Theory WF_absolute

(*  Title:      ZF/Constructible/WF_absolute.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

section ‹Absoluteness of Well-Founded Recursion›

theory WF_absolute imports WFrec begin

subsection‹Transitive closure without fixedpoints›

definition
  rtrancl_alt :: "[i,i]i" where
    "rtrancl_alt(A,r) 
       {p  A*A. nnat. f  succ(n) -> A.
                 (x y. p = x,y   f`0 = x  f`n = y) 
                       (in. <f`i, f`succ(i)>  r)}"

lemma alt_rtrancl_lemma1 [rule_format]:
    "n  nat
      f  succ(n) -> field(r).
         (in. f`i, f ` succ(i)  r)  f`0, f`n  r^*"
apply (induct_tac n)
apply (simp_all add: apply_funtype rtrancl_refl, clarify)
apply (rename_tac n f)
apply (rule rtrancl_into_rtrancl)
 prefer 2 apply assumption
apply (drule_tac x="restrict(f,succ(n))" in bspec)
 apply (blast intro: restrict_type2)
apply (simp add: Ord_succ_mem_iff nat_0_le [THEN ltD] leI [THEN ltD] ltI)
done

lemma rtrancl_alt_subset_rtrancl: "rtrancl_alt(field(r),r)  r^*"
apply (simp add: rtrancl_alt_def)
apply (blast intro: alt_rtrancl_lemma1)
done

lemma rtrancl_subset_rtrancl_alt: "r^*  rtrancl_alt(field(r),r)"
apply (simp add: rtrancl_alt_def, clarify)
apply (frule rtrancl_type [THEN subsetD], clarify, simp)
apply (erule rtrancl_induct)
 txt‹Base case, trivial›
 apply (rule_tac x=0 in bexI)
  apply (rule_tac x="λx1. xa" in bexI)
   apply simp_all
txt‹Inductive step›
apply clarify
apply (rename_tac n f)
apply (rule_tac x="succ(n)" in bexI)
 apply (rule_tac x="λisucc(succ(n)). if i=succ(n) then z else f`i" in bexI)
  apply (simp add: Ord_succ_mem_iff nat_0_le [THEN ltD] leI [THEN ltD] ltI)
  apply (blast intro: mem_asym)
 apply typecheck
 apply auto
done

lemma rtrancl_alt_eq_rtrancl: "rtrancl_alt(field(r),r) = r^*"
by (blast del: subsetI
          intro: rtrancl_alt_subset_rtrancl rtrancl_subset_rtrancl_alt)


definition
  rtran_closure_mem :: "[io,i,i,i]  o" where
    ― ‹The property of belonging to rtran_closure(r)›
    "rtran_closure_mem(M,A,r,p) 
              nnat[M]. n[M]. n'[M]. 
               omega(M,nnat)  nnnat  successor(M,n,n') 
               (f[M]. typed_function(M,n',A,f) 
                (x[M]. y[M]. zero[M]. pair(M,x,y,p)  empty(M,zero) 
                  fun_apply(M,f,zero,x)  fun_apply(M,f,n,y)) 
                  (j[M]. jn  
                    (fj[M]. sj[M]. fsj[M]. ffp[M]. 
                      fun_apply(M,f,j,fj)  successor(M,j,sj) 
                      fun_apply(M,f,sj,fsj)  pair(M,fj,fsj,ffp)  ffp  r)))"

definition
  rtran_closure :: "[io,i,i]  o" where
    "rtran_closure(M,r,s)  
        A[M]. is_field(M,r,A) 
         (p[M]. p  s  rtran_closure_mem(M,A,r,p))"

definition
  tran_closure :: "[io,i,i]  o" where
    "tran_closure(M,r,t) 
         s[M]. rtran_closure(M,r,s)  composition(M,r,s,t)"
    
locale M_trancl = M_basic +
  assumes rtrancl_separation:
         "M(r); M(A)  separation (M, rtran_closure_mem(M,A,r))"
      and wellfounded_trancl_separation:
         "M(r); M(Z)  
          separation (M, λx. 
              w[M]. wx[M]. rp[M]. 
               w  Z  pair(M,w,x,wx)  tran_closure(M,r,rp)  wx  rp)"
      and M_nat [iff] : "M(nat)"

lemma (in M_trancl) rtran_closure_mem_iff:
     "M(A); M(r); M(p)
       rtran_closure_mem(M,A,r,p) 
          (n[M]. nnat  
           (f[M]. f  succ(n) -> A 
            (x[M]. y[M]. p = x,y  f`0 = x  f`n = y) 
                           (in. <f`i, f`succ(i)>  r)))"
  apply (simp add: rtran_closure_mem_def Ord_succ_mem_iff nat_0_le [THEN ltD]) 
done

lemma (in M_trancl) rtran_closure_rtrancl:
     "M(r)  rtran_closure(M,r,rtrancl(r))"
apply (simp add: rtran_closure_def rtran_closure_mem_iff 
                 rtrancl_alt_eq_rtrancl [symmetric] rtrancl_alt_def)
apply (auto simp add: nat_0_le [THEN ltD] apply_funtype) 
done

lemma (in M_trancl) rtrancl_closed [intro,simp]:
     "M(r)  M(rtrancl(r))"
apply (insert rtrancl_separation [of r "field(r)"])
apply (simp add: rtrancl_alt_eq_rtrancl [symmetric]
                 rtrancl_alt_def rtran_closure_mem_iff)
done

lemma (in M_trancl) rtrancl_abs [simp]:
     "M(r); M(z)  rtran_closure(M,r,z)  z = rtrancl(r)"
apply (rule iffI)
 txt‹Proving the right-to-left implication›
 prefer 2 apply (blast intro: rtran_closure_rtrancl)
apply (rule M_equalityI)
apply (simp add: rtran_closure_def rtrancl_alt_eq_rtrancl [symmetric]
                 rtrancl_alt_def rtran_closure_mem_iff)
apply (auto simp add: nat_0_le [THEN ltD] apply_funtype) 
done

lemma (in M_trancl) trancl_closed [intro,simp]:
     "M(r)  M(trancl(r))"
by (simp add: trancl_def)

lemma (in M_trancl) trancl_abs [simp]:
     "M(r); M(z)  tran_closure(M,r,z)  z = trancl(r)"
by (simp add: tran_closure_def trancl_def)

lemma (in M_trancl) wellfounded_trancl_separation':
     "M(r); M(Z)  separation (M, λx. w[M]. w  Z  w,x  r^+)"
by (insert wellfounded_trancl_separation [of r Z], simp) 

text‹Alternative proof of wf_on_trancl›; inspiration for the
      relativized version.  Original version is on theory WF.›
lemma "wf[A](r);  r-``A  A  wf[A](r^+)"
apply (simp add: wf_on_def wf_def)
apply (safe)
apply (drule_tac x = "{xA. w. w,x  r^+  w  Z}" in spec)
apply (blast elim: tranclE)
done

lemma (in M_trancl) wellfounded_on_trancl:
     "wellfounded_on(M,A,r);  r-``A  A; M(r); M(A)
       wellfounded_on(M,A,r^+)"
apply (simp add: wellfounded_on_def)
apply (safe intro!: equalityI)
apply (rename_tac Z x)
apply (subgoal_tac "M({xA. w[M]. w  Z  w,x  r^+})")
 prefer 2
 apply (blast intro: wellfounded_trancl_separation') 
apply (drule_tac x = "{xA. w[M]. w  Z  w,x  r^+}" in rspec, safe)
apply (blast dest: transM, simp)
apply (rename_tac y w)
apply (drule_tac x=w in bspec, assumption, clarify)
apply (erule tranclE)
  apply (blast dest: transM)   (*transM is needed to prove M(xa)*)
 apply blast
done

lemma (in M_trancl) wellfounded_trancl:
     "wellfounded(M,r); M(r)  wellfounded(M,r^+)"
apply (simp add: wellfounded_iff_wellfounded_on_field)
apply (rule wellfounded_on_subset_A, erule wellfounded_on_trancl)
   apply blast
  apply (simp_all add: trancl_type [THEN field_rel_subset])
done


text‹Absoluteness for wfrec-defined functions.›

(*first use is_recfun, then M_is_recfun*)

lemma (in M_trancl) wfrec_relativize:
  "wf(r); M(a); M(r);  
     strong_replacement(M, λx z. y[M]. g[M].
          pair(M,x,y,z)  
          is_recfun(r^+, x, λx f. H(x, restrict(f, r -`` {x})), g)  
          y = H(x, restrict(g, r -`` {x}))); 
     x[M]. g[M]. function(g)  M(H(x,g)) 
    wfrec(r,a,H) = z  
       (f[M]. is_recfun(r^+, a, λx f. H(x, restrict(f, r -`` {x})), f)  
            z = H(a,restrict(f,r-``{a})))"
apply (frule wf_trancl) 
apply (simp add: wftrec_def wfrec_def, safe)
 apply (frule wf_exists_is_recfun 
              [of concl: "r^+" a "λx f. H(x, restrict(f, r -`` {x}))"]) 
      apply (simp_all add: trans_trancl function_restrictI trancl_subset_times)
 apply (clarify, rule_tac x=x in rexI) 
 apply (simp_all add: the_recfun_eq trans_trancl trancl_subset_times)
done


text‹Assuming termr is transitive simplifies the occurrences of H›.
      The premise termrelation(r) is necessary 
      before we can replace termr^+ by termr.›
theorem (in M_trancl) trans_wfrec_relativize:
  "wf(r);  trans(r);  relation(r);  M(r);  M(a);
     wfrec_replacement(M,MH,r);  relation2(M,MH,H);
     x[M]. g[M]. function(g)  M(H(x,g)) 
    wfrec(r,a,H) = z  (f[M]. is_recfun(r,a,H,f)  z = H(a,f))" 
apply (frule wfrec_replacement', assumption+) 
apply (simp cong: is_recfun_cong
           add: wfrec_relativize trancl_eq_r
                is_recfun_restrict_idem domain_restrict_idem)
done

theorem (in M_trancl) trans_wfrec_abs:
  "wf(r);  trans(r);  relation(r);  M(r);  M(a);  M(z);
     wfrec_replacement(M,MH,r);  relation2(M,MH,H);
     x[M]. g[M]. function(g)  M(H(x,g)) 
    is_wfrec(M,MH,r,a,z)  z=wfrec(r,a,H)" 
by (simp add: trans_wfrec_relativize [THEN iff_sym] is_wfrec_abs, blast) 


lemma (in M_trancl) trans_eq_pair_wfrec_iff:
  "wf(r);  trans(r); relation(r); M(r);  M(y); 
     wfrec_replacement(M,MH,r);  relation2(M,MH,H);
     x[M]. g[M]. function(g)  M(H(x,g)) 
    y = <x, wfrec(r, x, H)>  
       (f[M]. is_recfun(r,x,H,f)  y = <x, H(x,f)>)"
apply safe 
 apply (simp add: trans_wfrec_relativize [THEN iff_sym, of concl: _ x]) 
txt‹converse direction›
apply (rule sym)
apply (simp add: trans_wfrec_relativize, blast) 
done


subsection‹M is closed under well-founded recursion›

text‹Lemma with the awkward premise mentioning wfrec›.›
lemma (in M_trancl) wfrec_closed_lemma [rule_format]:
     "wf(r); M(r); 
        strong_replacement(M, λx y. y = x, wfrec(r, x, H));
        x[M]. g[M]. function(g)  M(H(x,g)) 
       M(a)  M(wfrec(r,a,H))"
apply (rule_tac a=a in wf_induct, assumption+)
apply (subst wfrec, assumption, clarify)
apply (drule_tac x1=x and x="λxr -`` {x}. wfrec(r, x, H)" 
       in rspec [THEN rspec]) 
apply (simp_all add: function_lam) 
apply (blast intro: lam_closed dest: pair_components_in_M) 
done

text‹Eliminates one instance of replacement.›
lemma (in M_trancl) wfrec_replacement_iff:
     "strong_replacement(M, λx z. 
          y[M]. pair(M,x,y,z)  (g[M]. is_recfun(r,x,H,g)  y = H(x,g))) 
      strong_replacement(M, 
           λx y. f[M]. is_recfun(r,x,H,f)  y = <x, H(x,f)>)"
apply simp 
apply (rule strong_replacement_cong, blast) 
done

text‹Useful version for transitive relations›
theorem (in M_trancl) trans_wfrec_closed:
     "wf(r); trans(r); relation(r); M(r); M(a);
       wfrec_replacement(M,MH,r);  relation2(M,MH,H);
        x[M]. g[M]. function(g)  M(H(x,g)) 
       M(wfrec(r,a,H))"
apply (frule wfrec_replacement', assumption+) 
apply (frule wfrec_replacement_iff [THEN iffD1]) 
apply (rule wfrec_closed_lemma, assumption+) 
apply (simp_all add: wfrec_replacement_iff trans_eq_pair_wfrec_iff) 
done

subsection‹Absoluteness without assuming transitivity›
lemma (in M_trancl) eq_pair_wfrec_iff:
  "wf(r);  M(r);  M(y); 
     strong_replacement(M, λx z. y[M]. g[M].
          pair(M,x,y,z)  
          is_recfun(r^+, x, λx f. H(x, restrict(f, r -`` {x})), g)  
          y = H(x, restrict(g, r -`` {x}))); 
     x[M]. g[M]. function(g)  M(H(x,g)) 
    y = <x, wfrec(r, x, H)>  
       (f[M]. is_recfun(r^+, x, λx f. H(x, restrict(f, r -`` {x})), f)  
            y = <x, H(x,restrict(f,r-``{x}))>)"
apply safe  
 apply (simp add: wfrec_relativize [THEN iff_sym, of concl: _ x]) 
txt‹converse direction›
apply (rule sym)
apply (simp add: wfrec_relativize, blast) 
done

text‹Full version not assuming transitivity, but maybe not very useful.›
theorem (in M_trancl) wfrec_closed:
     "wf(r); M(r); M(a);
        wfrec_replacement(M,MH,r^+);  
        relation2(M,MH, λx f. H(x, restrict(f, r -`` {x})));
        x[M]. g[M]. function(g)  M(H(x,g)) 
       M(wfrec(r,a,H))"
apply (frule wfrec_replacement' 
               [of MH "r^+" "λx f. H(x, restrict(f, r -`` {x}))"])
   prefer 4
   apply (frule wfrec_replacement_iff [THEN iffD1]) 
   apply (rule wfrec_closed_lemma, assumption+) 
     apply (simp_all add: eq_pair_wfrec_iff func.function_restrictI) 
done

end