Theory CoCallFix
theory CoCallFix
imports CoCallAnalysisSig CoCallAnalysisBinds ArityAnalysisSig "Launchbury.Env-Nominal" ArityAnalysisFix
begin
locale CoCallArityAnalysis =
fixes cccExp :: "exp ⇒ (Arity → AEnv × CoCalls)"
begin
definition Aexp :: "exp ⇒ (Arity → AEnv)"
where "Aexp e = (Λ a. fst (cccExp e ⋅ a))"
sublocale ArityAnalysis Aexp.
abbreviation Aexp_syn' ("𝒜⇘_⇙") where "𝒜⇘a⇙ ≡ (λe. Aexp e⋅a)"
abbreviation Aexp_bot_syn' ("𝒜⇧⊥⇘_⇙") where "𝒜⇧⊥⇘a⇙ ≡ (λe. fup⋅(Aexp e)⋅a)"
lemma Aexp_eq:
"𝒜⇘a⇙ e = fst (cccExp e ⋅ a)"
unfolding Aexp_def by (rule beta_cfun) (intro cont2cont)
lemma fup_Aexp_eq:
"fup⋅(Aexp e)⋅a = fst (fup⋅(cccExp e)⋅a)"
by (cases a)(simp_all add: Aexp_eq)
definition CCexp :: "exp ⇒ (Arity → CoCalls)" where "CCexp Γ = (Λ a. snd (cccExp Γ⋅a))"
lemma CCexp_eq:
"CCexp e⋅a = snd (cccExp e ⋅ a)"
unfolding CCexp_def by (rule beta_cfun) (intro cont2cont)
lemma fup_CCexp_eq:
"fup⋅(CCexp e)⋅a = snd (fup⋅(cccExp e)⋅a)"
by (cases a)(simp_all add: CCexp_eq)
sublocale CoCallAnalysis CCexp.
definition CCfix :: "heap ⇒ (AEnv × CoCalls) → CoCalls"
where "CCfix Γ = (Λ aeG. (μ G'. ccBindsExtra Γ⋅(fst aeG , G') ⊔ snd aeG))"
lemma CCfix_eq:
"CCfix Γ⋅(ae,G) = (μ G'. ccBindsExtra Γ⋅(ae, G') ⊔ G)"
unfolding CCfix_def
by simp
lemma CCfix_unroll: "CCfix Γ⋅(ae,G) = ccBindsExtra Γ⋅(ae, CCfix Γ⋅(ae,G)) ⊔ G"
unfolding CCfix_eq
apply (subst fix_eq)
apply simp
done
lemma fup_ccExp_restr_subst':
assumes "⋀ a. cc_restr S (CCexp e[x::=y]⋅a) = cc_restr S (CCexp e⋅a)"
shows "cc_restr S (fup⋅(CCexp e[x::=y])⋅a) = cc_restr S (fup⋅(CCexp e)⋅a)"
using assms
by (cases a) (auto simp del: cc_restr_cc_restr simp add: cc_restr_cc_restr[symmetric])
lemma :
assumes "⋀ x' e a. (x',e) ∈ set Γ ⟹ cc_restr S (CCexp e[x::=y]⋅a) = cc_restr S (CCexp e⋅a)"
assumes "x ∉ S"
assumes "y ∉ S"
assumes "domA Γ ⊆ S"
shows "cc_restr S (ccBindsExtra Γ[x::h=y]⋅(ae, G))
= cc_restr S (ccBindsExtra Γ⋅(ae f|` S , cc_restr S G))"
apply (simp add: ccBindsExtra_simp ccBinds_eq ccBind_eq Int_absorb2[OF assms(4)] fv_subst_int[OF assms(3,2)])
apply (intro arg_cong2[where f = "(⊔)"] refl arg_cong[OF mapCollect_cong])
apply (subgoal_tac "k ∈ S")
apply (auto intro: fup_ccExp_restr_subst'[OF assms(1)[OF map_of_SomeD]] simp add: fv_subst_int[OF assms(3,2)] fv_subst_int2[OF assms(3,2)] ccSquare_def)[1]
apply (metis assms(4) contra_subsetD domI dom_map_of_conv_domA)
apply (subgoal_tac "k ∈ S")
apply (auto intro: fup_ccExp_restr_subst'[OF assms(1)[OF map_of_SomeD]]
simp add: fv_subst_int[OF assms(3,2)] fv_subst_int2[OF assms(3,2)] ccSquare_def cc_restr_twist[where S = S] simp del: cc_restr_cc_restr)[1]
apply (subst fup_ccExp_restr_subst'[OF assms(1)[OF map_of_SomeD]], assumption)
apply (simp add: fv_subst_int[OF assms(3,2)] fv_subst_int2[OF assms(3,2)] )
apply (subst fup_ccExp_restr_subst'[OF assms(1)[OF map_of_SomeD]], assumption)
apply (simp add: fv_subst_int[OF assms(3,2)] fv_subst_int2[OF assms(3,2)] )
apply (metis assms(4) contra_subsetD domI dom_map_of_conv_domA)
done
lemma :
assumes "domA Γ ⊆ S"
shows "cc_restr S (ccBindsExtra Γ⋅(ae, G)) = cc_restr S (ccBindsExtra Γ⋅(ae f|` S, cc_restr S G))"
using assms
apply (simp add: ccBindsExtra_simp ccBinds_eq ccBind_eq Int_absorb2)
apply (intro arg_cong2[where f = "(⊔)"] refl arg_cong[OF mapCollect_cong])
apply (subgoal_tac "k ∈ S")
apply simp
apply (metis contra_subsetD domI dom_map_of_conv_domA)
apply (subgoal_tac "k ∈ S")
apply simp
apply (metis contra_subsetD domI dom_map_of_conv_domA)
done
lemma CCfix_restr:
assumes "domA Γ ⊆ S"
shows "cc_restr S (CCfix Γ⋅(ae, G)) = cc_restr S (CCfix Γ⋅(ae f|` S, cc_restr S G))"
unfolding CCfix_def
apply simp
apply (rule parallel_fix_ind[where P = "λ x y . cc_restr S x = cc_restr S y"])
apply simp
apply rule
apply simp
apply (subst (1 2) ccBindsExtra_restr[OF assms])
apply (auto)
done
lemma ccField_CCfix:
shows "ccField (CCfix Γ⋅(ae, G)) ⊆ fv Γ ∪ ccField G"
unfolding CCfix_def
apply simp
apply (rule fix_ind[where P = "λ x . ccField x ⊆ fv Γ ∪ ccField G"])
apply (auto dest!: subsetD[OF ccField_ccBindsExtra])
done
lemma CCfix_restr_subst':
assumes "⋀ x' e a. (x',e) ∈ set Γ ⟹ cc_restr S (CCexp e[x::=y]⋅a) = cc_restr S (CCexp e⋅a)"
assumes "x ∉ S"
assumes "y ∉ S"
assumes "domA Γ ⊆ S"
shows "cc_restr S (CCfix Γ[x::h=y]⋅(ae, G)) = cc_restr S (CCfix Γ⋅(ae f|` S, cc_restr S G))"
unfolding CCfix_def
apply simp
apply (rule parallel_fix_ind[where P = "λ x y . cc_restr S x = cc_restr S y"])
apply simp
apply rule
apply simp
apply (subst ccBindsExtra_restr_subst'[OF assms], assumption)
apply (subst ccBindsExtra_restr[OF assms(4)]) back
apply (auto)
done
end
lemma Aexp_eqvt[eqvt]: "π ∙ (CoCallArityAnalysis.Aexp cccExp e) = CoCallArityAnalysis.Aexp (π ∙ cccExp) (π ∙ e)"
apply (rule cfun_eqvtI) unfolding CoCallArityAnalysis.Aexp_eq by perm_simp rule
lemma CCexp_eqvt[eqvt]: "π ∙ (CoCallArityAnalysis.CCexp cccExp e) = CoCallArityAnalysis.CCexp (π ∙ cccExp) (π ∙ e)"
apply (rule cfun_eqvtI) unfolding CoCallArityAnalysis.CCexp_eq by perm_simp rule
lemma CCfix_eqvt[eqvt]: "π ∙ (CoCallArityAnalysis.CCfix cccExp Γ) = CoCallArityAnalysis.CCfix (π ∙ cccExp) (π ∙ Γ)"
unfolding CoCallArityAnalysis.CCfix_def by perm_simp (simp_all add: Abs_cfun_eqvt)
lemma ccFix_cong[fundef_cong]:
"⟦ (⋀ e. e ∈ snd ` set heap2 ⟹ cccexp1 e = cccexp2 e); heap1 = heap2 ⟧
⟹ CoCallArityAnalysis.CCfix cccexp1 heap1 = CoCallArityAnalysis.CCfix cccexp2 heap2"
unfolding CoCallArityAnalysis.CCfix_def
apply (rule arg_cong) back
apply (rule ccBindsExtra_cong)
apply (auto simp add: CoCallArityAnalysis.CCexp_def)
done
context CoCallArityAnalysis
begin
definition cccFix :: "heap ⇒ ((AEnv × CoCalls) → (AEnv × CoCalls))"
where "cccFix Γ = (Λ i. (Afix Γ⋅(fst i ⊔ (λ_.up⋅0) f|` thunks Γ), CCfix Γ⋅(Afix Γ⋅(fst i ⊔ (λ_.up⋅0) f|` (thunks Γ)), snd i)))"
lemma cccFix_eq:
"cccFix Γ⋅i = (Afix Γ⋅(fst i ⊔ (λ_.up⋅0) f|` thunks Γ), CCfix Γ⋅(Afix Γ⋅(fst i ⊔ (λ_.up⋅0) f|` (thunks Γ)), snd i))"
unfolding cccFix_def
by (rule beta_cfun)(intro cont2cont)
end
lemma cccFix_eqvt[eqvt]: "π ∙ (CoCallArityAnalysis.cccFix cccExp Γ) = CoCallArityAnalysis.cccFix (π ∙ cccExp) (π ∙ Γ)"
apply (rule cfun_eqvtI) unfolding CoCallArityAnalysis.cccFix_eq by perm_simp rule
lemma cccFix_cong[fundef_cong]:
"⟦ (⋀ e. e ∈ snd ` set heap2 ⟹ cccexp1 e = cccexp2 e); heap1 = heap2 ⟧
⟹ CoCallArityAnalysis.cccFix cccexp1 heap1 = CoCallArityAnalysis.cccFix cccexp2 heap2"
unfolding CoCallArityAnalysis.cccFix_def
apply (rule cfun_eqI)
apply auto
apply (rule arg_cong[OF Afix_cong], auto simp add: CoCallArityAnalysis.Aexp_def)[1]
apply (rule arg_cong2[OF ccFix_cong Afix_cong ])
apply (auto simp add: CoCallArityAnalysis.Aexp_def)
done
subsubsection ‹The non-recursive case›
definition ABind_nonrec :: "var ⇒ exp ⇒ AEnv × CoCalls → Arity⇩⊥"
where
"ABind_nonrec x e = (Λ i. (if isVal e ∨ x--x∉(snd i) then fst i x else up⋅0))"
lemma ABind_nonrec_eq:
"ABind_nonrec x e⋅(ae,G) = (if isVal e ∨ x--x∉G then ae x else up⋅0)"
unfolding ABind_nonrec_def
apply (subst beta_cfun)
apply (rule cont_if_else_above)
apply auto
by (metis in_join join_self_below(4))
lemma ABind_nonrec_eqvt[eqvt]: "π ∙ (ABind_nonrec x e) = ABind_nonrec (π ∙ x) (π ∙ e)"
apply (rule cfun_eqvtI)
apply (case_tac xa, simp)
unfolding ABind_nonrec_eq
by perm_simp rule
lemma ABind_nonrec_above_arg:
"ae x ⊑ ABind_nonrec x e ⋅ (ae, G)"
unfolding ABind_nonrec_eq by auto
definition Aheap_nonrec where
"Aheap_nonrec x e = (Λ i. esing x⋅(ABind_nonrec x e⋅i))"
lemma Aheap_nonrec_simp:
"Aheap_nonrec x e⋅i = esing x⋅(ABind_nonrec x e⋅i)"
unfolding Aheap_nonrec_def by simp
lemma Aheap_nonrec_lookup[simp]:
"(Aheap_nonrec x e⋅i) x = ABind_nonrec x e⋅i"
unfolding Aheap_nonrec_simp by simp
lemma Aheap_nonrec_eqvt'[eqvt]:
"π ∙ (Aheap_nonrec x e) = Aheap_nonrec (π ∙ x) (π ∙ e)"
apply (rule cfun_eqvtI)
unfolding Aheap_nonrec_simp
by (perm_simp, rule)
context CoCallArityAnalysis
begin
definition Afix_nonrec
where "Afix_nonrec x e = (Λ i. fup⋅(Aexp e)⋅(ABind_nonrec x e ⋅ i) ⊔ fst i)"
lemma Afix_nonrec_eq[simp]:
"Afix_nonrec x e ⋅ i = fup⋅(Aexp e)⋅(ABind_nonrec x e ⋅ i) ⊔ fst i"
unfolding Afix_nonrec_def
by (rule beta_cfun) simp
definition CCfix_nonrec
where "CCfix_nonrec x e = (Λ i. ccBind x e ⋅ (Aheap_nonrec x e⋅i, snd i) ⊔ ccProd (fv e) (ccNeighbors x (snd i) - (if isVal e then {} else {x})) ⊔ snd i)"
lemma CCfix_nonrec_eq[simp]:
"CCfix_nonrec x e ⋅ i = ccBind x e⋅(Aheap_nonrec x e⋅i, snd i) ⊔ ccProd (fv e) (ccNeighbors x (snd i) - (if isVal e then {} else {x})) ⊔ snd i"
unfolding CCfix_nonrec_def
by (rule beta_cfun) (intro cont2cont)
definition cccFix_nonrec :: "var ⇒ exp ⇒ ((AEnv × CoCalls) → (AEnv × CoCalls))"
where "cccFix_nonrec x e = (Λ i. (Afix_nonrec x e ⋅i , CCfix_nonrec x e ⋅i))"
lemma cccFix_nonrec_eq[simp]:
"cccFix_nonrec x e⋅i = (Afix_nonrec x e ⋅i , CCfix_nonrec x e ⋅i)"
unfolding cccFix_nonrec_def
by (rule beta_cfun) (intro cont2cont)
end
lemma AFix_nonrec_eqvt[eqvt]: "π ∙ (CoCallArityAnalysis.Afix_nonrec cccExp x e) = CoCallArityAnalysis.Afix_nonrec (π ∙ cccExp) (π ∙ x) (π ∙ e)"
apply (rule cfun_eqvtI)
unfolding CoCallArityAnalysis.Afix_nonrec_eq
by perm_simp rule
lemma CCFix_nonrec_eqvt[eqvt]: "π ∙ (CoCallArityAnalysis.CCfix_nonrec cccExp x e) = CoCallArityAnalysis.CCfix_nonrec (π ∙ cccExp) (π ∙ x) (π ∙ e)"
apply (rule cfun_eqvtI)
unfolding CoCallArityAnalysis.CCfix_nonrec_eq
by perm_simp rule
lemma cccFix_nonrec_eqvt[eqvt]: "π ∙ (CoCallArityAnalysis.cccFix_nonrec cccExp x e) = CoCallArityAnalysis.cccFix_nonrec (π ∙ cccExp) (π ∙ x) (π ∙ e)"
apply (rule cfun_eqvtI)
unfolding CoCallArityAnalysis.cccFix_nonrec_eq
by perm_simp rule
subsubsection ‹Combining the cases›
context CoCallArityAnalysis
begin
definition cccFix_choose :: "heap ⇒ ((AEnv × CoCalls) → (AEnv × CoCalls))"
where "cccFix_choose Γ = (if nonrec Γ then case_prod cccFix_nonrec (hd Γ) else cccFix Γ)"
lemma cccFix_choose_simp1[simp]:
"¬ nonrec Γ ⟹ cccFix_choose Γ = cccFix Γ"
unfolding cccFix_choose_def by simp
lemma cccFix_choose_simp2[simp]:
"x ∉ fv e ⟹ cccFix_choose [(x,e)] = cccFix_nonrec x e"
unfolding cccFix_choose_def nonrec_def by auto
end
lemma cccFix_choose_eqvt[eqvt]: "π ∙ (CoCallArityAnalysis.cccFix_choose cccExp Γ) = CoCallArityAnalysis.cccFix_choose (π ∙ cccExp) (π ∙ Γ)"
unfolding CoCallArityAnalysis.cccFix_choose_def
apply (cases nonrec π rule: eqvt_cases[where x = Γ])
apply (perm_simp, rule)
apply simp
apply (erule nonrecE)
apply (simp )
apply simp
done
lemma cccFix_nonrec_cong[fundef_cong]:
"cccexp1 e = cccexp2 e ⟹ CoCallArityAnalysis.cccFix_nonrec cccexp1 x e = CoCallArityAnalysis.cccFix_nonrec cccexp2 x e"
apply (rule cfun_eqI)
unfolding CoCallArityAnalysis.cccFix_nonrec_eq
unfolding CoCallArityAnalysis.Afix_nonrec_eq
unfolding CoCallArityAnalysis.CCfix_nonrec_eq
unfolding CoCallArityAnalysis.fup_Aexp_eq
apply (simp only: )
apply (rule arg_cong[OF ccBind_cong])
apply simp
unfolding CoCallArityAnalysis.CCexp_def
apply simp
done
lemma cccFix_choose_cong[fundef_cong]:
"⟦ (⋀ e. e ∈ snd ` set heap2 ⟹ cccexp1 e = cccexp2 e); heap1 = heap2 ⟧
⟹ CoCallArityAnalysis.cccFix_choose cccexp1 heap1 = CoCallArityAnalysis.cccFix_choose cccexp2 heap2"
unfolding CoCallArityAnalysis.cccFix_choose_def
apply (rule cfun_eqI)
apply (auto elim!: nonrecE)
apply (rule arg_cong[OF cccFix_nonrec_cong], auto)
apply (rule arg_cong[OF cccFix_cong], auto)[1]
done
end