: "P,hp s  t √t" by fact+
  ― ‹We distinguish if @{term e} has type @{term NT} or a Class type›
  from wt show ?case
  proof(rule WTrt_elim_cases)
    fix T' C Ts meth D Us
    assume wte: "P,E,hp s  e : T'" and icto: "class_type_of' T' = C"
      and "method": "P  C sees M:TsT = meth in D"
      and wtes: "P,E,hp s  es [:] Us" and subs: "P  Us [≤] Ts"
    obtain U where wte': "P,E,hp s'  e' : U" and UsubC: "P  U  T'"
      using IH[OF conf wte tconf] by blast
    show ?thesis
    proof(cases "U = NT")
      case True
      moreover have "P,E,hp s'  es [:] Us"
        by(rule WTrts_hext_mono[OF wtes red_hext_incr[OF red]])
      ultimately show ?thesis using wte' by(blast intro!:WTrtCallNT)
    next
      case False
      with icto UsubC obtain C'
        where icto': "class_type_of' U = C'" and "subclass": "P  C' * C"
        by(rule widen_is_class_type_of)

      obtain Ts' T' meth' D'
        where method': "P  C' sees M:Ts'T' = meth' in D'"
        and subs': "P  Ts [≤] Ts'" and sub': "P  T'  T"
        using Call_lemma[OF "method" "subclass" wf] by fast
      have wtes': "P,E,hp s'  es [:] Us"
        by(rule WTrts_hext_mono[OF wtes red_hext_incr[OF red]])
      show ?thesis using wtes' wte' icto' subs method' subs' sub' by(blast intro:widens_trans)
    qed
  next
    fix Ts
    assume "P,E,hp s  e:NT"
    hence "P,E,hp s'  e' : NT" using IH[OF conf _ tconf] by fastforce
    moreover
    fix Ts assume wtes: "P,E,hp s  es [:] Ts"
    have "P,E,hp s'  es [:] Ts"
      by(rule WTrts_hext_mono[OF wtes red_hext_incr[OF red]])
    ultimately show ?thesis by(blast intro!:WTrtCallNT)
  qed
next
  case (CallParams es s ta es' s' v M T E)
  have reds: "extTA,P,t  es,s [-ta→] es',s'"
   and IH: "Ts E. E  s ; P,E,hp s  es [:] Ts; P,hp s  t √t
            Ts'. P,E,hp s'  es' [:] Ts'  P  Ts' [≤] Ts"
   and conf: "E  s " and wt: "P,E,hp s  Val vM(es) : T" 
   and tconf: "P,hp s  t √t" by fact+
  from wt show ?case
  proof (rule WTrt_elim_cases)
    fix U C Ts meth D Us
    assume wte: "P,E,hp s  Val v : U" and icto: "class_type_of' U = C"
      and "P  C sees M:TsT = meth in D"
      and wtes: "P,E,hp s  es [:] Us" and "P  Us [≤] Ts"
    moreover have "P,E,hp s'  Val v : U"
      by(rule WTrt_hext_mono[OF wte reds_hext_incr[OF reds]])
    moreover obtain Us' where "P,E,hp s'  es' [:] Us'" "P  Us' [≤] Us"
      using IH[OF conf wtes tconf] by blast
    ultimately show ?thesis by(fastforce intro:WTrtCall widens_trans)
  next
    fix Us
    assume null: "P,E,hp s  Val v : NT" and wtes: "P,E,hp s  es [:] Us"
    from null have "v = Null" by simp
    moreover
    obtain Us' where "P,E,hp s'  es' [:] Us'  P  Us' [≤] Us"
      using IH[OF conf wtes tconf] by blast
    ultimately show ?thesis by(fastforce intro:WTrtCallNT)
  qed
next
  case (RedCall s a U M Ts T pns body D vs T' E)
  have hp: "typeof_addr (hp s) a = U"
    and "method": "P  class_type_of U sees M: TsT = (pns,body) in D"
    and wt: "P,E,hp s  addr aM(map Val vs) : T'" by fact+
  obtain Ts' where wtes: "P,E,hp s  map Val vs [:] Ts'"
    and subs: "P  Ts' [≤] Ts" and T'isT: "T' = T"
    using wt "method" hp wf by(auto 4 3 dest: sees_method_fun)
  from wtes subs have length_vs: "length vs = length Ts"
    by(auto simp add: WTrts_conv_list_all2 dest!: list_all2_lengthD)
  have UsubD: "P  ty_of_htype U  Class (class_type_of U)"
    by(cases U)(simp_all add: widen_array_object)
  from sees_wf_mdecl[OF wf "method"] obtain T''
    where wtabody: "P,[this#pns [↦] Class D#Ts]  body :: T''"
    and T''subT: "P  T''  T" and length_pns: "length pns = length Ts"
    by(fastforce simp:wf_mdecl_def simp del:map_upds_twist)
  from wtabody have "P,Map.empty(this#pns [↦] Class D#Ts),hp s  body : T''"
    by(rule WT_implies_WTrt)
  hence "P,E(this#pns [↦] Class D#Ts),hp s  body : T''"
    by(rule WTrt_env_mono) simp
  hence "P,E,hp s  blocks (this#pns) (Class D#Ts) (Addr a#vs) body : T''"
    using wtes subs hp sees_method_decl_above[OF "method"] length_vs length_pns UsubD
    by(auto simp add:wt_blocks rel_list_all2_Cons2 intro: widen_trans)
  with T''subT T'isT show ?case by blast
next
  case (RedCallExternal s a U M Ts T' D vs ta va h' ta' e' s')
  from P,t  aM(vs),hp s -ta→ext va,h' have "hp s  h'" by(rule red_external_hext)
  with P,E,hp s  addr aM(map Val vs) : T
  have "P,E,h'  addr aM(map Val vs) : T" by(rule WTrt_hext_mono)
  moreover from typeof_addr (hp s) a = U P  class_type_of U sees M: TsT' = Native in D P,E,hp s  addr aM(map Val vs) : T
  have "P,hp s  aM(vs) : T'"
    by(fastforce simp add: external_WT'_iff dest: sees_method_fun)
  ultimately show ?case using RedCallExternal
    by(auto 4 3 intro: red_external_conf_extRet[OF wf] intro!: wt_external_call simp add: sconf_def dest: sees_method_fun[where C="class_type_of U"])
next
  case RedCallNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (BlockRed e h x V vo ta e' h' x' T T' E)
  note IH = T E. E  (h, x(V := vo)) ; P,E,hp (h, x(V := vo))  e : T; P,hp (h, x(V := vo))  t √t
              T'. P,E,hp (h', x')  e' : T'  P  T'  T[simplified]
  from P,E,hp (h, x)  {V:T=vo; e} : T' have "P,E(VT),h  e : T'" by(cases vo, auto)
  moreover from E  (h, x)  P,E,hp (h, x)  {V:T=vo; e} : T'
  have "(E(V  T))  (h, x(V := vo)) "
    by(cases vo)(simp add: lconf_def sconf_def,auto simp add: sconf_def conf_def intro: lconf_upd2)
  ultimately obtain T'' where wt': "P,E(VT),h'  e' : T''" "P  T''  T'" using P,hp (h, x)  t √t
    by(auto dest: IH)
  { fix v
    assume vo: "x' V = v"
    from (E(V  T))  (h, x(V := vo))  extTA,P,t  e,(h, x(V := vo)) -ta e',(h', x') P,E(VT),h  e : T'
    have "P,h'  x' (:≤) (E(V  T))" by(auto simp add: sconf_def dest: red_preserves_lconf)
    with vo have "T'. typeof⇘h'v = T'  P  T'  T" by(fastforce simp add: sconf_def lconf_def conf_def)
    then obtain T' where "typeof⇘h'v = T'" "P  T'  T" by blast
    hence ?case using wt' vo by(auto) }
  moreover
  { assume "x' V = None" with wt' have ?case by(auto) }
  ultimately show ?case by blast
next 
  case RedBlock thus ?case by auto
next
  case (SynchronizedRed1 o' s ta o'' s' e T E)
  have red: "extTA,P,t  o',s -ta o'',s'" by fact
  have IH: "T E. E  s ; P,E,hp s  o' : T; P,hp s  t √t  T'. P,E,hp s'  o'' : T'  P  T'  T" by fact
  have conf: "E  s " by fact
  have wt: "P,E,hp s  sync(o') e : T" by fact+
  thus ?case
  proof(rule WTrt_elim_cases)
    fix To
    assume wto: "P,E,hp s  o' : To"
      and refT: "is_refT To" 
      and wte: "P,E,hp s  e : T"
    from IH[OF conf wto P,hp s  t √t] obtain To' where "P,E,hp s'  o'' : To'" and sub: "P  To'  To" by auto
    moreover have "P,E,hp s'  e : T"
      by(rule WTrt_hext_mono[OF wte red_hext_incr[OF red]])
    moreover have "is_refT To'" using refT sub by(auto intro: widen_refT)
    ultimately show ?thesis by(auto)
  qed
next
  case SynchronizedNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case LockSynchronized thus ?case by(auto)
next
  case (SynchronizedRed2 e s ta e' s' a T E)
  have red: "extTA,P,t  e,s -ta e',s'" by fact
  have IH: "T E. E  s ; P,E,hp s  e : T; P,hp s  t √t  T'. P,E,hp s'  e' : T'  P  T'  T" by fact
  have conf: "E  s " by fact
  have wt: "P,E,hp s  insync(a) e : T" by fact
  thus ?case
  proof(rule WTrt_elim_cases)
    fix Ta
    assume "P,E,hp s  e : T"
      and hpa: "typeof_addr (hp s) a = Ta"
    from P,E,hp s  e : T conf P,hp s  t √t obtain T'
      where "P,E,hp s'  e' : T'" "P  T'  T" by(blast dest: IH)
    moreover from red have hext: "hp s  hp s'" by(auto dest: red_hext_incr)
    with hpa have "P,E,hp s'  addr a : ty_of_htype Ta"
      by(auto intro: typeof_addr_hext_mono)
    ultimately show ?thesis by auto
  qed
next
  case UnlockSynchronized thus ?case by(auto)
next
  case SeqRed thus ?case
    apply(auto)
    apply(drule WTrt_hext_mono[OF _ red_hext_incr], assumption)
    by auto
next
  case (CondRed b s ta b' s' e1 e2 T E)
  have red: "extTA,P,t  b,s -ta b',s'" by fact
  have IH: "T E. E  s ; P,E,hp s  b : T; P,hp s  t √t  T'. P,E,hp s'  b' : T'  P  T'  T" by fact
  have conf: "E  s " by fact
  have wt: "P,E,hp s  if (b) e1 else e2 : T" by fact
  thus ?case
  proof(rule WTrt_elim_cases)
    fix T1 T2
    assume wtb: "P,E,hp s  b : Boolean"
      and wte1: "P,E,hp s  e1 : T1"
      and wte2: "P,E,hp s  e2 : T2"
      and lub: "P  lub(T1, T2) = T"
    from IH[OF conf wtb P,hp s  t √t] have "P,E,hp s'  b' : Boolean" by(auto)
    moreover have "P,E,hp s'  e1 : T1"
      by(rule WTrt_hext_mono[OF wte1 red_hext_incr[OF red]])
    moreover have "P,E,hp s'  e2 : T2"
      by(rule WTrt_hext_mono[OF wte2 red_hext_incr[OF red]])
    ultimately show ?thesis using lub by auto
  qed
next
  case (ThrowRed e s ta e' s' T E)
  have IH: "T E. E  s ; P,E,hp s  e : T; P,hp s  t √t  T'. P,E,hp s'  e' : T'  P  T'  T" by fact
  have conf: "E  s " by fact
  have wt: "P,E,hp s  throw e : T" by fact
  then obtain T'
    where wte: "P,E,hp s  e : T'" 
    and nobject: "P  T'  Class Throwable" by auto
  from IH[OF conf wte P,hp s  t √t] obtain T'' 
    where wte': "P,E,hp s'  e' : T''"
    and PT'T'': "P  T''  T'" by blast
  from nobject PT'T'' have "P  T''  Class Throwable"
    by(auto simp add: widen_Class)(erule notE, rule rtranclp_trans)
  hence "P,E,hp s'  throw e' : T" using wte' PT'T''
    by -(erule WTrtThrow)
  thus ?case by(auto)
next
  case RedThrowNull thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case (TryRed e s ta e' s' C V e2 T E)
  have red: "extTA,P,t  e,s -ta e',s'" by fact
  have IH: "T E. E  s ; P,E,hp s  e : T; P,hp s  t √t  T'. P,E,hp s'  e' : T'  P  T'  T" by fact
  have conf: "E  s " by fact
  have wt: "P,E,hp s  try e catch(C V) e2 : T" by fact
  thus ?case
  proof(rule WTrt_elim_cases)
    fix T1
    assume wte: "P,E,hp s  e : T1"
      and wte2: "P,E(V  Class C),hp s  e2 : T"
      and sub: "P  T1  T"
    from IH[OF conf wte P,hp s  t √t] obtain T1' where "P,E,hp s'  e' : T1'" and "P  T1'  T1" by(auto)
    moreover have "P,E(V  Class C),hp s'  e2 : T"
      by(rule WTrt_hext_mono[OF wte2 red_hext_incr[OF red]])
    ultimately show ?thesis using sub by(auto elim: widen_trans)
  qed
next
  case RedTryFail thus ?case unfolding sconf_def
    by(fastforce simp add: xcpt_subcls_Throwable[OF _ wf])
next
  case RedSeq thus ?case by auto
next
  case RedCondT thus ?case by(auto dest: is_lub_upper)
next
  case RedCondF thus ?case by(auto dest: is_lub_upper)
next
  case RedWhile thus ?case by(fastforce) 
next
  case RedTry thus ?case by auto
next
  case RedTryCatch thus ?case by(fastforce)
next
  case (ListRed1 e s ta e' s' es Ts E)
  note IH = T E. E  s ; P,E,hp s  e : T; P,hp s  t √t  T'. P,E,hp s'  e' : T'  P  T'  T
  from P,E,hp s  e # es [:] Ts obtain T Ts' where "Ts = T # Ts'" "P,E,hp s  e : T" "P,E,hp s  es [:] Ts'" by auto
  with IH[of E T] E  s  WTrts_hext_mono[OF P,E,hp s  es [:] Ts' red_hext_incr[OF extTA,P,t  e,s -ta e',s']]
  show ?case using P,hp s  t √t by(auto simp add: list_all2_Cons2 intro: widens_refl)
next
  case ListRed2 thus ?case
    by(fastforce dest: hext_typeof_mono[OF reds_hext_incr])
qed(fastforce)+

end