Theory Wellorder_Embedding
section ‹Well-Order Embeddings›
theory Wellorder_Embedding
imports Fun_More Wellorder_Relation
begin
subsection ‹Auxiliaries›
lemma UNION_bij_betw_ofilter:
assumes WELL: "Well_order r" and
OF: "⋀ i. i ∈ I ⟹ ofilter r (A i)" and
BIJ: "⋀ i. i ∈ I ⟹ bij_betw f (A i) (A' i)"
shows "bij_betw f (⋃i ∈ I. A i) (⋃i ∈ I. A' i)"
proof-
have "wo_rel r" using WELL by (simp add: wo_rel_def)
hence "⋀ i j. ⟦i ∈ I; j ∈ I⟧ ⟹ A i ≤ A j ∨ A j ≤ A i"
using wo_rel.ofilter_linord[of r] OF by blast
with WELL BIJ show ?thesis
by (auto simp add: bij_betw_UNION_chain)
qed
subsection ‹(Well-order) embeddings, strict embeddings, isomorphisms and order-compatible
functions›
lemma embed_halfcong:
assumes "⋀ a. a ∈ Field r ⟹ f a = g a" and "embed r r' f"
shows "embed r r' g"
by (smt (verit, del_insts) assms bij_betw_cong embed_def in_mono under_Field)
lemma embed_cong[fundef_cong]:
assumes "⋀ a. a ∈ Field r ⟹ f a = g a"
shows "embed r r' f = embed r r' g"
by (metis assms embed_halfcong)
lemma embedS_cong[fundef_cong]:
assumes "⋀ a. a ∈ Field r ⟹ f a = g a"
shows "embedS r r' f = embedS r r' g"
unfolding embedS_def using assms
embed_cong[of r f g r'] bij_betw_cong[of "Field r" f g "Field r'"] by blast
lemma iso_cong[fundef_cong]:
assumes "⋀ a. a ∈ Field r ⟹ f a = g a"
shows "iso r r' f = iso r r' g"
unfolding iso_def using assms
embed_cong[of r f g r'] bij_betw_cong[of "Field r" f g "Field r'"] by blast
lemma id_compat: "compat r r id"
by(auto simp add: id_def compat_def)
lemma comp_compat:
"⟦compat r r' f; compat r' r'' f'⟧ ⟹ compat r r'' (f' o f)"
by(auto simp add: comp_def compat_def)
corollary one_set_greater:
"(∃f::'a ⇒ 'a'. f ` A ≤ A' ∧ inj_on f A) ∨ (∃g::'a' ⇒ 'a. g ` A' ≤ A ∧ inj_on g A')"
proof-
obtain r where "well_order_on A r" by (fastforce simp add: well_order_on)
hence 1: "A = Field r ∧ Well_order r"
using well_order_on_Well_order by auto
obtain r' where 2: "well_order_on A' r'" by (fastforce simp add: well_order_on)
hence 2: "A' = Field r' ∧ Well_order r'"
using well_order_on_Well_order by auto
hence "(∃f. embed r r' f) ∨ (∃g. embed r' r g)"
using 1 2 by (auto simp add: wellorders_totally_ordered)
moreover
{fix f assume "embed r r' f"
hence "f`A ≤ A' ∧ inj_on f A"
using 1 2 by (auto simp add: embed_Field embed_inj_on)
}
moreover
{fix g assume "embed r' r g"
hence "g`A' ≤ A ∧ inj_on g A'"
using 1 2 by (auto simp add: embed_Field embed_inj_on)
}
ultimately show ?thesis by blast
qed
corollary one_type_greater:
"(∃f::'a ⇒ 'a'. inj f) ∨ (∃g::'a' ⇒ 'a. inj g)"
using one_set_greater[of UNIV UNIV] by auto
subsection ‹Uniqueness of embeddings›
lemma comp_embedS:
assumes WELL: "Well_order r" and WELL': "Well_order r'" and WELL'': "Well_order r''"
and EMB: "embedS r r' f" and EMB': "embedS r' r'' f'"
shows "embedS r r'' (f' o f)"
using EMB EMB' WELL WELL' embedS_comp_embed embedS_def by blast
lemma iso_iff4:
assumes WELL: "Well_order r" and WELL': "Well_order r'"
shows "iso r r' f = (embed r r' f ∧ embed r' r (inv_into (Field r) f))"
using assms embed_bothWays_iso
by(unfold iso_def, auto simp add: inv_into_Field_embed_bij_betw)
lemma embed_embedS_iso:
"embed r r' f = (embedS r r' f ∨ iso r r' f)"
unfolding embedS_def iso_def by blast
lemma not_embedS_iso:
"¬ (embedS r r' f ∧ iso r r' f)"
unfolding embedS_def iso_def by blast
lemma embed_embedS_iff_not_iso:
assumes "embed r r' f"
shows "embedS r r' f = (¬ iso r r' f)"
using assms unfolding embedS_def iso_def by blast
lemma iso_inv_into:
assumes WELL: "Well_order r" and ISO: "iso r r' f"
shows "iso r' r (inv_into (Field r) f)"
by (meson ISO WELL bij_betw_inv_into inv_into_Field_embed_bij_betw iso_def iso_iff iso_iff2)
lemma embedS_or_iso:
assumes WELL: "Well_order r" and WELL': "Well_order r'"
shows "(∃g. embedS r r' g) ∨ (∃h. embedS r' r h) ∨ (∃f. iso r r' f)"
by (metis WELL WELL' embed_embedS_iso embed_embedS_iso iso_iff4 wellorders_totally_ordered)
end