Theory ArityAnalysisSig
theory ArityAnalysisSig
imports Launchbury.Terms AEnv "Arity-Nominal" "Launchbury.Nominal-HOLCF" Launchbury.Substitution
begin
locale ArityAnalysis =
fixes Aexp :: "exp ⇒ Arity → AEnv"
begin
abbreviation Aexp_syn ("𝒜⇘_⇙")where "𝒜⇘a⇙ e ≡ Aexp e⋅a"
abbreviation Aexp_bot_syn ("𝒜⇧⊥⇘_⇙")
where "𝒜⇧⊥⇘a⇙ e ≡ fup⋅(Aexp e)⋅a"
end
locale ArityAnalysisHeap =
fixes Aheap :: "heap ⇒ exp ⇒ Arity → AEnv"
locale EdomArityAnalysis = ArityAnalysis +
assumes Aexp_edom: "edom (𝒜⇘a⇙ e) ⊆ fv e"
begin
lemma fup_Aexp_edom: "edom (𝒜⇧⊥⇘a⇙ e) ⊆ fv e"
by (cases a) (auto dest:subsetD[OF Aexp_edom])
lemma Aexp_fresh_bot[simp]: assumes "atom v ♯ e" shows "𝒜⇘a⇙ e v = ⊥"
proof-
from assms have "v ∉ fv e" by (metis fv_not_fresh)
with Aexp_edom have "v ∉ edom (𝒜⇘a⇙ e)" by auto
thus ?thesis unfolding edom_def by simp
qed
end
locale ArityAnalysisHeapEqvt = ArityAnalysisHeap +
assumes Aheap_eqvt[eqvt]: "π ∙ Aheap = Aheap"
end