Theory Nominal-Utils
theory "Nominal-Utils"
imports Nominal2.Nominal2 "HOL-Library.AList"
begin
subsubsection ‹Lemmas helping with equivariance proofs›
lemma perm_rel_lemma:
assumes "⋀ π x y. r (π ∙ x) (π ∙ y) ⟹ r x y"
shows "r (π ∙ x) (π ∙ y) ⟷ r x y" (is "?l ⟷ ?r")
by (metis (full_types) assms permute_minus_cancel(2))
lemma perm_rel_lemma2:
assumes "⋀ π x y. r x y ⟹ r (π ∙ x) (π ∙ y)"
shows "r x y ⟷ r (π ∙ x) (π ∙ y)" (is "?l ⟷ ?r")
by (metis (full_types) assms permute_minus_cancel(2))
lemma fun_eqvtI:
assumes f_eqvt[eqvt]: "(⋀ p x. p ∙ (f x) = f (p ∙ x))"
shows "p ∙ f = f" by perm_simp rule
lemma eqvt_at_apply:
assumes "eqvt_at f x"
shows "(p ∙ f) x = f x"
by (metis (opaque_lifting, no_types) assms eqvt_at_def permute_fun_def permute_minus_cancel(1))
lemma eqvt_at_apply':
assumes "eqvt_at f x"
shows "p ∙ f x = f (p ∙ x)"
by (metis (opaque_lifting, no_types) assms eqvt_at_def)
lemma eqvt_at_apply'':
assumes "eqvt_at f x"
shows "(p ∙ f) (p ∙ x) = f (p ∙ x)"
by (metis (opaque_lifting, no_types) assms eqvt_at_def permute_fun_def permute_minus_cancel(1))
lemma size_list_eqvt[eqvt]: "p ∙ size_list f x = size_list (p ∙ f) (p ∙ x)"
proof (induction x)
case (Cons x xs)
have "f x = p ∙ (f x)" by (simp add: permute_pure)
also have "... = (p ∙ f) (p ∙ x)" by simp
with Cons
show ?case by (auto simp add: permute_pure)
qed simp
subsubsection ‹Freshness via equivariance›
lemma eqvt_fresh_cong1: "(⋀p x. p ∙ (f x) = f (p ∙ x)) ⟹ a ♯ x ⟹ a ♯ f x "
apply (rule fresh_fun_eqvt_app[of f])
apply (rule eqvtI)
apply (rule eq_reflection)
apply (rule ext)
apply (metis permute_fun_def permute_minus_cancel(1))
apply assumption
done
lemma eqvt_fresh_cong2:
assumes eqvt: "(⋀p x y. p ∙ (f x y) = f (p ∙ x) (p ∙ y))"
and fresh1: "a ♯ x" and fresh2: "a ♯ y"
shows "a ♯ f x y"
proof-
have "eqvt (λ (x,y). f x y)"
using eqvt
apply -
apply (auto simp add: eqvt_def)
apply (rule ext)
apply auto
by (metis permute_minus_cancel(1))
moreover
have "a ♯ (x, y)" using fresh1 fresh2 by auto
ultimately
have "a ♯ (λ (x,y). f x y) (x, y)" by (rule fresh_fun_eqvt_app)
thus ?thesis by simp
qed
lemma eqvt_fresh_star_cong1:
assumes eqvt: "(⋀p x. p ∙ (f x) = f (p ∙ x))"
and fresh1: "a ♯* x"
shows "a ♯* f x"
by (metis fresh_star_def eqvt_fresh_cong1 assms)
lemma eqvt_fresh_star_cong2:
assumes eqvt: "(⋀p x y. p ∙ (f x y) = f (p ∙ x) (p ∙ y))"
and fresh1: "a ♯* x" and fresh2: "a ♯* y"
shows "a ♯* f x y"
by (metis fresh_star_def eqvt_fresh_cong2 assms)
lemma eqvt_fresh_cong3:
assumes eqvt: "(⋀p x y z. p ∙ (f x y z) = f (p ∙ x) (p ∙ y) (p ∙ z))"
and fresh1: "a ♯ x" and fresh2: "a ♯ y" and fresh3: "a ♯ z"
shows "a ♯ f x y z"
proof-
have "eqvt (λ (x,y,z). f x y z)"
using eqvt
apply -
apply (auto simp add: eqvt_def)
apply (rule ext)
apply auto
by (metis permute_minus_cancel(1))
moreover
have "a ♯ (x, y, z)" using fresh1 fresh2 fresh3 by auto
ultimately
have "a ♯ (λ (x,y,z). f x y z) (x, y, z)" by (rule fresh_fun_eqvt_app)
thus ?thesis by simp
qed
lemma eqvt_fresh_star_cong3:
assumes eqvt: "(⋀p x y z. p ∙ (f x y z) = f (p ∙ x) (p ∙ y) (p ∙ z))"
and fresh1: "a ♯* x" and fresh2: "a ♯* y" and fresh3: "a ♯* z"
shows "a ♯* f x y z"
by (metis fresh_star_def eqvt_fresh_cong3 assms)
subsubsection ‹Additional simplification rules›
lemma not_self_fresh[simp]: "atom x ♯ x ⟷ False"
by (metis fresh_at_base(2))
lemma fresh_star_singleton: "{ x } ♯* e ⟷ x ♯ e"
by (simp add: fresh_star_def)
subsubsection ‹Additional equivariance lemmas›
lemma eqvt_cases:
fixes f x π
assumes eqvt: "⋀x. π ∙ f x = f (π ∙ x)"
obtains "f x" "f (π ∙ x)" | "¬ f x " " ¬ f (π ∙ x)"
using assms[symmetric]
by (cases "f x") auto
lemma range_eqvt: "π ∙ range Y = range (π ∙ Y)"
unfolding image_eqvt UNIV_eqvt ..
lemma case_option_eqvt[eqvt]:
"π ∙ case_option d f x = case_option (π ∙ d) (π ∙ f) (π ∙ x)"
by(cases x)(simp_all)
lemma supp_option_eqvt:
"supp (case_option d f x) ⊆ supp d ∪ supp f ∪ supp x"
apply (cases x)
apply (auto simp add: supp_Some )
apply (metis (mono_tags) Un_iff subsetCE supp_fun_app)
done
lemma funpow_eqvt[simp,eqvt]:
"π ∙ ((f :: 'a ⇒ 'a::pt) ^^ n) = (π ∙ f) ^^ (π ∙ n)"
apply (induct n)
apply simp
apply (rule ext)
apply simp
apply perm_simp
apply simp
done
lemma delete_eqvt[eqvt]:
"π ∙ AList.delete x Γ = AList.delete (π ∙ x) (π ∙ Γ)"
by (induct Γ, auto)
lemma restrict_eqvt[eqvt]:
"π ∙ AList.restrict S Γ = AList.restrict (π ∙ S) (π ∙ Γ)"
unfolding AList.restrict_eq by perm_simp rule
lemma supp_restrict:
"supp (AList.restrict S Γ) ⊆ supp Γ"
by (induction Γ) (auto simp add: supp_Pair supp_Cons)
lemma clearjunk_eqvt[eqvt]:
"π ∙ AList.clearjunk Γ = AList.clearjunk (π ∙ Γ)"
by (induction Γ rule: clearjunk.induct) auto
lemma map_ran_eqvt[eqvt]:
"π ∙ map_ran f Γ = map_ran (π ∙ f) (π ∙ Γ)"
by (induct Γ, auto)
lemma dom_perm:
"dom (π ∙ f) = π ∙ (dom f)"
unfolding dom_def by (perm_simp) (simp)
lemmas dom_perm_rev[simp,eqvt] = dom_perm[symmetric]
lemma ran_perm[simp]:
"π ∙ (ran f) = ran (π ∙ f)"
unfolding ran_def by (perm_simp) (simp)
lemma map_add_eqvt[eqvt]:
"π ∙ (m1 ++ m2) = (π ∙ m1) ++ (π ∙ m2)"
unfolding map_add_def
by (perm_simp, rule)
lemma map_of_eqvt[eqvt]:
"π ∙ map_of l = map_of (π ∙ l)"
apply (induct l)
apply (simp add: permute_fun_def)
apply simp
apply perm_simp
apply auto
done
lemma concat_eqvt[eqvt]: "π ∙ concat l = concat (π ∙ l)"
by (induction l)(auto simp add: append_eqvt)
lemma tranclp_eqvt[eqvt]: "π ∙ tranclp P v⇩1 v⇩2 = tranclp (π ∙ P) (π ∙ v⇩1) (π ∙ v⇩2)"
unfolding tranclp_def by perm_simp rule
lemma rtranclp_eqvt[eqvt]: "π ∙ rtranclp P v⇩1 v⇩2 = rtranclp (π ∙ P) (π ∙ v⇩1) (π ∙ v⇩2)"
unfolding rtranclp_def by perm_simp rule
lemma Set_filter_eqvt[eqvt]: "π ∙ Set.filter P S = Set.filter (π ∙ P) (π ∙ S)"
unfolding Set.filter_def
by perm_simp rule
lemma Sigma_eqvt'[eqvt]: "π ∙ Sigma = Sigma"
apply (rule ext)
apply (rule ext)
apply (subst permute_fun_def)
apply (subst permute_fun_def)
unfolding Sigma_def
apply perm_simp
apply (simp add: permute_self)
done
lemma override_on_eqvt[eqvt]:
"π ∙ (override_on m1 m2 S) = override_on (π ∙ m1) (π ∙ m2) (π ∙ S)"
by (auto simp add: override_on_def )
lemma card_eqvt[eqvt]:
"π ∙ (card S) = card (π ∙ S)"
by (cases "finite S", induct rule: finite_induct) (auto simp add: card_insert_if mem_permute_iff permute_pure)
lemma Projl_permute:
assumes a: "∃y. f = Inl y"
shows "(p ∙ (Sum_Type.projl f)) = Sum_Type.projl (p ∙ f)"
using a by auto
lemma Projr_permute:
assumes a: "∃y. f = Inr y"
shows "(p ∙ (Sum_Type.projr f)) = Sum_Type.projr (p ∙ f)"
using a by auto
subsubsection ‹Freshness lemmas›
lemma fresh_list_elem:
assumes "a ♯ Γ"
and "e ∈ set Γ"
shows "a ♯ e"
using assms
by(induct Γ)(auto simp add: fresh_Cons)
lemma set_not_fresh:
"x ∈ set L ⟹ ¬(atom x ♯ L)"
by (metis fresh_list_elem not_self_fresh)
lemma pure_fresh_star[simp]: "a ♯* (x :: 'a :: pure)"
by (simp add: fresh_star_def pure_fresh)
lemma supp_set_mem: "x ∈ set L ⟹ supp x ⊆ supp L"
by (induct L) (auto simp add: supp_Cons)
lemma set_supp_mono: "set L ⊆ set L2 ⟹ supp L ⊆ supp L2"
by (induct L)(auto simp add: supp_Cons supp_Nil dest:supp_set_mem)
lemma fresh_star_at_base:
fixes x :: "'a :: at_base"
shows "S ♯* x ⟷ atom x ∉ S"
by (metis fresh_at_base(2) fresh_star_def)
subsubsection ‹Freshness and support for subsets of variables›
lemma supp_mono: "finite (B::'a::fs set) ⟹ A ⊆ B ⟹ supp A ⊆ supp B"
by (metis infinite_super subset_Un_eq supp_of_finite_union)
lemma fresh_subset:
"finite B ⟹ x ♯ (B :: 'a::at_base set) ⟹ A ⊆ B ⟹ x ♯ A"
by (auto dest:supp_mono simp add: fresh_def)
lemma fresh_star_subset:
"finite B ⟹ x ♯* (B :: 'a::at_base set) ⟹ A ⊆ B ⟹ x ♯* A"
by (metis fresh_star_def fresh_subset)
lemma fresh_star_set_subset:
"x ♯* (B :: 'a::at_base list) ⟹ set A ⊆ set B ⟹ x ♯* A"
by (metis fresh_star_set fresh_star_subset[OF finite_set])
subsubsection ‹The set of free variables of an expression›
definition fv :: "'a::pt ⇒ 'b::at_base set"
where "fv e = {v. atom v ∈ supp e}"
lemma fv_eqvt[simp,eqvt]: "π ∙ (fv e) = fv (π ∙ e)"
unfolding fv_def by simp
lemma fv_Nil[simp]: "fv [] = {}"
by (auto simp add: fv_def supp_Nil)
lemma fv_Cons[simp]: "fv (x # xs) = fv x ∪ fv xs"
by (auto simp add: fv_def supp_Cons)
lemma fv_Pair[simp]: "fv (x, y) = fv x ∪ fv y"
by (auto simp add: fv_def supp_Pair)
lemma fv_append[simp]: "fv (x @ y) = fv x ∪ fv y"
by (auto simp add: fv_def supp_append)
lemma fv_at_base[simp]: "fv a = {a::'a::at_base}"
by (auto simp add: fv_def supp_at_base)
lemma fv_pure[simp]: "fv (a::'a::pure) = {}"
by (auto simp add: fv_def pure_supp)
lemma fv_set_at_base[simp]: "fv (l :: ('a :: at_base) list) = set l"
by (induction l) auto
lemma flip_not_fv: "a ∉ fv x ⟹ b ∉ fv x ⟹ (a ↔ b) ∙ x = x"
by (metis flip_def fresh_def fv_def mem_Collect_eq swap_fresh_fresh)
lemma fv_not_fresh: "atom x ♯ e ⟷ x ∉ fv e"
unfolding fv_def fresh_def by blast
lemma fresh_fv: "finite (fv e :: 'a set) ⟹ atom (x :: ('a::at_base)) ♯ (fv e :: 'a set) ⟷ atom x ♯ e"
unfolding fv_def fresh_def
by (auto simp add: supp_finite_set_at_base)
lemma finite_fv[simp]: "finite (fv (e::'a::fs) :: ('b::at_base) set)"
proof-
have "finite (supp e)" by (metis finite_supp)
hence "finite (atom -` supp e :: 'b set)"
apply (rule finite_vimageI)
apply (rule inj_onI)
apply (simp)
done
moreover
have "(atom -` supp e :: 'b set) = fv e" unfolding fv_def by auto
ultimately
show ?thesis by simp
qed
definition fv_list :: "'a::fs ⇒ 'b::at_base list"
where "fv_list e = (SOME l. set l = fv e)"
lemma set_fv_list[simp]: "set (fv_list e) = (fv e :: ('b::at_base) set)"
proof-
have "finite (fv e :: 'b set)" by (rule finite_fv)
from finite_list[OF finite_fv]
obtain l where "set l = (fv e :: 'b set)"..
thus ?thesis
unfolding fv_list_def by (rule someI)
qed
lemma fresh_fv_list[simp]:
"a ♯ (fv_list e :: 'b::at_base list) ⟷ a ♯ (fv e :: 'b::at_base set)"
proof-
have "a ♯ (fv_list e :: 'b::at_base list) ⟷ a ♯ set (fv_list e :: 'b::at_base list)"
by (rule fresh_set[symmetric])
also have "… ⟷ a ♯ (fv e :: 'b::at_base set)" by simp
finally show ?thesis.
qed
subsubsection ‹Other useful lemmas›
lemma pure_permute_id: "permute p = (λ x. (x::'a::pure))"
by rule (simp add: permute_pure)
lemma supp_set_elem_finite:
assumes "finite S"
and "(m::'a::fs) ∈ S"
and "y ∈ supp m"
shows "y ∈ supp S"
using assms supp_of_finite_sets
by auto
lemmas fresh_star_Cons = fresh_star_list(2)
lemma mem_permute_set:
shows "x ∈ p ∙ S ⟷ (- p ∙ x) ∈ S"
by (metis mem_permute_iff permute_minus_cancel(2))
lemma flip_set_both_not_in:
assumes "x ∉ S" and "x' ∉ S"
shows "((x' ↔ x) ∙ S) = S"
unfolding permute_set_def
by (auto) (metis assms flip_at_base_simps(3))+
lemma inj_atom: "inj atom" by (metis atom_eq_iff injI)
lemmas image_Int[OF inj_atom, simp]
lemma eqvt_uncurry: "eqvt f ⟹ eqvt (case_prod f)"
unfolding eqvt_def
by perm_simp simp
lemma supp_fun_app_eqvt2:
assumes a: "eqvt f"
shows "supp (f x y) ⊆ supp x ∪ supp y"
proof-
from supp_fun_app_eqvt[OF eqvt_uncurry [OF a]]
have "supp (case_prod f (x,y)) ⊆ supp (x,y)".
thus ?thesis by (simp add: supp_Pair)
qed
lemma supp_fun_app_eqvt3:
assumes a: "eqvt f"
shows "supp (f x y z) ⊆ supp x ∪ supp y ∪ supp z"
proof-
from supp_fun_app_eqvt2[OF eqvt_uncurry [OF a]]
have "supp (case_prod f (x,y) z) ⊆ supp (x,y) ∪ supp z".
thus ?thesis by (simp add: supp_Pair)
qed
lemma permute_0[simp]: "permute 0 = (λ x. x)"
by auto
lemma permute_comp[simp]: "permute x ∘ permute y = permute (x + y)" by auto
lemma map_permute: "map (permute p) = permute p"
apply rule
apply (induct_tac x)
apply auto
done
lemma fresh_star_restrictA[intro]: "a ♯* Γ ⟹ a ♯* AList.restrict V Γ"
by (induction Γ) (auto simp add: fresh_star_Cons)
lemma Abs_lst_Nil_eq[simp]: "[[]]lst. (x::'a::fs) = [xs]lst. x' ⟷ (([],x) = (xs, x'))"
apply rule
apply (frule Abs_lst_fcb2[where f = "λ x y _ . (x,y)" and as = "[]" and bs = "xs" and c = "()"])
apply (auto simp add: fresh_star_def)
done
lemma Abs_lst_Nil_eq2[simp]: "[xs]lst. (x::'a::fs) = [[]]lst. x' ⟷ ((xs,x) = ([], x'))"
by (subst eq_commute) auto
end