Theory WFrec
section‹Relativized Well-Founded Recursion›
theory WFrec imports Wellorderings begin
subsection‹General Lemmas›
lemma apply_recfun2:
"⟦is_recfun(r,a,H,f); ⟨x,i⟩:f⟧ ⟹ i = H(x, restrict(f,r-``{x}))"
apply (frule apply_recfun)
apply (blast dest: is_recfun_type fun_is_rel)
apply (simp add: function_apply_equality [OF _ is_recfun_imp_function])
done
text‹Expresses ‹is_recfun› as a recursion equation›
lemma is_recfun_iff_equation:
"is_recfun(r,a,H,f) ⟷
f ∈ r -`` {a} → range(f) ∧
(∀x ∈ r-``{a}. f`x = H(x, restrict(f, r-``{x})))"
apply (rule iffI)
apply (simp add: is_recfun_type apply_recfun Ball_def vimage_singleton_iff,
clarify)
apply (simp add: is_recfun_def)
apply (rule fun_extension)
apply assumption
apply (fast intro: lam_type, simp)
done
lemma is_recfun_imp_in_r: "⟦is_recfun(r,a,H,f); ⟨x,i⟩ ∈ f⟧ ⟹ ⟨x, a⟩ ∈ r"
by (blast dest: is_recfun_type fun_is_rel)
lemma trans_Int_eq:
"⟦trans(r); ⟨y,x⟩ ∈ r⟧ ⟹ r -`` {x} ∩ r -`` {y} = r -`` {y}"
by (blast intro: transD)
lemma is_recfun_restrict_idem:
"is_recfun(r,a,H,f) ⟹ restrict(f, r -`` {a}) = f"
apply (drule is_recfun_type)
apply (auto simp add: Pi_iff subset_Sigma_imp_relation restrict_idem)
done
lemma is_recfun_cong_lemma:
"⟦is_recfun(r,a,H,f); r = r'; a = a'; f = f';
⋀x g. ⟦<x,a'> ∈ r'; relation(g); domain(g) ⊆ r' -``{x}⟧
⟹ H(x,g) = H'(x,g)⟧
⟹ is_recfun(r',a',H',f')"
apply (simp add: is_recfun_def)
apply (erule trans)
apply (rule lam_cong)
apply (simp_all add: vimage_singleton_iff Int_lower2)
done
text‹For ‹is_recfun› we need only pay attention to functions
whose domains are initial segments of \<^term>‹r›.›
lemma is_recfun_cong:
"⟦r = r'; a = a'; f = f';
⋀x g. ⟦<x,a'> ∈ r'; relation(g); domain(g) ⊆ r' -``{x}⟧
⟹ H(x,g) = H'(x,g)⟧
⟹ is_recfun(r,a,H,f) ⟷ is_recfun(r',a',H',f')"
apply (rule iffI)
txt‹Messy: fast and blast don't work for some reason›
apply (erule is_recfun_cong_lemma, auto)
apply (erule is_recfun_cong_lemma)
apply (blast intro: sym)+
done
subsection‹Reworking of the Recursion Theory Within \<^term>‹M››
lemma (in M_basic) is_recfun_separation':
"⟦f ∈ r -`` {a} → range(f); g ∈ r -`` {b} → range(g);
M(r); M(f); M(g); M(a); M(b)⟧
⟹ separation(M, λx. ¬ (⟨x, a⟩ ∈ r ⟶ ⟨x, b⟩ ∈ r ⟶ f ` x = g ` x))"
apply (insert is_recfun_separation [of r f g a b])
apply (simp add: vimage_singleton_iff)
done
text‹Stated using \<^term>‹trans(r)› rather than
\<^term>‹transitive_rel(M,A,r)› because the latter rewrites to
the former anyway, by ‹transitive_rel_abs›.
As always, theorems should be expressed in simplified form.
The last three M-premises are redundant because of \<^term>‹M(r)›,
but without them we'd have to undertake
more work to set up the induction formula.›
lemma (in M_basic) is_recfun_equal [rule_format]:
"⟦is_recfun(r,a,H,f); is_recfun(r,b,H,g);
wellfounded(M,r); trans(r);
M(f); M(g); M(r); M(x); M(a); M(b)⟧
⟹ ⟨x,a⟩ ∈ r ⟶ ⟨x,b⟩ ∈ r ⟶ f`x=g`x"
apply (frule_tac f=f in is_recfun_type)
apply (frule_tac f=g in is_recfun_type)
apply (simp add: is_recfun_def)
apply (erule_tac a=x in wellfounded_induct, assumption+)
txt‹Separation to justify the induction›
apply (blast intro: is_recfun_separation')
txt‹Now the inductive argument itself›
apply clarify
apply (erule ssubst)+
apply (simp (no_asm_simp) add: vimage_singleton_iff restrict_def)
apply (rename_tac x1)
apply (rule_tac t="λz. H(x1,z)" in subst_context)
apply (subgoal_tac "∀y ∈ r-``{x1}. ∀z. ⟨y,z⟩∈f ⟷ ⟨y,z⟩∈g")
apply (blast intro: transD)
apply (simp add: apply_iff)
apply (blast intro: transD sym)
done
lemma (in M_basic) is_recfun_cut:
"⟦is_recfun(r,a,H,f); is_recfun(r,b,H,g);
wellfounded(M,r); trans(r);
M(f); M(g); M(r); ⟨b,a⟩ ∈ r⟧
⟹ restrict(f, r-``{b}) = g"
apply (frule_tac f=f in is_recfun_type)
apply (rule fun_extension)
apply (blast intro: transD restrict_type2)
apply (erule is_recfun_type, simp)
apply (blast intro: is_recfun_equal transD dest: transM)
done
lemma (in M_basic) is_recfun_functional:
"⟦is_recfun(r,a,H,f); is_recfun(r,a,H,g);
wellfounded(M,r); trans(r); M(f); M(g); M(r)⟧ ⟹ f=g"
apply (rule fun_extension)
apply (erule is_recfun_type)+
apply (blast intro!: is_recfun_equal dest: transM)
done
text‹Tells us that ‹is_recfun› can (in principle) be relativized.›
lemma (in M_basic) is_recfun_relativize:
"⟦M(r); M(f); ∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g))⟧
⟹ is_recfun(r,a,H,f) ⟷
(∀z[M]. z ∈ f ⟷
(∃x[M]. ⟨x,a⟩ ∈ r ∧ z = <x, H(x, restrict(f, r-``{x}))>))"
apply (simp add: is_recfun_def lam_def)
apply (safe intro!: equalityI)
apply (drule equalityD1 [THEN subsetD], assumption)
apply (blast dest: pair_components_in_M)
apply (blast elim!: equalityE dest: pair_components_in_M)
apply (frule transM, assumption)
apply simp
apply blast
apply (subgoal_tac "is_function(M,f)")
txt‹We use \<^term>‹is_function› rather than \<^term>‹function› because
the subgoal's easier to prove with relativized quantifiers!›
prefer 2 apply (simp add: is_function_def)
apply (frule pair_components_in_M, assumption)
apply (simp add: is_recfun_imp_function function_restrictI)
done
lemma (in M_basic) is_recfun_restrict:
"⟦wellfounded(M,r); trans(r); is_recfun(r,x,H,f); ⟨y,x⟩ ∈ r;
M(r); M(f);
∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g))⟧
⟹ is_recfun(r, y, H, restrict(f, r -`` {y}))"
apply (frule pair_components_in_M, assumption, clarify)
apply (simp (no_asm_simp) add: is_recfun_relativize restrict_iff
trans_Int_eq)
apply safe
apply (simp_all add: vimage_singleton_iff is_recfun_type [THEN apply_iff])
apply (frule_tac x=xa in pair_components_in_M, assumption)
apply (frule_tac x=xa in apply_recfun, blast intro: transD)
apply (simp add: is_recfun_type [THEN apply_iff]
is_recfun_imp_function function_restrictI)
apply (blast intro: apply_recfun dest: transD)
done
lemma (in M_basic) restrict_Y_lemma:
"⟦wellfounded(M,r); trans(r); M(r);
∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g)); M(Y);
∀b[M].
b ∈ Y ⟷
(∃x[M]. ⟨x,a1⟩ ∈ r ∧
(∃y[M]. b = ⟨x,y⟩ ∧ (∃g[M]. is_recfun(r,x,H,g) ∧ y = H(x,g))));
⟨x,a1⟩ ∈ r; is_recfun(r,x,H,f); M(f)⟧
⟹ restrict(Y, r -`` {x}) = f"
apply (subgoal_tac "∀y ∈ r-``{x}. ∀z. ⟨y,z⟩:Y ⟷ ⟨y,z⟩:f")
apply (simp (no_asm_simp) add: restrict_def)
apply (thin_tac "rall(M,P)" for P)+
apply (frule is_recfun_type [THEN fun_is_rel], blast)
apply (frule pair_components_in_M, assumption, clarify)
apply (rule iffI)
apply (frule_tac y="⟨y,z⟩" in transM, assumption)
apply (clarsimp simp add: vimage_singleton_iff is_recfun_type [THEN apply_iff]
apply_recfun is_recfun_cut)
txt‹Opposite inclusion: something in f, show in Y›
apply (frule_tac y="⟨y,z⟩" in transM, assumption)
apply (simp add: vimage_singleton_iff)
apply (rule conjI)
apply (blast dest: transD)
apply (rule_tac x="restrict(f, r -`` {y})" in rexI)
apply (simp_all add: is_recfun_restrict
apply_recfun is_recfun_type [THEN apply_iff])
done
text‹For typical applications of Replacement for recursive definitions›
lemma (in M_basic) univalent_is_recfun:
"⟦wellfounded(M,r); trans(r); M(r)⟧
⟹ univalent (M, A, λx p.
∃y[M]. p = ⟨x,y⟩ ∧ (∃f[M]. is_recfun(r,x,H,f) ∧ y = H(x,f)))"
apply (simp add: univalent_def)
apply (blast dest: is_recfun_functional)
done
text‹Proof of the inductive step for ‹exists_is_recfun›, since
we must prove two versions.›
lemma (in M_basic) exists_is_recfun_indstep:
"⟦∀y. ⟨y, a1⟩ ∈ r ⟶ (∃f[M]. is_recfun(r, y, H, f));
wellfounded(M,r); trans(r); M(r); M(a1);
strong_replacement(M, λx z.
∃y[M]. ∃g[M]. pair(M,x,y,z) ∧ is_recfun(r,x,H,g) ∧ y = H(x,g));
∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g))⟧
⟹ ∃f[M]. is_recfun(r,a1,H,f)"
apply (drule_tac A="r-``{a1}" in strong_replacementD)
apply blast
txt‹Discharge the "univalent" obligation of Replacement›
apply (simp add: univalent_is_recfun)
txt‹Show that the constructed object satisfies ‹is_recfun››
apply clarify
apply (rule_tac x=Y in rexI)
txt‹Unfold only the top-level occurrence of \<^term>‹is_recfun››
apply (simp (no_asm_simp) add: is_recfun_relativize [of concl: _ a1])
txt‹The big iff-formula defining \<^term>‹Y› is now redundant›
apply safe
apply (simp add: vimage_singleton_iff restrict_Y_lemma [of r H _ a1])
txt‹one more case›
apply (simp (no_asm_simp) add: Bex_def vimage_singleton_iff)
apply (drule_tac x1=x in spec [THEN mp], assumption, clarify)
apply (rename_tac f)
apply (rule_tac x=f in rexI)
apply (simp_all add: restrict_Y_lemma [of r H])
txt‹FIXME: should not be needed!›
apply (subst restrict_Y_lemma [of r H])
apply (simp add: vimage_singleton_iff)+
apply blast+
done
text‹Relativized version, when we have the (currently weaker) premise
\<^term>‹wellfounded(M,r)››
lemma (in M_basic) wellfounded_exists_is_recfun:
"⟦wellfounded(M,r); trans(r);
separation(M, λx. ¬ (∃f[M]. is_recfun(r, x, H, f)));
strong_replacement(M, λx z.
∃y[M]. ∃g[M]. pair(M,x,y,z) ∧ is_recfun(r,x,H,g) ∧ y = H(x,g));
M(r); M(a);
∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g))⟧
⟹ ∃f[M]. is_recfun(r,a,H,f)"
apply (rule wellfounded_induct, assumption+, clarify)
apply (rule exists_is_recfun_indstep, assumption+)
done
lemma (in M_basic) wf_exists_is_recfun [rule_format]:
"⟦wf(r); trans(r); M(r);
strong_replacement(M, λx z.
∃y[M]. ∃g[M]. pair(M,x,y,z) ∧ is_recfun(r,x,H,g) ∧ y = H(x,g));
∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g))⟧
⟹ M(a) ⟶ (∃f[M]. is_recfun(r,a,H,f))"
apply (rule wf_induct, assumption+)
apply (frule wf_imp_relativized)
apply (intro impI)
apply (rule exists_is_recfun_indstep)
apply (blast dest: transM del: rev_rallE, assumption+)
done
subsection‹Relativization of the ZF Predicate \<^term>‹is_recfun››
definition
M_is_recfun :: "[i⇒o, [i,i,i]⇒o, i, i, i] ⇒ o" where
"M_is_recfun(M,MH,r,a,f) ≡
∀z[M]. z ∈ f ⟷
(∃x[M]. ∃y[M]. ∃xa[M]. ∃sx[M]. ∃r_sx[M]. ∃f_r_sx[M].
pair(M,x,y,z) ∧ pair(M,x,a,xa) ∧ upair(M,x,x,sx) ∧
pre_image(M,r,sx,r_sx) ∧ restriction(M,f,r_sx,f_r_sx) ∧
xa ∈ r ∧ MH(x, f_r_sx, y))"
definition
is_wfrec :: "[i⇒o, [i,i,i]⇒o, i, i, i] ⇒ o" where
"is_wfrec(M,MH,r,a,z) ≡
∃f[M]. M_is_recfun(M,MH,r,a,f) ∧ MH(a,f,z)"
definition
wfrec_replacement :: "[i⇒o, [i,i,i]⇒o, i] ⇒ o" where
"wfrec_replacement(M,MH,r) ≡
strong_replacement(M,
λx z. ∃y[M]. pair(M,x,y,z) ∧ is_wfrec(M,MH,r,x,y))"
lemma (in M_basic) is_recfun_abs:
"⟦∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g)); M(r); M(a); M(f);
relation2(M,MH,H)⟧
⟹ M_is_recfun(M,MH,r,a,f) ⟷ is_recfun(r,a,H,f)"
apply (simp add: M_is_recfun_def relation2_def is_recfun_relativize)
apply (rule rall_cong)
apply (blast dest: transM)
done
lemma M_is_recfun_cong [cong]:
"⟦r = r'; a = a'; f = f';
⋀x g y. ⟦M(x); M(g); M(y)⟧ ⟹ MH(x,g,y) ⟷ MH'(x,g,y)⟧
⟹ M_is_recfun(M,MH,r,a,f) ⟷ M_is_recfun(M,MH',r',a',f')"
by (simp add: M_is_recfun_def)
lemma (in M_basic) is_wfrec_abs:
"⟦∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g));
relation2(M,MH,H); M(r); M(a); M(z)⟧
⟹ is_wfrec(M,MH,r,a,z) ⟷
(∃g[M]. is_recfun(r,a,H,g) ∧ z = H(a,g))"
by (simp add: is_wfrec_def relation2_def is_recfun_abs)
text‹Relating \<^term>‹wfrec_replacement› to native constructs›
lemma (in M_basic) wfrec_replacement':
"⟦wfrec_replacement(M,MH,r);
∀x[M]. ∀g[M]. function(g) ⟶ M(H(x,g));
relation2(M,MH,H); M(r)⟧
⟹ strong_replacement(M, λx z. ∃y[M].
pair(M,x,y,z) ∧ (∃g[M]. is_recfun(r,x,H,g) ∧ y = H(x,g)))"
by (simp add: wfrec_replacement_def is_wfrec_abs)
lemma wfrec_replacement_cong [cong]:
"⟦⋀x y z. ⟦M(x); M(y); M(z)⟧ ⟹ MH(x,y,z) ⟷ MH'(x,y,z);
r=r'⟧
⟹ wfrec_replacement(M, λx y. MH(x,y), r) ⟷
wfrec_replacement(M, λx y. MH'(x,y), r')"
by (simp add: is_wfrec_def wfrec_replacement_def)
end