Theory HOL-Probability.Probability_Mass_Function

(*  Title:      HOL/Probability/Probability_Mass_Function.thy
    Author:     Johannes Hölzl, TU München
    Author:     Andreas Lochbihler, ETH Zurich
    Author:     Manuel Eberl, TU München
*)

section ‹ Probability mass function ›

theory Probability_Mass_Function
imports
  Giry_Monad
  "HOL-Library.Multiset"
begin

text ‹Conflicting notation from theoryHOL-Analysis.Infinite_Sum
no_notation Infinite_Sum.abs_summable_on (infixr "abs'_summable'_on" 46)

lemma AE_emeasure_singleton:
  assumes x: "emeasure M {x}  0" and ae: "AE x in M. P x" shows "P x"
proof -
  from x have x_M: "{x}  sets M"
    by (auto intro: emeasure_notin_sets)
  from ae obtain N where N: "{xspace M. ¬ P x}  N" "emeasure M N = 0" "N  sets M"
    by (auto elim: AE_E)
  { assume "¬ P x"
    with x_M[THEN sets.sets_into_space] N have "emeasure M {x}  emeasure M N"
      by (intro emeasure_mono) auto
    with x N have False
      by (auto simp:) }
  then show "P x" by auto
qed

lemma AE_measure_singleton: "measure M {x}  0  AE x in M. P x  P x"
  by (metis AE_emeasure_singleton measure_def emeasure_empty measure_empty)

lemma (in finite_measure) AE_support_countable:
  assumes [simp]: "sets M = UNIV"
  shows "(AE x in M. measure M {x}  0)  (S. countable S  (AE x in M. x  S))"
proof
  assume "S. countable S  (AE x in M. x  S)"
  then obtain S where S[intro]: "countable S" and ae: "AE x in M. x  S"
    by auto
  then have "emeasure M (x{xS. emeasure M {x}  0}. {x}) =
    (+ x. emeasure M {x} * indicator {xS. emeasure M {x}  0} x count_space UNIV)"
    by (subst emeasure_UN_countable)
       (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
  also have " = (+ x. emeasure M {x} * indicator S x count_space UNIV)"
    by (auto intro!: nn_integral_cong split: split_indicator)
  also have " = emeasure M (xS. {x})"
    by (subst emeasure_UN_countable)
       (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
  also have " = emeasure M (space M)"
    using ae by (intro emeasure_eq_AE) auto
  finally have "emeasure M {x  space M. xS  emeasure M {x}  0} = emeasure M (space M)"
    by (simp add: emeasure_single_in_space cong: rev_conj_cong)
  with finite_measure_compl[of "{x  space M. xS  emeasure M {x}  0}"]
  have "AE x in M. x  S  emeasure M {x}  0"
    by (intro AE_I[OF order_refl]) (auto simp: emeasure_eq_measure measure_nonneg set_diff_eq cong: conj_cong)
  then show "AE x in M. measure M {x}  0"
    by (auto simp: emeasure_eq_measure)
qed (auto intro!: exI[of _ "{x. measure M {x}  0}"] countable_support)

subsection ‹ PMF as measure ›

typedef 'a pmf = "{M :: 'a measure. prob_space M  sets M = UNIV  (AE x in M. measure M {x}  0)}"
  morphisms measure_pmf Abs_pmf
  by (intro exI[of _ "uniform_measure (count_space UNIV) {undefined}"])
     (auto intro!: prob_space_uniform_measure AE_uniform_measureI)

declare [[coercion measure_pmf]]

lemma prob_space_measure_pmf: "prob_space (measure_pmf p)"
  using pmf.measure_pmf[of p] by auto

interpretation measure_pmf: prob_space "measure_pmf M" for M
  by (rule prob_space_measure_pmf)

interpretation measure_pmf: subprob_space "measure_pmf M" for M
  by (rule prob_space_imp_subprob_space) unfold_locales

lemma subprob_space_measure_pmf: "subprob_space (measure_pmf x)"
  by unfold_locales

locale pmf_as_measure
begin

setup_lifting type_definition_pmf

end

context
begin

interpretation pmf_as_measure .

lemma sets_measure_pmf[simp]: "sets (measure_pmf p) = UNIV"
  by transfer blast

lemma sets_measure_pmf_count_space[measurable_cong]:
  "sets (measure_pmf M) = sets (count_space UNIV)"
  by simp

lemma space_measure_pmf[simp]: "space (measure_pmf p) = UNIV"
  using sets_eq_imp_space_eq[of "measure_pmf p" "count_space UNIV"] by simp

lemma measure_pmf_UNIV [simp]: "measure (measure_pmf p) UNIV = 1"
using measure_pmf.prob_space[of p] by simp

lemma measure_pmf_in_subprob_algebra[measurable (raw)]: "measure_pmf x  space (subprob_algebra (count_space UNIV))"
  by (simp add: space_subprob_algebra subprob_space_measure_pmf)

lemma measurable_pmf_measure1[simp]: "measurable (M :: 'a pmf) N = UNIV  space N"
  by (auto simp: measurable_def)

lemma measurable_pmf_measure2[simp]: "measurable N (M :: 'a pmf) = measurable N (count_space UNIV)"
  by (intro measurable_cong_sets) simp_all

lemma measurable_pair_restrict_pmf2:
  assumes "countable A"
  assumes [measurable]: "y. y  A  (λx. f (x, y))  measurable M L"
  shows "f  measurable (M M restrict_space (measure_pmf N) A) L" (is "f  measurable ?M _")
proof -
  have [measurable_cong]: "sets (restrict_space (count_space UNIV) A) = sets (count_space A)"
    by (simp add: restrict_count_space)

  show ?thesis
    by (intro measurable_compose_countable'[where f="λa b. f (fst b, a)" and g=snd and I=A,
                                            unfolded prod.collapse] assms)
        measurable
qed

lemma measurable_pair_restrict_pmf1:
  assumes "countable A"
  assumes [measurable]: "x. x  A  (λy. f (x, y))  measurable N L"
  shows "f  measurable (restrict_space (measure_pmf M) A M N) L"
proof -
  have [measurable_cong]: "sets (restrict_space (count_space UNIV) A) = sets (count_space A)"
    by (simp add: restrict_count_space)

  show ?thesis
    by (intro measurable_compose_countable'[where f="λa b. f (a, snd b)" and g=fst and I=A,
                                            unfolded prod.collapse] assms)
        measurable
qed

lift_definition pmf :: "'a pmf  'a  real" is "λM x. measure M {x}" .

lift_definition set_pmf :: "'a pmf  'a set" is "λM. {x. measure M {x}  0}" .
declare [[coercion set_pmf]]

lemma AE_measure_pmf: "AE x in (M::'a pmf). x  M"
  by transfer simp

lemma emeasure_pmf_single_eq_zero_iff:
  fixes M :: "'a pmf"
  shows "emeasure M {y} = 0  y  M"
  unfolding set_pmf.rep_eq by (simp add: measure_pmf.emeasure_eq_measure)

lemma AE_measure_pmf_iff: "(AE x in measure_pmf M. P x)  (yM. P y)"
  using AE_measure_singleton[of M] AE_measure_pmf[of M]
  by (auto simp: set_pmf.rep_eq)

lemma AE_pmfI: "(y. y  set_pmf M  P y)  almost_everywhere (measure_pmf M) P"
by(simp add: AE_measure_pmf_iff)

lemma countable_set_pmf [simp]: "countable (set_pmf p)"
  by transfer (metis prob_space.finite_measure finite_measure.countable_support)

lemma pmf_positive: "x  set_pmf p  0 < pmf p x"
  by transfer (simp add: less_le)

lemma pmf_nonneg[simp]: "0  pmf p x"
  by transfer simp

lemma pmf_not_neg [simp]: "¬pmf p x < 0"
  by (simp add: not_less pmf_nonneg)

lemma pmf_pos [simp]: "pmf p x  0  pmf p x > 0"
  using pmf_nonneg[of p x] by linarith

lemma pmf_le_1: "pmf p x  1"
  by (simp add: pmf.rep_eq)

lemma set_pmf_not_empty: "set_pmf M  {}"
  using AE_measure_pmf[of M] by (intro notI) simp

lemma set_pmf_iff: "x  set_pmf M  pmf M x  0"
  by transfer simp

lemma pmf_positive_iff: "0 < pmf p x  x  set_pmf p"
  unfolding less_le by (simp add: set_pmf_iff)

lemma set_pmf_eq: "set_pmf M = {x. pmf M x  0}"
  by (auto simp: set_pmf_iff)

lemma set_pmf_eq': "set_pmf p = {x. pmf p x > 0}"
proof safe
  fix x assume "x  set_pmf p"
  hence "pmf p x  0" by (auto simp: set_pmf_eq)
  with pmf_nonneg[of p x] show "pmf p x > 0" by simp
qed (auto simp: set_pmf_eq)

lemma emeasure_pmf_single:
  fixes M :: "'a pmf"
  shows "emeasure M {x} = pmf M x"
  by transfer (simp add: finite_measure.emeasure_eq_measure[OF prob_space.finite_measure])

lemma measure_pmf_single: "measure (measure_pmf M) {x} = pmf M x"
  using emeasure_pmf_single[of M x] by(simp add: measure_pmf.emeasure_eq_measure pmf_nonneg measure_nonneg)

lemma emeasure_measure_pmf_finite: "finite S  emeasure (measure_pmf M) S = (sS. pmf M s)"
  by (subst emeasure_eq_sum_singleton) (auto simp: emeasure_pmf_single pmf_nonneg)

lemma measure_measure_pmf_finite: "finite S  measure (measure_pmf M) S = sum (pmf M) S"
  using emeasure_measure_pmf_finite[of S M]
  by (simp add: measure_pmf.emeasure_eq_measure measure_nonneg sum_nonneg pmf_nonneg)

lemma sum_pmf_eq_1:
  assumes "finite A" "set_pmf p  A"
  shows   "(xA. pmf p x) = 1"
proof -
  have "(xA. pmf p x) = measure_pmf.prob p A"
    by (simp add: measure_measure_pmf_finite assms)
  also from assms have " = 1"
    by (subst measure_pmf.prob_eq_1) (auto simp: AE_measure_pmf_iff)
  finally show ?thesis .
qed

lemma nn_integral_measure_pmf_support:
  fixes f :: "'a  ennreal"
  assumes f: "finite A" and nn: "x. x  A  0  f x" "x. x  set_pmf M  x  A  f x = 0"
  shows "(+x. f x measure_pmf M) = (xA. f x * pmf M x)"
proof -
  have "(+x. f x M) = (+x. f x * indicator A x M)"
    using nn by (intro nn_integral_cong_AE) (auto simp: AE_measure_pmf_iff split: split_indicator)
  also have " = (xA. f x * emeasure M {x})"
    using assms by (intro nn_integral_indicator_finite) auto
  finally show ?thesis
    by (simp add: emeasure_measure_pmf_finite)
qed

lemma nn_integral_measure_pmf_finite:
  fixes f :: "'a  ennreal"
  assumes f: "finite (set_pmf M)" and nn: "x. x  set_pmf M  0  f x"
  shows "(+x. f x measure_pmf M) = (xset_pmf M. f x * pmf M x)"
  using assms by (intro nn_integral_measure_pmf_support) auto

lemma integrable_measure_pmf_finite:
  fixes f :: "'a  'b::{banach, second_countable_topology}"
  shows "finite (set_pmf M)  integrable M f"
  by (auto intro!: integrableI_bounded simp: nn_integral_measure_pmf_finite ennreal_mult_less_top)

lemma integral_measure_pmf_real:
  assumes [simp]: "finite A" and "a. a  set_pmf M  f a  0  a  A"
  shows "(x. f x measure_pmf M) = (aA. f a * pmf M a)"
proof -
  have "(x. f x measure_pmf M) = (x. f x * indicator A x measure_pmf M)"
    using assms(2) by (intro integral_cong_AE) (auto split: split_indicator simp: AE_measure_pmf_iff)
  also have " = (aA. f a * pmf M a)"
    by (subst integral_indicator_finite_real)
       (auto simp: measure_def emeasure_measure_pmf_finite pmf_nonneg)
  finally show ?thesis .
qed

lemma integrable_pmf: "integrable (count_space X) (pmf M)"
proof -
  have " (+ x. pmf M x count_space X) = (+ x. pmf M x count_space (M  X))"
    by (auto simp add: nn_integral_count_space_indicator set_pmf_iff intro!: nn_integral_cong split: split_indicator)
  then have "integrable (count_space X) (pmf M) = integrable (count_space (M  X)) (pmf M)"
    by (simp add: integrable_iff_bounded pmf_nonneg)
  then show ?thesis
    by (simp add: pmf.rep_eq measure_pmf.integrable_measure disjoint_family_on_def)
qed

lemma integral_pmf: "(x. pmf M x count_space X) = measure M X"
proof -
  have "(x. pmf M x count_space X) = (+x. pmf M x count_space X)"
    by (simp add: pmf_nonneg integrable_pmf nn_integral_eq_integral)
  also have " = (+x. emeasure M {x} count_space (X  M))"
    by (auto intro!: nn_integral_cong_AE split: split_indicator
             simp: pmf.rep_eq measure_pmf.emeasure_eq_measure nn_integral_count_space_indicator
                   AE_count_space set_pmf_iff)
  also have " = emeasure M (X  M)"
    by (rule emeasure_countable_singleton[symmetric]) (auto intro: countable_set_pmf)
  also have " = emeasure M X"
    by (auto intro!: emeasure_eq_AE simp: AE_measure_pmf_iff)
  finally show ?thesis
    by (simp add: measure_pmf.emeasure_eq_measure measure_nonneg integral_nonneg pmf_nonneg)
qed

lemma integral_pmf_restrict:
  "(f::'a  'b::{banach, second_countable_topology})  borel_measurable (count_space UNIV) 
    (x. f x measure_pmf M) = (x. f x restrict_space M M)"
  by (auto intro!: integral_cong_AE simp add: integral_restrict_space AE_measure_pmf_iff)

lemma emeasure_pmf: "emeasure (M::'a pmf) M = 1"
proof -
  have "emeasure (M::'a pmf) M = emeasure (M::'a pmf) (space M)"
    by (intro emeasure_eq_AE) (simp_all add: AE_measure_pmf)
  then show ?thesis
    using measure_pmf.emeasure_space_1 by simp
qed

lemma emeasure_pmf_UNIV [simp]: "emeasure (measure_pmf M) UNIV = 1"
using measure_pmf.emeasure_space_1[of M] by simp

lemma in_null_sets_measure_pmfI:
  "A  set_pmf p = {}  A  null_sets (measure_pmf p)"
using emeasure_eq_0_AE[where ?P="λx. x  A" and M="measure_pmf p"]
by(auto simp add: null_sets_def AE_measure_pmf_iff)

lemma measure_subprob: "measure_pmf M  space (subprob_algebra (count_space UNIV))"
  by (simp add: space_subprob_algebra subprob_space_measure_pmf)

subsection ‹ Monad Interpretation ›

lemma measurable_measure_pmf[measurable]:
  "(λx. measure_pmf (M x))  measurable (count_space UNIV) (subprob_algebra (count_space UNIV))"
  by (auto simp: space_subprob_algebra intro!: prob_space_imp_subprob_space) unfold_locales

lemma bind_measure_pmf_cong:
  assumes "x. A x  space (subprob_algebra N)" "x. B x  space (subprob_algebra N)"
  assumes "i. i  set_pmf x  A i = B i"
  shows "bind (measure_pmf x) A = bind (measure_pmf x) B"
proof (rule measure_eqI)
  show "sets (measure_pmf x  A) = sets (measure_pmf x  B)"
    using assms by (subst (1 2) sets_bind) (auto simp: space_subprob_algebra)
next
  fix X assume "X  sets (measure_pmf x  A)"
  then have X: "X  sets N"
    using assms by (subst (asm) sets_bind) (auto simp: space_subprob_algebra)
  show "emeasure (measure_pmf x  A) X = emeasure (measure_pmf x  B) X"
    using assms
    by (subst (1 2) emeasure_bind[where N=N, OF _ _ X])
       (auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff)
qed

lift_definition bind_pmf :: "'a pmf  ('a  'b pmf )  'b pmf" is bind
proof (clarify, intro conjI)
  fix f :: "'a measure" and g :: "'a  'b measure"
  assume "prob_space f"
  then interpret f: prob_space f .
  assume "sets f = UNIV" and ae_f: "AE x in f. measure f {x}  0"
  then have s_f[simp]: "sets f = sets (count_space UNIV)"
    by simp
  assume g: "x. prob_space (g x)  sets (g x) = UNIV  (AE y in g x. measure (g x) {y}  0)"
  then have g: "x. prob_space (g x)" and s_g[simp]: "x. sets (g x) = sets (count_space UNIV)"
    and ae_g: "x. AE y in g x. measure (g x) {y}  0"
    by auto

  have [measurable]: "g  measurable f (subprob_algebra (count_space UNIV))"
    by (auto simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space g)

  show "prob_space (f  g)"
    using g by (intro f.prob_space_bind[where S="count_space UNIV"]) auto
  then interpret fg: prob_space "f  g" .
  show [simp]: "sets (f  g) = UNIV"
    using sets_eq_imp_space_eq[OF s_f]
    by (subst sets_bind[where N="count_space UNIV"]) auto
  show "AE x in f  g. measure (f  g) {x}  0"
    apply (simp add: fg.prob_eq_0 AE_bind[where B="count_space UNIV"])
    using ae_f
    apply eventually_elim
    using ae_g
    apply eventually_elim
    apply (auto dest: AE_measure_singleton)
    done
qed

adhoc_overloading Monad_Syntax.bind bind_pmf

lemma ennreal_pmf_bind: "pmf (bind_pmf N f) i = (+x. pmf (f x) i measure_pmf N)"
  unfolding pmf.rep_eq bind_pmf.rep_eq
  by (auto simp: measure_pmf.measure_bind[where N="count_space UNIV"] measure_subprob measure_nonneg
           intro!: nn_integral_eq_integral[symmetric] measure_pmf.integrable_const_bound[where B=1])

lemma pmf_bind: "pmf (bind_pmf N f) i = (x. pmf (f x) i measure_pmf N)"
  using ennreal_pmf_bind[of N f i]
  by (subst (asm) nn_integral_eq_integral)
     (auto simp: pmf_nonneg pmf_le_1 pmf_nonneg integral_nonneg
           intro!: nn_integral_eq_integral[symmetric] measure_pmf.integrable_const_bound[where B=1])

lemma bind_pmf_const[simp]: "bind_pmf M (λx. c) = c"
  by transfer (simp add: bind_const' prob_space_imp_subprob_space)

lemma set_bind_pmf[simp]: "set_pmf (bind_pmf M N) = (Mset_pmf M. set_pmf (N M))"
proof -
  have "set_pmf (bind_pmf M N) = {x. ennreal (pmf (bind_pmf M N) x)  0}"
    by (simp add: set_pmf_eq pmf_nonneg)
  also have " = (Mset_pmf M. set_pmf (N M))"
    unfolding ennreal_pmf_bind
    by (subst nn_integral_0_iff_AE) (auto simp: AE_measure_pmf_iff pmf_nonneg set_pmf_eq)
  finally show ?thesis .
qed

lemma bind_pmf_cong [fundef_cong]:
  assumes "p = q"
  shows "(x. x  set_pmf q  f x = g x)  bind_pmf p f = bind_pmf q g"
  unfolding p = q[symmetric] measure_pmf_inject[symmetric] bind_pmf.rep_eq
  by (auto simp: AE_measure_pmf_iff Pi_iff space_subprob_algebra subprob_space_measure_pmf
                 sets_bind[where N="count_space UNIV"] emeasure_bind[where N="count_space UNIV"]
           intro!: nn_integral_cong_AE measure_eqI)

lemma bind_pmf_cong_simp:
  "p = q  (x. x  set_pmf q =simp=> f x = g x)  bind_pmf p f = bind_pmf q g"
  by (simp add: simp_implies_def cong: bind_pmf_cong)

lemma measure_pmf_bind: "measure_pmf (bind_pmf M f) = (measure_pmf M  (λx. measure_pmf (f x)))"
  by transfer simp

lemma nn_integral_bind_pmf[simp]: "(+x. f x bind_pmf M N) = (+x. +y. f y N x M)"
  using measurable_measure_pmf[of N]
  unfolding measure_pmf_bind
  apply (intro nn_integral_bind[where B="count_space UNIV"])
  apply auto
  done

lemma emeasure_bind_pmf[simp]: "emeasure (bind_pmf M N) X = (+x. emeasure (N x) X M)"
  using measurable_measure_pmf[of N]
  unfolding measure_pmf_bind
  by (subst emeasure_bind[where N="count_space UNIV"]) auto

lift_definition return_pmf :: "'a  'a pmf" is "return (count_space UNIV)"
  by (auto intro!: prob_space_return simp: AE_return measure_return)

lemma bind_return_pmf: "bind_pmf (return_pmf x) f = f x"
  by transfer
     (auto intro!: prob_space_imp_subprob_space bind_return[where N="count_space UNIV"]
           simp: space_subprob_algebra)

lemma set_return_pmf[simp]: "set_pmf (return_pmf x) = {x}"
  by transfer (auto simp add: measure_return split: split_indicator)

lemma bind_return_pmf': "bind_pmf N return_pmf = N"
proof (transfer, clarify)
  fix N :: "'a measure" assume "sets N = UNIV" then show "N  return (count_space UNIV) = N"
    by (subst return_sets_cong[where N=N]) (simp_all add: bind_return')
qed

lemma bind_assoc_pmf: "bind_pmf (bind_pmf A B) C = bind_pmf A (λx. bind_pmf (B x) C)"
  by transfer
     (auto intro!: bind_assoc[where N="count_space UNIV" and R="count_space UNIV"]
           simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space)

definition "map_pmf f M = bind_pmf M (λx. return_pmf (f x))"

lemma map_bind_pmf: "map_pmf f (bind_pmf M g) = bind_pmf M (λx. map_pmf f (g x))"
  by (simp add: map_pmf_def bind_assoc_pmf)

lemma bind_map_pmf: "bind_pmf (map_pmf f M) g = bind_pmf M (λx. g (f x))"
  by (simp add: map_pmf_def bind_assoc_pmf bind_return_pmf)

lemma map_pmf_transfer[transfer_rule]:
  "rel_fun (=) (rel_fun cr_pmf cr_pmf) (λf M. distr M (count_space UNIV) f) map_pmf"
proof -
  have "rel_fun (=) (rel_fun pmf_as_measure.cr_pmf pmf_as_measure.cr_pmf)
     (λf M. M  (return (count_space UNIV) o f)) map_pmf"
    unfolding map_pmf_def[abs_def] comp_def by transfer_prover
  then show ?thesis
    by (force simp: rel_fun_def cr_pmf_def bind_return_distr)
qed

lemma map_pmf_rep_eq:
  "measure_pmf (map_pmf f M) = distr (measure_pmf M) (count_space UNIV) f"
  unfolding map_pmf_def bind_pmf.rep_eq comp_def return_pmf.rep_eq
  using bind_return_distr[of M f "count_space UNIV"] by (simp add: comp_def)

lemma map_pmf_id[simp]: "map_pmf id = id"
  by (rule, transfer) (auto simp: emeasure_distr measurable_def intro!: measure_eqI)

lemma map_pmf_ident[simp]: "map_pmf (λx. x) = (λx. x)"
  using map_pmf_id unfolding id_def .

lemma map_pmf_compose: "map_pmf (f  g) = map_pmf f  map_pmf g"
  by (rule, transfer) (simp add: distr_distr[symmetric, where N="count_space UNIV"] measurable_def)

lemma map_pmf_comp: "map_pmf f (map_pmf g M) = map_pmf (λx. f (g x)) M"
  using map_pmf_compose[of f g] by (simp add: comp_def)

lemma map_pmf_cong: "p = q  (x. x  set_pmf q  f x = g x)  map_pmf f p = map_pmf g q"
  unfolding map_pmf_def by (rule bind_pmf_cong) auto

lemma pmf_set_map: "set_pmf  map_pmf f = (`) f  set_pmf"
  by (auto simp add: comp_def fun_eq_iff map_pmf_def)

lemma set_map_pmf[simp]: "set_pmf (map_pmf f M) = f`set_pmf M"
  using pmf_set_map[of f] by (auto simp: comp_def fun_eq_iff)

lemma emeasure_map_pmf[simp]: "emeasure (map_pmf f M) X = emeasure M (f -` X)"
  unfolding map_pmf_rep_eq by (subst emeasure_distr) auto

lemma measure_map_pmf[simp]: "measure (map_pmf f M) X = measure M (f -` X)"
using emeasure_map_pmf[of f M X] by(simp add: measure_pmf.emeasure_eq_measure measure_nonneg)

lemma nn_integral_map_pmf[simp]: "(+x. f x map_pmf g M) = (+x. f (g x) M)"
  unfolding map_pmf_rep_eq by (intro nn_integral_distr) auto

lemma ennreal_pmf_map: "pmf (map_pmf f p) x = (+ y. indicator (f -` {x}) y measure_pmf p)"
proof (transfer fixing: f x)
  fix p :: "'b measure"
  presume "prob_space p"
  then interpret prob_space p .
  presume "sets p = UNIV"
  then show "ennreal (measure (distr p (count_space UNIV) f) {x}) = integralN p (indicator (f -` {x}))"
    by(simp add: measure_distr measurable_def emeasure_eq_measure)
qed simp_all

lemma pmf_map: "pmf (map_pmf f p) x = measure p (f -` {x})"
proof (transfer fixing: f x)
  fix p :: "'b measure"
  presume "prob_space p"
  then interpret prob_space p .
  presume "sets p = UNIV"
  then show "measure (distr p (count_space UNIV) f) {x} = measure p (f -` {x})"
    by(simp add: measure_distr measurable_def emeasure_eq_measure)
qed simp_all

lemma nn_integral_pmf: "(+ x. pmf p x count_space A) = emeasure (measure_pmf p) A"
proof -
  have "(+ x. pmf p x count_space A) = (+ x. pmf p x count_space (A  set_pmf p))"
    by(auto simp add: nn_integral_count_space_indicator indicator_def set_pmf_iff intro: nn_integral_cong)
  also have " = emeasure (measure_pmf p) (xA  set_pmf p. {x})"
    by(subst emeasure_UN_countable)(auto simp add: emeasure_pmf_single disjoint_family_on_def)
  also have " = emeasure (measure_pmf p) ((xA  set_pmf p. {x})  {x. x  A  x  set_pmf p})"
    by(rule emeasure_Un_null_set[symmetric])(auto intro: in_null_sets_measure_pmfI)
  also have " = emeasure (measure_pmf p) A"
    by(auto intro: arg_cong2[where f=emeasure])
  finally show ?thesis .
qed

lemma integral_map_pmf[simp]:
  fixes f :: "'a  'b::{banach, second_countable_topology}"
  shows "integralL (map_pmf g p) f = integralL p (λx. f (g x))"
  by (simp add: integral_distr map_pmf_rep_eq)

lemma integrable_map_pmf_eq [simp]:
  fixes g :: "'a  'b::{banach, second_countable_topology}"
  shows "integrable (map_pmf f p) g  integrable (measure_pmf p) (λx. g (f x))"
  by (subst map_pmf_rep_eq, subst integrable_distr_eq) auto

lemma integrable_map_pmf [intro]:
  fixes g :: "'a  'b::{banach, second_countable_topology}"
  shows "integrable (measure_pmf p) (λx. g (f x))  integrable (map_pmf f p) g"
  by (subst integrable_map_pmf_eq)

lemma pmf_abs_summable [intro]: "pmf p abs_summable_on A"
  by (rule abs_summable_on_subset[OF _ subset_UNIV])
     (auto simp:  abs_summable_on_def integrable_iff_bounded nn_integral_pmf)

lemma measure_pmf_conv_infsetsum: "measure (measure_pmf p) A = infsetsum (pmf p) A"
  unfolding infsetsum_def by (simp add: integral_eq_nn_integral nn_integral_pmf measure_def)

lemma infsetsum_pmf_eq_1:
  assumes "set_pmf p  A"
  shows   "infsetsum (pmf p) A = 1"
proof -
  have "infsetsum (pmf p) A = lebesgue_integral (count_space UNIV) (pmf p)"
    using assms unfolding infsetsum_altdef set_lebesgue_integral_def
    by (intro Bochner_Integration.integral_cong) (auto simp: indicator_def set_pmf_eq)
  also have " = 1"
    by (subst integral_eq_nn_integral) (auto simp: nn_integral_pmf)
  finally show ?thesis .
qed

lemma map_return_pmf [simp]: "map_pmf f (return_pmf x) = return_pmf (f x)"
  by transfer (simp add: distr_return)

lemma map_pmf_const[simp]: "map_pmf (λ_. c) M = return_pmf c"
  by transfer (auto simp: prob_space.distr_const)

lemma pmf_return [simp]: "pmf (return_pmf x) y = indicator {y} x"
  by transfer (simp add: measure_return)

lemma nn_integral_return_pmf[simp]: "0  f x  (+x. f x return_pmf x) = f x"
  unfolding return_pmf.rep_eq by (intro nn_integral_return) auto

lemma emeasure_return_pmf[simp]: "emeasure (return_pmf x) X = indicator X x"
  unfolding return_pmf.rep_eq by (intro emeasure_return) auto

lemma measure_return_pmf [simp]: "measure_pmf.prob (return_pmf x) A = indicator A x"
proof -
  have "ennreal (measure_pmf.prob (return_pmf x) A) =
          emeasure (measure_pmf (return_pmf x)) A"
    by (simp add: measure_pmf.emeasure_eq_measure)
  also have " = ennreal (indicator A x)" by (simp add: ennreal_indicator)
  finally show ?thesis by simp
qed

lemma return_pmf_inj[simp]: "return_pmf x = return_pmf y  x = y"
  by (metis insertI1 set_return_pmf singletonD)

lemma map_pmf_eq_return_pmf_iff:
  "map_pmf f p = return_pmf x  (y  set_pmf p. f y = x)"
proof
  assume "map_pmf f p = return_pmf x"
  then have "set_pmf (map_pmf f p) = set_pmf (return_pmf x)" by simp
  then show "y  set_pmf p. f y = x" by auto
next
  assume "y  set_pmf p. f y = x"
  then show "map_pmf f p = return_pmf x"
    unfolding map_pmf_const[symmetric, of _ p] by (intro map_pmf_cong) auto
qed

definition "pair_pmf A B = bind_pmf A (λx. bind_pmf B (λy. return_pmf (x, y)))"

lemma pmf_pair: "pmf (pair_pmf M N) (a, b) = pmf M a * pmf N b"
  unfolding pair_pmf_def pmf_bind pmf_return
  apply (subst integral_measure_pmf_real[where A="{b}"])
  apply (auto simp: indicator_eq_0_iff)
  apply (subst integral_measure_pmf_real[where A="{a}"])
  apply (auto simp: indicator_eq_0_iff sum_nonneg_eq_0_iff pmf_nonneg)
  done

lemma set_pair_pmf[simp]: "set_pmf (pair_pmf A B) = set_pmf A × set_pmf B"
  unfolding pair_pmf_def set_bind_pmf set_return_pmf by auto

lemma measure_pmf_in_subprob_space[measurable (raw)]:
  "measure_pmf M  space (subprob_algebra (count_space UNIV))"
  by (simp add: space_subprob_algebra) intro_locales

lemma nn_integral_pair_pmf': "(+x. f x pair_pmf A B) = (+a. +b. f (a, b) B A)"
proof -
  have "(+x. f x pair_pmf A B) = (+x. f x * indicator (A × B) x pair_pmf A B)"
    by (auto simp: AE_measure_pmf_iff intro!: nn_integral_cong_AE)
  also have " = (+a. +b. f (a, b) * indicator (A × B) (a, b) B A)"
    by (simp add: pair_pmf_def)
  also have " = (+a. +b. f (a, b) B A)"
    by (auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff)
  finally show ?thesis .
qed

lemma bind_pair_pmf:
  assumes M[measurable]: "M  measurable (count_space UNIV M count_space UNIV) (subprob_algebra N)"
  shows "measure_pmf (pair_pmf A B)  M = (measure_pmf A  (λx. measure_pmf B  (λy. M (x, y))))"
    (is "?L = ?R")
proof (rule measure_eqI)
  have M'[measurable]: "M  measurable (pair_pmf A B) (subprob_algebra N)"
    using M[THEN measurable_space] by (simp_all add: space_pair_measure)

  note measurable_bind[where N="count_space UNIV", measurable]
  note measure_pmf_in_subprob_space[simp]

  have sets_eq_N: "sets ?L = N"
    by (subst sets_bind[OF sets_kernel[OF M']]) auto
  show "sets ?L = sets ?R"
    using measurable_space[OF M]
    by (simp add: sets_eq_N space_pair_measure space_subprob_algebra)
  fix X assume "X  sets ?L"
  then have X[measurable]: "X  sets N"
    unfolding sets_eq_N .
  then show "emeasure ?L X = emeasure ?R X"
    apply (simp add: emeasure_bind[OF _ M' X])
    apply (simp add: nn_integral_bind[where B="count_space UNIV"] pair_pmf_def measure_pmf_bind[of A]
                     nn_integral_measure_pmf_finite)
    apply (subst emeasure_bind[OF _ _ X])
    apply measurable
    apply (subst emeasure_bind[OF _ _ X])
    apply measurable
    done
qed

lemma map_fst_pair_pmf: "map_pmf fst (pair_pmf A B) = A"
  by (simp add: pair_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')

lemma map_snd_pair_pmf: "map_pmf snd (pair_pmf A B) = B"
  by (simp add: pair_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')

lemma nn_integral_pmf':
  "inj_on f A  (+x. pmf p (f x) count_space A) = emeasure p (f ` A)"
  by (subst nn_integral_bij_count_space[where g=f and B="f`A"])
     (auto simp: bij_betw_def nn_integral_pmf)

lemma pmf_le_0_iff[simp]: "pmf M p  0  pmf M p = 0"
  using pmf_nonneg[of M p] by arith

lemma min_pmf_0[simp]: "min (pmf M p) 0 = 0" "min 0 (pmf M p) = 0"
  using pmf_nonneg[of M p] by arith+

lemma pmf_eq_0_set_pmf: "pmf M p = 0  p  set_pmf M"
  unfolding set_pmf_iff by simp

lemma pmf_map_inj: "inj_on f (set_pmf M)  x  set_pmf M  pmf (map_pmf f M) (f x) = pmf M x"
  by (auto simp: pmf.rep_eq map_pmf_rep_eq measure_distr AE_measure_pmf_iff inj_onD
           intro!: measure_pmf.finite_measure_eq_AE)

lemma pair_return_pmf [simp]: "pair_pmf (return_pmf x) (return_pmf y) = return_pmf (x, y)"
  by (auto simp: pair_pmf_def bind_return_pmf)

lemma pmf_map_inj': "inj f  pmf (map_pmf f M) (f x) = pmf M x"
apply(cases "x  set_pmf M")
 apply(simp add: pmf_map_inj[OF subset_inj_on])
apply(simp add: pmf_eq_0_set_pmf[symmetric])
apply(auto simp add: pmf_eq_0_set_pmf dest: injD)
done

lemma expectation_pair_pmf_fst [simp]:
  fixes f :: "'a  'b::{banach, second_countable_topology}"
  shows "measure_pmf.expectation (pair_pmf p q) (λx. f (fst x)) = measure_pmf.expectation p f"
proof -
  have "measure_pmf.expectation (pair_pmf p q) (λx. f (fst x)) =
          measure_pmf.expectation (map_pmf fst (pair_pmf p q)) f" by simp
  also have "map_pmf fst (pair_pmf p q) = p"
    by (simp add: map_fst_pair_pmf)
  finally show ?thesis .
qed

lemma expectation_pair_pmf_snd [simp]:
  fixes f :: "'a  'b::{banach, second_countable_topology}"
  shows "measure_pmf.expectation (pair_pmf p q) (λx. f (snd x)) = measure_pmf.expectation q f"
proof -
  have "measure_pmf.expectation (pair_pmf p q) (λx. f (snd x)) =
          measure_pmf.expectation (map_pmf snd (pair_pmf p q)) f" by simp
  also have "map_pmf snd (pair_pmf p q) = q"
    by (simp add: map_snd_pair_pmf)
  finally show ?thesis .
qed

lemma pmf_map_outside: "x  f ` set_pmf M  pmf (map_pmf f M) x = 0"
  unfolding pmf_eq_0_set_pmf by simp

lemma measurable_set_pmf[measurable]: "Measurable.pred (count_space UNIV) (λx. x  set_pmf M)"
  by simp


subsection ‹ PMFs as function ›

context
  fixes f :: "'a  real"
  assumes nonneg: "x. 0  f x"
  assumes prob: "(+x. f x count_space UNIV) = 1"
begin

lift_definition embed_pmf :: "'a pmf" is "density (count_space UNIV) (ennreal  f)"
proof (intro conjI)
  have *[simp]: "x y. ennreal (f y) * indicator {x} y = ennreal (f x) * indicator {x} y"
    by (simp split: split_indicator)
  show "AE x in density (count_space UNIV) (ennreal  f).
    measure (density (count_space UNIV) (ennreal  f)) {x}  0"
    by (simp add: AE_density nonneg measure_def emeasure_density max_def)
  show "prob_space (density (count_space UNIV) (ennreal  f))"
    by standard (simp add: emeasure_density prob)
qed simp

lemma pmf_embed_pmf: "pmf embed_pmf x = f x"
proof transfer
  have *[simp]: "x y. ennreal (f y) * indicator {x} y = ennreal (f x) * indicator {x} y"
    by (simp split: split_indicator)
  fix x show "measure (density (count_space UNIV) (ennreal  f)) {x} = f x"
    by transfer (simp add: measure_def emeasure_density nonneg max_def)
qed

lemma set_embed_pmf: "set_pmf embed_pmf = {x. f x  0}"
by(auto simp add: set_pmf_eq pmf_embed_pmf)

end

lemma embed_pmf_transfer:
  "rel_fun (eq_onp (λf. (x. 0  f x)  (+x. ennreal (f x) count_space UNIV) = 1)) pmf_as_measure.cr_pmf (λf. density (count_space UNIV) (ennreal  f)) embed_pmf"
  by (auto simp: rel_fun_def eq_onp_def embed_pmf.transfer)

lemma measure_pmf_eq_density: "measure_pmf p = density (count_space UNIV) (pmf p)"
proof (transfer, elim conjE)
  fix M :: "'a measure" assume [simp]: "sets M = UNIV" and ae: "AE x in M. measure M {x}  0"
  assume "prob_space M" then interpret prob_space M .
  show "M = density (count_space UNIV) (λx. ennreal (measure M {x}))"
  proof (rule measure_eqI)
    fix A :: "'a set"
    have "(+ x. ennreal (measure M {x}) * indicator A x count_space UNIV) =
      (+ x. emeasure M {x} * indicator (A  {x. measure M {x}  0}) x count_space UNIV)"
      by (auto intro!: nn_integral_cong simp: emeasure_eq_measure split: split_indicator)
    also have " = (+ x. emeasure M {x} count_space (A  {x. measure M {x}  0}))"
      by (subst nn_integral_restrict_space[symmetric]) (auto simp: restrict_count_space)
    also have " = emeasure M (x(A  {x. measure M {x}  0}). {x})"
      by (intro emeasure_UN_countable[symmetric] countable_Int2 countable_support)
         (auto simp: disjoint_family_on_def)
    also have " = emeasure M A"
      using ae by (intro emeasure_eq_AE) auto
    finally show " emeasure M A = emeasure (density (count_space UNIV) (λx. ennreal (measure M {x}))) A"
      using emeasure_space_1 by (simp add: emeasure_density)
  qed simp
qed

lemma td_pmf_embed_pmf:
  "type_definition pmf embed_pmf {f::'a  real. (x. 0  f x)  (+x. ennreal (f x) count_space UNIV) = 1}"
  unfolding type_definition_def
proof safe
  fix p :: "'a pmf"
  have "(+ x. 1 measure_pmf p) = 1"
    using measure_pmf.emeasure_space_1[of p] by simp
  then show *: "(+ x. ennreal (pmf p x) count_space UNIV) = 1"
    by (simp add: measure_pmf_eq_density nn_integral_density pmf_nonneg del: nn_integral_const)

  show "embed_pmf (pmf p) = p"
    by (intro measure_pmf_inject[THEN iffD1])
       (simp add: * embed_pmf.rep_eq pmf_nonneg measure_pmf_eq_density[of p] comp_def)
next
  fix f :: "'a  real" assume "x. 0  f x" "(+x. f x count_space UNIV) = 1"
  then show "pmf (embed_pmf f) = f"
    by (auto intro!: pmf_embed_pmf)
qed (rule pmf_nonneg)

end

lemma nn_integral_measure_pmf: "(+ x. f x measure_pmf p) = + x. ennreal (pmf p x) * f x count_space UNIV"
by(simp add: measure_pmf_eq_density nn_integral_density pmf_nonneg)

lemma integral_measure_pmf:
  fixes f :: "'a  'b::{banach, second_countable_topology}"
  assumes A: "finite A"
  shows "(a. a  set_pmf M  f a  0  a  A)  (LINT x|M. f x) = (aA. pmf M a *R f a)"
  unfolding measure_pmf_eq_density
  apply (simp add: integral_density)
  apply (subst lebesgue_integral_count_space_finite_support)
  apply (auto intro!: finite_subset[OF _ finite A] sum.mono_neutral_left simp: pmf_eq_0_set_pmf)
  done

lemma expectation_return_pmf [simp]:
  fixes f :: "'a  'b::{banach, second_countable_topology}"
  shows "measure_pmf.expectation (return_pmf x) f = f x"
  by (subst integral_measure_pmf[of "{x}"]) simp_all

lemma pmf_expectation_bind:
  fixes p :: "'a pmf" and f :: "'a  'b pmf"
    and  h :: "'b  'c::{banach, second_countable_topology}"
  assumes "finite A" "x. x  A  finite (set_pmf (f x))" "set_pmf p  A"
  shows "measure_pmf.expectation (p  f) h =
           (aA. pmf p a *R measure_pmf.expectation (f a) h)"
proof -
  have "measure_pmf.expectation (p  f) h = (a(xA. set_pmf (f x)). pmf (p  f) a *R h a)"
    using assms by (intro integral_measure_pmf) auto
  also have " = (x(xA. set_pmf (f x)). (aA. (pmf p a * pmf (f a) x) *R h x))"
  proof (intro sum.cong refl, goal_cases)
    case (1 x)
    thus ?case
      by (subst pmf_bind, subst integral_measure_pmf[of A])
         (insert assms, auto simp: scaleR_sum_left)
  qed
  also have " = (jA. pmf p j *R (i(xA. set_pmf (f x)). pmf (f j) i *R h i))"
    by (subst sum.swap) (simp add: scaleR_sum_right)
  also have " = (jA. pmf p j *R measure_pmf.expectation (f j) h)"
  proof (intro sum.cong refl, goal_cases)
    case (1 x)
    thus ?case
      by (subst integral_measure_pmf[of "(xA. set_pmf (f x))"])
         (insert assms, auto simp: scaleR_sum_left)
  qed
  finally show ?thesis .
qed

lemma continuous_on_LINT_pmf: ― ‹This is dominated convergence!?›
  fixes f :: "'i  'a::topological_space  'b::{banach, second_countable_topology}"
  assumes f: "i. i  set_pmf M  continuous_on A (f i)"
    and bnd: "a i. a  A  i  set_pmf M  norm (f i a)  B"
  shows "continuous_on A (λa. LINT i|M. f i a)"
proof cases
  assume "finite M" with f show ?thesis
    using integral_measure_pmf[OF finite M]
    by (subst integral_measure_pmf[OF finite M])
       (auto intro!: continuous_on_sum continuous_on_scaleR continuous_on_const)
next
  assume "infinite M"
  let ?f = "λi x. pmf (map_pmf (to_nat_on M) M) i *R f (from_nat_into M i) x"

  show ?thesis
  proof (rule uniform_limit_theorem)
    show "F n in sequentially. continuous_on A (λa. i<n. ?f i a)"
      by (intro always_eventually allI continuous_on_sum continuous_on_scaleR continuous_on_const f
                from_nat_into set_pmf_not_empty)
    show "uniform_limit A (λn a. i<n. ?f i a) (λa. LINT i|M. f i a) sequentially"
    proof (subst uniform_limit_cong[where g="λn a. i<n. ?f i a"])
      fix a assume "a  A"
      have 1: "(LINT i|M. f i a) = (LINT i|map_pmf (to_nat_on M) M. f (from_nat_into M i) a)"
        by (auto intro!: integral_cong_AE AE_pmfI)
      have 2: " = (LINT i|count_space UNIV. pmf (map_pmf (to_nat_on M) M) i *R f (from_nat_into M i) a)"
        by (simp add: measure_pmf_eq_density integral_density)
      have "(λn. ?f n a) sums (LINT i|M. f i a)"
        unfolding 1 2
      proof (intro sums_integral_count_space_nat)
        have A: "integrable M (λi. f i a)"
          using aA by (auto intro!: measure_pmf.integrable_const_bound AE_pmfI bnd)
        have "integrable (map_pmf (to_nat_on M) M) (λi. f (from_nat_into M i) a)"
          by (auto simp add: map_pmf_rep_eq integrable_distr_eq intro!: AE_pmfI integrable_cong_AE_imp[OF A])
        then show "integrable (count_space UNIV) (λn. ?f n a)"
          by (simp add: measure_pmf_eq_density integrable_density)
      qed
      then show "(LINT i|M. f i a) = ( n. ?f n a)"
        by (simp add: sums_unique)
    next
      show "uniform_limit A (λn a. i<n. ?f i a) (λa. ( n. ?f n a)) sequentially"
      proof (rule Weierstrass_m_test)
        fix n a assume "aA"
        then show "norm (?f n a)  pmf (map_pmf (to_nat_on M) M) n * B"
          using bnd by (auto intro!: mult_mono simp: from_nat_into set_pmf_not_empty)
      next
        have "integrable (map_pmf (to_nat_on M) M) (λn. B)"
          by auto
        then show "summable (λn. pmf (map_pmf (to_nat_on (set_pmf M)) M) n * B)"
          by (fastforce simp add: measure_pmf_eq_density integrable_density integrable_count_space_nat_iff summable_mult2)
      qed
    qed simp
  qed simp
qed

lemma continuous_on_LBINT:
  fixes f :: "real  real"
  assumes f: "b. a  b  set_integrable lborel {a..b} f"
  shows "continuous_on UNIV (λb. LBINT x:{a..b}. f x)"
proof (subst set_borel_integral_eq_integral)
  { fix b :: real assume "a  b"
    from f[OF this] have "continuous_on {a..b} (λb. integral {a..b} f)"
      by (intro indefinite_integral_continuous_1 set_borel_integral_eq_integral) }
  note * = this

  have "continuous_on (b{a..}. {a <..< b}) (λb. integral {a..b} f)"
  proof (intro continuous_on_open_UN)
    show "b  {a..}  continuous_on {a<..<b} (λb. integral {a..b} f)" for b
      using *[of b] by (rule continuous_on_subset) auto
  qed simp
  also have "(b{a..}. {a <..< b}) = {a <..}"
    by (auto simp: lt_ex gt_ex less_imp_le) (simp add: Bex_def less_imp_le gt_ex cong: rev_conj_cong)
  finally have "continuous_on {a+1 ..} (λb. integral {a..b} f)"
    by (rule continuous_on_subset) auto
  moreover have "continuous_on {a..a+1} (λb. integral {a..b} f)"
    by (rule *) simp
  moreover
  have "x  a  {a..x} = (if a = x then {a} else {})" for x
    by auto
  then have "continuous_on {..a} (λb. integral {a..b} f)"
    by (subst continuous_on_cong[OF refl, where g="λx. 0"]) (auto intro!: continuous_on_const)
  ultimately have "continuous_on ({..a}  {a..a+1}  {a+1 ..}) (λb. integral {a..b} f)"
    by (intro continuous_on_closed_Un) auto
  also have "{..a}  {a..a+1}  {a+1 ..} = UNIV"
    by auto
  finally show "continuous_on UNIV (λb. integral {a..b} f)"
    by auto
next
  show "set_integrable lborel {a..b} f" for b
    using f by (cases "a  b") auto
qed

locale pmf_as_function
begin

setup_lifting td_pmf_embed_pmf

lemma set_pmf_transfer[transfer_rule]:
  assumes "bi_total A"
  shows "rel_fun (pcr_pmf A) (rel_set A) (λf. {x. f x  0}) set_pmf"
  using bi_total A
  by (auto simp: pcr_pmf_def cr_pmf_def rel_fun_def rel_set_def bi_total_def Bex_def set_pmf_iff)
     metis+

end

context
begin

interpretation pmf_as_function .

lemma pmf_eqI: "(i. pmf M i = pmf N i)  M = N"
  by transfer auto

lemma pmf_eq_iff: "M = N  (i. pmf M i = pmf N i)"
  by (auto intro: pmf_eqI)

lemma pmf_neq_exists_less:
  assumes "M  N"
  shows   "x. pmf M x < pmf N x"
proof (rule ccontr)
  assume "¬(x. pmf M x < pmf N x)"
  hence ge: "pmf M x  pmf N x" for x by (auto simp: not_less)
  from assms obtain x where "pmf M x  pmf N x" by (auto simp: pmf_eq_iff)
  with ge[of x] have gt: "pmf M x > pmf N x" by simp
  have "1 = measure (measure_pmf M) UNIV" by simp
  also have " = measure (measure_pmf N) {x} + measure (measure_pmf N) (UNIV - {x})"
    by (subst measure_pmf.finite_measure_Union [symmetric]) simp_all
  also from gt have "measure (measure_pmf N) {x} < measure (measure_pmf M) {x}"
    by (simp add: measure_pmf_single)
  also have "measure (measure_pmf N) (UNIV - {x})  measure (measure_pmf M) (UNIV - {x})"
    by (subst (1 2) integral_pmf [symmetric])
       (intro integral_mono integrable_pmf, simp_all add: ge)
  also have "measure (measure_pmf M) {x} +  = 1"
    by (subst measure_pmf.finite_measure_Union [symmetric]) simp_all
  finally show False by simp_all
qed

lemma bind_commute_pmf: "bind_pmf A (λx. bind_pmf B (C x)) = bind_pmf B (λy. bind_pmf A (λx. C x y))"
  unfolding pmf_eq_iff pmf_bind
proof
  fix i
  interpret B: prob_space "restrict_space B B"
    by (intro prob_space_restrict_space measure_pmf.emeasure_eq_1_AE)
       (auto simp: AE_measure_pmf_iff)
  interpret A: prob_space "restrict_space A A"
    by (intro prob_space_restrict_space measure_pmf.emeasure_eq_1_AE)
       (auto simp: AE_measure_pmf_iff)

  interpret AB: pair_prob_space "restrict_space A A" "restrict_space B B"
    by unfold_locales

  have "( x.  y. pmf (C x y) i B A) = ( x. ( y. pmf (C x y) i restrict_space B B) A)"
    by (rule Bochner_Integration.integral_cong) (auto intro!: integral_pmf_restrict)
  also have " = ( x. ( y. pmf (C x y) i restrict_space B B) restrict_space A A)"
    by (intro integral_pmf_restrict B.borel_measurable_lebesgue_integral measurable_pair_restrict_pmf2
              countable_set_pmf borel_measurable_count_space)
  also have " = ( y.  x. pmf (C x y) i restrict_space A A restrict_space B B)"
    by (rule AB.Fubini_integral[symmetric])
       (auto intro!: AB.integrable_const_bound[where B=1] measurable_pair_restrict_pmf2
             simp: pmf_nonneg pmf_le_1 measurable_restrict_space1)
  also have " = ( y.  x. pmf (C x y) i restrict_space A A B)"
    by (intro integral_pmf_restrict[symmetric] A.borel_measurable_lebesgue_integral measurable_pair_restrict_pmf2
              countable_set_pmf borel_measurable_count_space)
  also have " = ( y.  x. pmf (C x y) i A B)"
    by (rule Bochner_Integration.integral_cong) (auto intro!: integral_pmf_restrict[symmetric])
  finally show "( x.  y. pmf (C x y) i B A) = ( y.  x. pmf (C x y) i A B)" .
qed

lemma pair_map_pmf1: "pair_pmf (map_pmf f A) B = map_pmf (apfst f) (pair_pmf A B)"
proof (safe intro!: pmf_eqI)
  fix a :: "'a" and b :: "'b"
  have [simp]: "c d. indicator (apfst f -` {(a, b)}) (c, d) = indicator (f -` {a}) c * (indicator {b} d::ennreal)"
    by (auto split: split_indicator)

  have "ennreal (pmf (pair_pmf (map_pmf f A) B) (a, b)) =
         ennreal (pmf (map_pmf (apfst f) (pair_pmf A B)) (a, b))"
    unfolding pmf_pair ennreal_pmf_map
    by (simp add: nn_integral_pair_pmf' max_def emeasure_pmf_single nn_integral_multc pmf_nonneg
                  emeasure_map_pmf[symmetric] ennreal_mult del: emeasure_map_pmf)
  then show "pmf (pair_pmf (map_pmf f A) B) (a, b) = pmf (map_pmf (apfst f) (pair_pmf A B)) (a, b)"
    by (simp add: pmf_nonneg)
qed

lemma pair_map_pmf2: "pair_pmf A (map_pmf f B) = map_pmf (apsnd f) (pair_pmf A B)"
proof (safe intro!: pmf_eqI)
  fix a :: "'a" and b :: "'b"
  have [simp]: "c d. indicator (apsnd f -` {(a, b)}) (c, d) = indicator {a} c * (indicator (f -` {b}) d::ennreal)"
    by (auto split: split_indicator)

  have "ennreal (pmf (pair_pmf A (map_pmf f B)) (a, b)) =
         ennreal (pmf (map_pmf (apsnd f) (pair_pmf A B)) (a, b))"
    unfolding pmf_pair ennreal_pmf_map
    by (simp add: nn_integral_pair_pmf' max_def emeasure_pmf_single nn_integral_cmult nn_integral_multc pmf_nonneg
                  emeasure_map_pmf[symmetric] ennreal_mult del: emeasure_map_pmf)
  then show "pmf (pair_pmf A (map_pmf f B)) (a, b) = pmf (map_pmf (apsnd f) (pair_pmf A B)) (a, b)"
    by (simp add: pmf_nonneg)
qed

lemma map_pair: "map_pmf (λ(a, b). (f a, g b)) (pair_pmf A B) = pair_pmf (map_pmf f A) (map_pmf g B)"
  by (simp add: pair_map_pmf2 pair_map_pmf1 map_pmf_comp split_beta')

end

lemma pair_return_pmf1: "pair_pmf (return_pmf x) y = map_pmf (Pair x) y"
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def)

lemma pair_return_pmf2: "pair_pmf x (return_pmf y) = map_pmf (λx. (x, y)) x"
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def)

lemma pair_pair_pmf: "pair_pmf (pair_pmf u v) w = map_pmf (λ(x, (y, z)). ((x, y), z)) (pair_pmf u (pair_pmf v w))"
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def bind_assoc_pmf)

lemma pair_commute_pmf: "pair_pmf x y = map_pmf (λ(x, y). (y, x)) (pair_pmf y x)"
unfolding pair_pmf_def by(subst bind_commute_pmf)(simp add: map_pmf_def bind_assoc_pmf bind_return_pmf)

lemma set_pmf_subset_singleton: "set_pmf p  {x}  p = return_pmf x"
proof(intro iffI pmf_eqI)
  fix i
  assume x: "set_pmf p  {x}"
  hence *: "set_pmf p = {x}" using set_pmf_not_empty[of p] by auto
  have "ennreal (pmf p x) = + i. indicator {x} i p" by(simp add: emeasure_pmf_single)
  also have " = + i. 1 p" by(rule nn_integral_cong_AE)(simp add: AE_measure_pmf_iff * )
  also have " = 1" by simp
  finally show "pmf p i = pmf (return_pmf x) i" using x
    by(auto split: split_indicator simp add: pmf_eq_0_set_pmf)
qed auto

lemma bind_eq_return_pmf:
  "bind_pmf p f = return_pmf x  (yset_pmf p. f y = return_pmf x)"
  (is "?lhs  ?rhs")
proof(intro iffI strip)
  fix y
  assume y: "y  set_pmf p"
  assume "?lhs"
  hence "set_pmf (bind_pmf p f) = {x}" by simp
  hence "(yset_pmf p. set_pmf (f y)) = {x}" by simp
  hence "set_pmf (f y)  {x}" using y by auto
  thus "f y = return_pmf x" by(simp add: set_pmf_subset_singleton)
next
  assume *: ?rhs
  show ?lhs
  proof(rule pmf_eqI)
    fix i
    have "ennreal (pmf (bind_pmf p f) i) = + y. ennreal (pmf (f y) i) p"
      by (simp add: ennreal_pmf_bind)
    also have " = + y. ennreal (pmf (return_pmf x) i) p"
      by(rule nn_integral_cong_AE)(simp add: AE_measure_pmf_iff * )
    also have " = ennreal (pmf (return_pmf x) i)"
      by simp
    finally show "pmf (bind_pmf p f) i = pmf (return_pmf x) i"
      by (simp add: pmf_nonneg)
  qed
qed

lemma pmf_False_conv_True: "pmf p False = 1 - pmf p True"
proof -
  have "pmf p False + pmf p True = measure p {False} + measure p {True}"
    by(simp add: measure_pmf_single)
  also have " = measure p ({False}  {True})"
    by(subst measure_pmf.finite_measure_Union) simp_all
  also have "{False}  {True} = space p" by auto
  finally show ?thesis by simp
qed

lemma pmf_True_conv_False: "pmf p True = 1 - pmf p False"
by(simp add: pmf_False_conv_True)

subsection ‹ Conditional Probabilities ›

lemma measure_pmf_zero_iff: "measure (measure_pmf p) s = 0  set_pmf p  s = {}"
  by (subst measure_pmf.prob_eq_0) (auto simp: AE_measure_pmf_iff)

context
  fixes p :: "'a pmf" and s :: "'a set"
  assumes not_empty: "set_pmf p  s  {}"
begin

interpretation pmf_as_measure .

lemma emeasure_measure_pmf_not_zero: "emeasure (measure_pmf p) s  0"
proof
  assume "emeasure (measure_pmf p) s = 0"
  then have "AE x in measure_pmf p. x  s"
    by (rule AE_I[rotated]) auto
  with not_empty show False
    by (auto simp: AE_measure_pmf_iff)
qed

lemma measure_measure_pmf_not_zero: "measure (measure_pmf p) s  0"
  using emeasure_measure_pmf_not_zero by (simp add: measure_pmf.emeasure_eq_measure measure_nonneg)

lift_definition cond_pmf :: "'a pmf" is
  "uniform_measure (measure_pmf p) s"
proof (intro conjI)
  show "prob_space (uniform_measure (measure_pmf p) s)"
    by (intro prob_space_uniform_measure) (auto simp: emeasure_measure_pmf_not_zero)
  show "AE x in uniform_measure (measure_pmf p) s. measure (uniform_measure (measure_pmf p) s) {x}  0"
    by (simp add: emeasure_measure_pmf_not_zero measure_measure_pmf_not_zero AE_uniform_measure
                  AE_measure_pmf_iff set_pmf.rep_eq less_top[symmetric])
qed simp

lemma pmf_cond: "pmf cond_pmf x = (if x  s then pmf p x / measure p s else 0)"
  by transfer (simp add: emeasure_measure_pmf_not_zero pmf.rep_eq)

lemma set_cond_pmf[simp]: "set_pmf cond_pmf = set_pmf p  s"
  by (auto simp add: set_pmf_iff pmf_cond measure_measure_pmf_not_zero split: if_split_asm)

end

lemma measure_pmf_posI: "x  set_pmf p  x  A  measure_pmf.prob p A > 0"
  using measure_measure_pmf_not_zero[of p A] by (subst zero_less_measure_iff) blast

lemma cond_map_pmf:
  assumes "set_pmf p  f -` s  {}"
  shows "cond_pmf (map_pmf f p) s = map_pmf f (cond_pmf p (f -` s))"
proof -
  have *: "set_pmf (map_pmf f p)  s  {}"
    using assms by auto
  { fix x
    have "ennreal (pmf (map_pmf f (cond_pmf p (f -` s))) x) =
      emeasure p (f -` s  f -` {x}) / emeasure p (f -` s)"
      unfolding ennreal_pmf_map cond_pmf.rep_eq[OF assms] by (simp add: nn_integral_uniform_measure)
    also have "f -` s  f -` {x} = (if x  s then f -` {x} else {})"
      by auto
    also have "emeasure p (if x  s then f -` {x} else {}) / emeasure p (f -` s) =
      ennreal (pmf (cond_pmf (map_pmf f p) s) x)"
      using measure_measure_pmf_not_zero[OF *]
      by (simp add: pmf_cond[OF *] ennreal_pmf_map measure_pmf.emeasure_eq_measure
                    divide_ennreal pmf_nonneg measure_nonneg zero_less_measure_iff pmf_map)
    finally have "ennreal (pmf (cond_pmf (map_pmf f p) s) x) = ennreal (pmf (map_pmf f (cond_pmf p (f -` s))) x)"
      by simp }
  then show ?thesis
    by (intro pmf_eqI) (simp add: pmf_nonneg)
qed

lemma bind_cond_pmf_cancel:
  assumes [simp]: "x. x  set_pmf p  set_pmf q  {y. R x y}  {}"
  assumes [simp]: "y. y  set_pmf q  set_pmf p  {x. R x y}  {}"
  assumes [simp]: "x y. x  set_pmf p  y  set_pmf q  R x y  measure q {y. R x y} = measure p {x. R x y}"
  shows "bind_pmf p (λx. cond_pmf q {y. R x y}) = q"
proof (rule pmf_eqI)
  fix i
  have "ennreal (pmf (bind_pmf p (λx. cond_pmf q {y. R x y})) i) =
    (+x. ennreal (pmf q i / measure p {x. R x i}) * ennreal (indicator {x. R x i} x) p)"
    by (auto simp add: ennreal_pmf_bind AE_measure_pmf_iff pmf_cond pmf_eq_0_set_pmf pmf_nonneg measure_nonneg
             intro!: nn_integral_cong_AE)
  also have " = (pmf q i * measure p {x. R x i}) / measure p {x. R x i}"
    by (simp add: pmf_nonneg measure_nonneg zero_ennreal_def[symmetric] ennreal_indicator
                  nn_integral_cmult measure_pmf.emeasure_eq_measure ennreal_mult[symmetric])
  also have " = pmf q i"
    by (cases "pmf q i = 0")
       (simp_all add: pmf_eq_0_set_pmf measure_measure_pmf_not_zero pmf_nonneg)
  finally show "pmf (bind_pmf p (λx. cond_pmf q {y. R x y})) i = pmf q i"
    by (simp add: pmf_nonneg)
qed

subsection ‹ Relator ›

inductive rel_pmf :: "('a  'b  bool)  'a pmf  'b pmf  bool"
for R p q
where
  " x y. (x, y)  set_pmf pq  R x y;
     map_pmf fst pq = p; map_pmf snd pq = q 
   rel_pmf R p q"

lemma rel_pmfI:
  assumes R: "rel_set R (set_pmf p) (set_pmf q)"
  assumes eq: "x y. x  set_pmf p  y  set_pmf q  R x y 
    measure p {x. R x y} = measure q {y. R x y}"
  shows "rel_pmf R p q"
proof
  let ?pq = "bind_pmf p (λx. bind_pmf (cond_pmf q {y. R x y}) (λy. return_pmf (x, y)))"
  have "x. x  set_pmf p  set_pmf q  {y. R x y}  {}"
    using R by (auto simp: rel_set_def)
  then show "x y. (x, y)  set_pmf ?pq  R x y"
    by auto
  show "map_pmf fst ?pq = p"
    by (simp add: map_bind_pmf bind_return_pmf')

  show "map_pmf snd ?pq = q"
    using R eq
    apply (simp add: bind_cond_pmf_cancel map_bind_pmf bind_return_pmf')
    apply (rule bind_cond_pmf_cancel)
    apply (auto simp: rel_set_def)
    done
qed

lemma rel_pmf_imp_rel_set: "rel_pmf R p q  rel_set R (set_pmf p) (set_pmf q)"
  by (force simp add: rel_pmf.simps rel_set_def)

lemma rel_pmfD_measure:
  assumes rel_R: "rel_pmf R p q" and R: "a b. R a b  R a y  R x b"
  assumes "x  set_pmf p" "y  set_pmf q"
  shows "measure p {x. R x y} = measure q {y. R x y}"
proof -
  from rel_R obtain pq where pq: "x y. (x, y)  set_pmf pq  R x y"
    and eq: "p = map_pmf fst pq" "q = map_pmf snd pq"
    by (auto elim: rel_pmf.cases)
  have "measure p {x. R x y} = measure pq {x. R (fst x) y}"
    by (simp add: eq map_pmf_rep_eq measure_distr)
  also have " = measure pq {y. R x (snd y)}"
    by (intro measure_pmf.finite_measure_eq_AE)
       (auto simp: AE_measure_pmf_iff R dest!: pq)
  also have " = measure q {y. R x y}"
    by (simp add: eq map_pmf_rep_eq measure_distr)
  finally show "measure p {x. R x y} = measure q {y. R x y}" .
qed

lemma rel_pmf_measureD:
  assumes "rel_pmf R p q"
  shows "measure (measure_pmf p) A  measure (measure_pmf q) {y. xA. R x y}" (is "?lhs  ?rhs")
using assms
proof cases
  fix pq
  assume R: "x y. (x, y)  set_pmf pq  R x y"
    and p[symmetric]: "map_pmf fst pq = p"
    and q[symmetric]: "map_pmf snd pq = q"
  have "?lhs = measure (measure_pmf pq) (fst -` A)" by(simp add: p)
  also have "  measure (measure_pmf pq) {y. xA. R x (snd y)}"
    by(rule measure_pmf.finite_measure_mono_AE)(auto 4 3 simp add: AE_measure_pmf_iff dest: R)
  also have " = ?rhs" by(simp add: q)
  finally show ?thesis .
qed

lemma rel_pmf_iff_measure:
  assumes "symp R" "transp R"
  shows "rel_pmf R p q 
    rel_set R (set_pmf p) (set_pmf q) 
    (xset_pmf p. yset_pmf q. R x y  measure p {x. R x y} = measure q {y. R x y})"
  by (safe intro!: rel_pmf_imp_rel_set rel_pmfI)
     (auto intro!: rel_pmfD_measure dest: sympD[OF symp R] transpD[OF transp R])

lemma quotient_rel_set_disjoint:
  "equivp R  C  UNIV // {(x, y). R x y}  rel_set R A B  A  C = {}  B  C = {}"
  using in_quotient_imp_closed[of UNIV "{(x, y). R x y}" C]
  by (auto 0 0 simp: equivp_equiv rel_set_def set_eq_iff elim: equivpE)
     (blast dest: equivp_symp)+

lemma quotientD: "equiv X R  A  X // R  x  A  A = R `` {x}"
  by (metis Image_singleton_iff equiv_class_eq_iff quotientE)

lemma rel_pmf_iff_equivp:
  assumes "equivp R"
  shows "rel_pmf R p q  (CUNIV // {(x, y). R x y}. measure p C = measure q C)"
    (is "_    (C_//?R. _)")
proof (subst rel_pmf_iff_measure, safe)
  show "symp R" "transp R"
    using assms by (auto simp: equivp_reflp_symp_transp)
next
  fix C assume C: "C  UNIV // ?R" and R: "rel_set R (set_pmf p) (set_pmf q)"
  assume eq: "xset_pmf p. yset_pmf q. R x y  measure p {x. R x y} = measure q {y. R x y}"

  show "measure p C = measure q C"
  proof (cases "p  C = {}")
    case True
    then have "q  C = {}"
      using quotient_rel_set_disjoint[OF assms C R] by simp
    with True show ?thesis
      unfolding measure_pmf_zero_iff[symmetric] by simp
  next
    case False
    then have "q  C  {}"
      using quotient_rel_set_disjoint[OF assms C R] by simp
    with False obtain x y where in_set: "x  set_pmf p" "y  set_pmf q" and in_C: "x  C" "y  C"
      by auto
    then have "R x y"
      using in_quotient_imp_in_rel[of UNIV ?R C x y] C assms
      by (simp add: equivp_equiv)
    with in_set eq have "measure p {x. R x y} = measure q {y. R x y}"
      by auto
    moreover have "{y. R x y} = C"
      using assms x  C C quotientD[of UNIV ?R C x] by (simp add: equivp_equiv)
    moreover have "{x. R x y} = C"
      using assms y  C C quotientD[of UNIV "?R" C y] sympD[of R]
      by (auto simp add: equivp_equiv elim: equivpE)
    ultimately show ?thesis
      by auto
  qed
next
  assume eq: "CUNIV // ?R. measure p C = measure q C"
  show "rel_set R (set_pmf p) (set_pmf q)"
    unfolding rel_set_def
  proof safe
    fix x assume x: "x  set_pmf p"
    have "{y. R x y}  UNIV // ?R"
      by (auto simp: quotient_def)
    with eq have *: "measure q {y. R x y} = measure p {y. R x y}"
      by auto
    have "measure q {y. R x y}  0"
      using x assms unfolding * by (auto simp: measure_pmf_zero_iff set_eq_iff dest: equivp_reflp)
    then show "yset_pmf q. R x y"
      unfolding measure_pmf_zero_iff by auto
  next
    fix y assume y: "y  set_pmf q"
    have "{x. R x y}  UNIV // ?R"
      using assms by (auto simp: quotient_def dest: equivp_symp)
    with eq have *: "measure p {x. R x y} = measure q {x. R x y}"
      by auto
    have "measure p {x. R x y}  0"
      using y assms unfolding * by (auto simp: measure_pmf_zero_iff set_eq_iff dest: equivp_reflp)
    then show "xset_pmf p. R x y"
      unfolding measure_pmf_zero_iff by auto
  qed

  fix x y assume "x  set_pmf p" "y  set_pmf q" "R x y"
  have "{y. R x y}  UNIV // ?R" "{x. R x y} = {y. R x y}"
    using assms R x y by (auto simp: quotient_def dest: equivp_symp equivp_transp)
  with eq show "measure p {x. R x y} = measure q {y. R x y}"
    by auto
qed

bnf pmf: "'a pmf" map: map_pmf sets: set_pmf bd : "card_suc natLeq" rel: rel_pmf
proof -
  show "map_pmf id = id" by (rule map_pmf_id)
  show "f g. map_pmf (f  g) = map_pmf f  map_pmf g" by (rule map_pmf_compose)
  show "f g::'a  'b. p. (x. x  set_pmf p  f x = g x)  map_pmf f p = map_pmf g p"
    by (intro map_pmf_cong refl)

  show "f::'a  'b. set_pmf  map_pmf f = (`) f  set_pmf"
    by (rule pmf_set_map)

  show "card_order (card_suc natLeq)" using natLeq_card_order by (rule card_order_card_suc)
  show "BNF_Cardinal_Arithmetic.cinfinite (card_suc natLeq)"
    using natLeq_Cinfinite natLeq_card_order Cinfinite_card_suc by blast
  show "regularCard (card_suc natLeq)" using natLeq_card_order natLeq_Cinfinite
    by (rule regularCard_card_suc)

  show "(card_of (set_pmf p), card_suc natLeq)  ordLess" for p :: "'s pmf"
  proof -
    have "(card_of (set_pmf p), card_of (UNIV :: nat set))  ordLeq"
      by (rule card_of_ordLeqI[where f="to_nat_on (set_pmf p)"])
         (auto intro: countable_set_pmf)
    also have "(card_of (UNIV :: nat set), natLeq)  ordLeq"
      by (metis Field_natLeq card_of_least natLeq_Well_order)
    finally show ?thesis using card_suc_greater natLeq_card_order ordLeq_ordLess_trans by blast
  qed

  show "R. rel_pmf R = (λx y. z. set_pmf z  {(x, y). R x y} 
    map_pmf fst z = x  map_pmf snd z = y)"
     by (auto simp add: fun_eq_iff rel_pmf.simps)

  show "rel_pmf R OO rel_pmf S  rel_pmf (R OO S)"
    for R :: "'a  'b  bool" and S :: "'b  'c  bool"
  proof -
    { fix p q r
      assume pq: "rel_pmf R p q"
        and qr:"rel_pmf S q r"
      from pq obtain pq where pq: "x y. (x, y)  set_pmf pq  R x y"
        and p: "p = map_pmf fst pq" and q: "q = map_pmf snd pq" by cases auto
      from qr obtain qr where qr: "y z. (y, z)  set_pmf qr  S y z"
        and q': "q = map_pmf fst qr" and r: "r = map_pmf snd qr" by cases auto

      define pr where "pr =
        bind_pmf pq (λxy. bind_pmf (cond_pmf qr {yz. fst yz = snd xy})
          (λyz. return_pmf (fst xy, snd yz)))"
      have pr_welldefined: "y. y  q  qr  {yz. fst yz = y}  {}"
        by (force simp: q')

      have "rel_pmf (R OO S) p r"
      proof (rule rel_pmf.intros)
        fix x z assume "(x, z)  pr"
        then have "y. (x, y)  pq  (y, z)  qr"
          by (auto simp: q pr_welldefined pr_def split_beta)
        with pq qr show "(R OO S) x z"
          by blast
      next
        have "map_pmf snd pr = map_pmf snd (bind_pmf q (λy. cond_pmf qr {yz. fst yz = y}))"
          by (simp add: pr_def q split_beta bind_map_pmf map_pmf_def[symmetric] map_bind_pmf map_pmf_comp)
        then show "map_pmf snd pr = r"
          unfolding r q' bind_map_pmf by (subst (asm) bind_cond_pmf_cancel) (auto simp: eq_commute)
      qed (simp add: pr_def map_bind_pmf split_beta map_pmf_def[symmetric] p map_pmf_comp)
    }
    then show ?thesis
      by(auto simp add: le_fun_def)
  qed
qed

lemma map_pmf_idI: "(x. x  set_pmf p  f x = x)  map_pmf f p = p"
by(simp cong: pmf.map_cong)

lemma rel_pmf_conj[simp]:
  "rel_pmf (λx y. P  Q x y) x y  P  rel_pmf Q x y"
  "rel_pmf (λx y. Q x y  P) x y  P  rel_pmf Q x y"
  using set_pmf_not_empty by (fastforce simp: pmf.in_rel subset_eq)+

lemma rel_pmf_top[simp]: "rel_pmf top = top"
  by (auto simp: pmf.in_rel[abs_def] fun_eq_iff map_fst_pair_pmf map_snd_pair_pmf
           intro: exI[of _ "pair_pmf x y" for x y])

lemma rel_pmf_return_pmf1: "rel_pmf R (return_pmf x) M  (aM. R x a)"
proof safe
  fix a assume "a  M" "rel_pmf R (return_pmf x) M"
  then obtain pq where *: "a b. (a, b)  set_pmf pq  R a b"
    and eq: "return_pmf x = map_pmf fst pq" "M = map_pmf snd pq"
    by (force elim: rel_pmf.cases)
  moreover have "set_pmf (return_pmf x) = {x}"
    by simp
  with a  M have "(x, a)  pq"
    by (force simp: eq)
  with * show "R x a"
    by auto
qed (auto intro!: rel_pmf.intros[where pq="pair_pmf (return_pmf x) M"]
          simp: map_fst_pair_pmf map_snd_pair_pmf)

lemma rel_pmf_return_pmf2: "rel_pmf R M (return_pmf x)  (aM. R a x)"
  by (subst pmf.rel_flip[symmetric]) (simp add: rel_pmf_return_pmf1)

lemma rel_return_pmf[simp]: "rel_pmf R (return_pmf x1) (return_pmf x2) = R x1 x2"
  unfolding rel_pmf_return_pmf2 set_return_pmf by simp

lemma rel_pmf_False[simp]: "rel_pmf (λx y. False) x y = False"
  unfolding pmf.in_rel fun_eq_iff using set_pmf_not_empty by fastforce

lemma rel_pmf_rel_prod:
  "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')  rel_pmf R A B  rel_pmf S A' B'"
proof safe
  assume "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')"
  then obtain pq where pq: "a b c d. ((a, c), (b, d))  set_pmf pq  R a b  S c d"
    and eq: "map_pmf fst pq = pair_pmf A A'" "map_pmf snd pq = pair_pmf B B'"
    by (force elim: rel_pmf.cases)
  show "rel_pmf R A B"
  proof (rule rel_pmf.intros)
    let ?f = "λ(a, b). (fst a, fst b)"
    have [simp]: "(λx. fst (?f x)) = fst o fst" "(λx. snd (?f x)) = fst o snd"
      by auto

    show "map_pmf fst (map_pmf ?f pq) = A"
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_fst_pair_pmf)
    show "map_pmf snd (map_pmf ?f pq) = B"
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_fst_pair_pmf)

    fix a b assume "(a, b)  set_pmf (map_pmf ?f pq)"
    then obtain c d where "((a, c), (b, d))  set_pmf pq"
      by auto
    from pq[OF this] show "R a b" ..
  qed
  show "rel_pmf S A' B'"
  proof (rule rel_pmf.intros)
    let ?f = "λ(a, b). (snd a, snd b)"
    have [simp]: "(λx. fst (?f x)) = snd o fst" "(λx. snd (?f x)) = snd o snd"
      by auto

    show "map_pmf fst (map_pmf ?f pq) = A'"
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_snd_pair_pmf)
    show "map_pmf snd (map_pmf ?f pq) = B'"
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_snd_pair_pmf)

    fix c d assume "(c, d)  set_pmf (map_pmf ?f pq)"
    then obtain a b where "((a, c), (b, d))  set_pmf pq"
      by auto
    from pq[OF this] show "S c d" ..
  qed
next
  assume "rel_pmf R A B" "rel_pmf S A' B'"
  then obtain Rpq Spq
    where Rpq: "a b. (a, b)  set_pmf Rpq  R a b"
        "map_pmf fst Rpq = A" "map_pmf snd Rpq = B"
      and Spq: "a b. (a, b)  set_pmf Spq  S a b"
        "map_pmf fst Spq = A'" "map_pmf snd Spq = B'"
    by (force elim: rel_pmf.cases)

  let ?f = "(λ((a, c), (b, d)). ((a, b), (c, d)))"
  let ?pq = "map_pmf ?f (pair_pmf Rpq Spq)"
  have [simp]: "(λx. fst (?f x)) = (λ(a, b). (fst a, fst b))" "(λx. snd (?f x)) = (λ(a, b). (snd a, snd b))"
    by auto

  show "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')"
    by (rule rel_pmf.intros[where pq="?pq"])
       (auto simp: map_snd_pair_pmf map_fst_pair_pmf map_pmf_comp Rpq Spq
                   map_pair)
qed

lemma rel_pmf_reflI:
  assumes "x. x  set_pmf p  P x x"
  shows "rel_pmf P p p"
  by (rule rel_pmf.intros[where pq="map_pmf (λx. (x, x)) p"])
     (auto simp add: pmf.map_comp o_def assms)

lemma rel_pmf_bij_betw:
  assumes f: "bij_betw f (set_pmf p) (set_pmf q)"
  and eq: "x. x  set_pmf p  pmf p x = pmf q (f x)"
  shows "rel_pmf (λx y. f x = y) p q"
proof(rule rel_pmf.intros)
  let ?pq = "map_pmf (λx. (x, f x)) p"
  show "map_pmf fst ?pq = p" by(simp add: pmf.map_comp o_def)

  have "map_pmf f p = q"
  proof(rule pmf_eqI)
    fix i
    show "pmf (map_pmf f p) i = pmf q i"
    proof(cases "i  set_pmf q")
      case True
      with f obtain j where "i = f j" "j  set_pmf p"
        by(auto simp add: bij_betw_def image_iff)
      thus ?thesis using f by(simp add: bij_betw_def pmf_map_inj eq)
    next
      case False thus ?thesis
        by(subst pmf_map_outside)(auto simp add: set_pmf_iff eq[symmetric])
    qed
  qed
  then show "map_pmf snd ?pq = q" by(simp add: pmf.map_comp o_def)
qed auto

context
begin

interpretation pmf_as_measure .

definition "join_pmf M = bind_pmf M (λx. x)"

lemma bind_eq_join_pmf: "bind_pmf M f = join_pmf (map_pmf f M)"
  unfolding join_pmf_def bind_map_pmf ..

lemma join_eq_bind_pmf: "join_pmf M = bind_pmf M id"
  by (simp add: join_pmf_def id_def)

lemma pmf_join: "pmf (join_pmf N) i = (M. pmf M i measure_pmf N)"
  unfolding join_pmf_def pmf_bind ..

lemma ennreal_pmf_join: "ennreal (pmf (join_pmf N) i) = (+M. pmf M i measure_pmf N)"
  unfolding join_pmf_def ennreal_pmf_bind ..

lemma set_pmf_join_pmf[simp]: "set_pmf (join_pmf f) = (pset_pmf f. set_pmf p)"
  by (simp add: join_pmf_def)

lemma join_return_pmf: "join_pmf (return_pmf M) = M"
  by (simp add: integral_return pmf_eq_iff pmf_join return_pmf.rep_eq)

lemma map_join_pmf: "map_pmf f (join_pmf AA) = join_pmf (map_pmf (map_pmf f) AA)"
  by (simp add: join_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf)

lemma join_map_return_pmf: "join_pmf (map_pmf return_pmf A) = A"
  by (simp add: join_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')

end

lemma rel_pmf_joinI:
  assumes "rel_pmf (rel_pmf P) p q"
  shows "rel_pmf P (join_pmf p) (join_pmf q)"
proof -
  from assms obtain pq where p: "p = map_pmf fst pq"
    and q: "q = map_pmf snd pq"
    and P: "x y. (x, y)  set_pmf pq  rel_pmf P x y"
    by cases auto
  from P obtain PQ
    where PQ: "x y a b.  (x, y)  set_pmf pq; (a, b)  set_pmf (PQ x y)   P a b"
    and x: "x y. (x, y)  set_pmf pq  map_pmf fst (PQ x y) = x"
    and y: "x y. (x, y)  set_pmf pq  map_pmf snd (PQ x y) = y"
    by(metis rel_pmf.simps)

  let ?r = "bind_pmf pq (λ(x, y). PQ x y)"
  have "a b. (a, b)  set_pmf ?r  P a b" by (auto intro: PQ)
  moreover have "map_pmf fst ?r = join_pmf p" "map_pmf snd ?r = join_pmf q"
    by (simp_all add: p q x y join_pmf_def map_bind_pmf bind_map_pmf split_def cong: bind_pmf_cong)
  ultimately show ?thesis ..
qed

lemma rel_pmf_bindI:
  assumes pq: "rel_pmf R p q"
  and fg: "x y. R x y  rel_pmf P (f x) (g y)"
  shows "rel_pmf P (bind_pmf p f) (bind_pmf q g)"
  unfolding bind_eq_join_pmf
  by (rule rel_pmf_joinI)
     (auto simp add: pmf.rel_map intro: pmf.rel_mono[THEN le_funD, THEN le_funD, THEN le_boolD, THEN mp, OF _ pq] fg)

text ‹
  Proof that constrel_pmf preserves orders.
  Antisymmetry proof follows Thm. 1 in N. Saheb-Djahromi, Cpo's of measures for nondeterminism,
  Theoretical Computer Science 12(1):19--37, 1980,
  🌐‹https://doi.org/10.1016/0304-3975(80)90003-1›

lemma
  assumes *: "rel_pmf R p q"
  and refl: "reflp R" and trans: "transp R"
  shows measure_Ici: "measure p {y. R x y}  measure q {y. R x y}" (is ?thesis1)
  and measure_Ioi: "measure p {y. R x y  ¬ R y x}  measure q {y. R x y  ¬ R y x}" (is ?thesis2)
proof -
  from * obtain pq
    where pq: "x y. (x, y)  set_pmf pq  R x y"
    and p: "p = map_pmf fst pq"
    and q: "q = map_pmf snd pq"
    by cases auto
  show ?thesis1 ?thesis2 unfolding p q map_pmf_rep_eq using refl trans
    by(auto 4 3 simp add: measure_distr reflpD AE_measure_pmf_iff intro!: measure_pmf.finite_measure_mono_AE dest!: pq elim: transpE)
qed

lemma rel_pmf_inf:
  fixes p q :: "'a pmf"
  assumes 1: "rel_pmf R p q"
  assumes 2: "rel_pmf R q p"
  and refl: "reflp R" and trans: "transp R"
  shows "rel_pmf (inf R R¯¯) p q"
proof (subst rel_pmf_iff_equivp, safe)
  show "equivp (inf R R¯¯)"
    using trans refl by (auto simp: equivp_reflp_symp_transp intro: sympI transpI reflpI dest: transpD reflpD)

  fix C assume "C  UNIV // {(x, y). inf R R¯¯ x y}"
  then obtain x where C: "C = {y. R x y  R y x}"
    by (auto elim: quotientE)

  let ?R = "λx y. R x y  R y x"
  let ?μR = "λy. measure q {x. ?R x y}"
  have "measure p {y. ?R x y} = measure p ({y. R x y} - {y. R x y  ¬ R y x})"
    by(auto intro!: arg_cong[where f="measure p"])
  also have " = measure p {y. R x y} - measure p {y. R x y  ¬ R y x}"
    by (rule measure_pmf.finite_measure_Diff) auto
  also have "measure p {y. R x y  ¬ R y x} = measure q {y. R x y  ¬ R y x}"
    using 1 2 refl trans by(auto intro!: Orderings.antisym measure_Ioi)
  also have "measure p {y. R x y} = measure q {y. R x y}"
    using 1 2 refl trans by(auto intro!: Orderings.antisym measure_Ici)
  also have "measure q {y. R x y} - measure q {y. R x y  ¬ R y x} =
    measure q ({y. R x y} - {y. R x y  ¬ R y x})"
    by(rule measure_pmf.finite_measure_Diff[symmetric]) auto
  also have " = ?μR x"
    by(auto intro!: arg_cong[where f="measure q"])
  finally show "measure p C = measure q C"
    by (simp add: C conj_commute)
qed

lemma rel_pmf_antisym:
  fixes p q :: "'a pmf"
  assumes 1: "rel_pmf R p q"
  assumes 2: "rel_pmf R q p"
  and refl: "reflp R" and trans: "transp R" and antisym: "antisymp R"
  shows "p = q"
proof -
  from 1 2 refl trans have "rel_pmf (inf R R¯¯) p q" by(rule rel_pmf_inf)
  also have "inf R R¯¯ = (=)"
    using refl antisym by (auto intro!: ext simp add: reflpD dest: antisympD)
  finally show ?thesis unfolding pmf.rel_eq .
qed

lemma reflp_rel_pmf: "reflp R  reflp (rel_pmf R)"
  by (fact pmf.rel_reflp)

lemma antisymp_rel_pmf:
  " reflp R; transp R; antisymp R 
   antisymp (rel_pmf R)"
by(rule antisympI)(blast intro: rel_pmf_antisym)

lemma transp_rel_pmf:
  assumes "transp R"
  shows "transp (rel_pmf R)"
  using assms by (fact pmf.rel_transp)


subsection ‹ Distributions ›

context
begin

interpretation pmf_as_function .

subsubsection ‹ Bernoulli Distribution ›

lift_definition bernoulli_pmf :: "real  bool pmf" is
  "λp b. ((λp. if b then p else 1 - p)  min 1  max 0) p"
  by (auto simp: nn_integral_count_space_finite[where A="{False, True}"] UNIV_bool
           split: split_max split_min)

lemma pmf_bernoulli_True[simp]: "0  p  p  1  pmf (bernoulli_pmf p) True = p"
  by transfer simp

lemma pmf_bernoulli_False[simp]: "0  p  p  1  pmf (bernoulli_pmf p) False = 1 - p"
  by transfer simp

lemma set_pmf_bernoulli[simp]: "0 < p  p < 1  set_pmf (bernoulli_pmf p) = UNIV"
  by (auto simp add: set_pmf_iff UNIV_bool)

lemma nn_integral_bernoulli_pmf[simp]:
  assumes [simp]: "0  p" "p  1" "x. 0  f x"
  shows "(+x. f x bernoulli_pmf p) = f True * p + f False * (1 - p)"
  by (subst nn_integral_measure_pmf_support[of UNIV])
     (auto simp: UNIV_bool field_simps)

lemma integral_bernoulli_pmf[simp]:
  assumes [simp]: "0  p" "p  1"
  shows "(x. f x bernoulli_pmf p) = f True * p + f False * (1 - p)"
  by (subst integral_measure_pmf[of UNIV]) (auto simp: UNIV_bool)

lemma pmf_bernoulli_half [simp]: "pmf (bernoulli_pmf (1 / 2)) x = 1 / 2"
by(cases x) simp_all

lemma measure_pmf_bernoulli_half: "measure_pmf (bernoulli_pmf (1 / 2)) = uniform_count_measure UNIV"
  by (rule measure_eqI)
     (simp_all add: nn_integral_pmf[symmetric] emeasure_uniform_count_measure ennreal_divide_numeral[symmetric]
                    nn_integral_count_space_finite sets_uniform_count_measure divide_ennreal_def mult_ac
                    ennreal_of_nat_eq_real_of_nat)

subsubsection ‹ Geometric Distribution ›

context
  fixes p :: real assumes p[arith]: "0 < p" "p  1"
begin

lift_definition geometric_pmf :: "nat pmf" is "λn. (1 - p)^n * p"
proof
  have "(i. ennreal (p * (1 - p) ^ i)) = ennreal (p * (1 / (1 - (1 - p))))"
    by (intro suminf_ennreal_eq sums_mult geometric_sums) auto
  then show "(+ x. ennreal ((1 - p)^x * p) count_space UNIV) = 1"
    by (simp add: nn_integral_count_space_nat field_simps)
qed simp

lemma pmf_geometric[simp]: "pmf geometric_pmf n = (1 - p)^n * p"
  by transfer rule

end

lemma geometric_pmf_1 [simp]: "geometric_pmf 1 = return_pmf 0"
  by (intro pmf_eqI) (auto simp: indicator_def)

lemma set_pmf_geometric: "0 < p  p < 1  set_pmf (geometric_pmf p) = UNIV"
  by (auto simp: set_pmf_iff)

lemma geometric_sums_times_n:
  fixes c::"'a::{banach,real_normed_field}"
  assumes "norm c < 1"
  shows "(λn. c^n * of_nat n) sums (c / (1 - c)2)"
proof -
  have "(λn. c * z ^ n) sums (c / (1 - z))" if "norm z < 1" for z
    using geometric_sums sums_mult that by fastforce
  moreover have "((λz. c / (1 - z)) has_field_derivative (c / (1 - c)2)) (at c)"
      using assms by (auto intro!: derivative_eq_intros simp add: semiring_normalization_rules)
  ultimately have "(λn. diffs (λn. c) n * c ^ n) sums (c / (1 - c)2)"
    using assms by (intro termdiffs_sums_strong)
  then have "(λn. of_nat (Suc n) * c ^ (Suc n)) sums (c / (1 - c)2)"
    unfolding diffs_def by (simp add: power_eq_if mult.assoc)
  then show ?thesis
    by (subst (asm) sums_Suc_iff) (auto simp add: mult.commute)
qed

lemma geometric_sums_times_norm:
  fixes c::"'a::{banach,real_normed_field}"
  assumes "norm c < 1"
  shows "(λn. norm (c^n * of_nat n)) sums (norm c / (1 - norm c)2)"
proof -
  have "norm (c^n * of_nat n) = (norm c) ^ n * of_nat n" for n::nat
    by (simp add: norm_power norm_mult)
  then show ?thesis
    using geometric_sums_times_n[of "norm c"] assms
    by force
qed

lemma integrable_real_geometric_pmf:
  assumes "p  {0<..1}"
  shows   "integrable (geometric_pmf p) real"
proof -
  have "summable (λx. p * ((1 - p) ^ x * real x))"
    using geometric_sums_times_norm[of "1 - p"] assms
    by (intro summable_mult) (auto simp: sums_iff)
  hence "summable (λx. (1 - p) ^ x * real x)"
    by (rule summable_mult_D) (use assms in auto)
  thus ?thesis
    unfolding measure_pmf_eq_density using assms
    by (subst integrable_density)
       (auto simp: integrable_count_space_nat_iff mult_ac)
qed

lemma expectation_geometric_pmf:
  assumes "p  {0<..1}"
  shows   "measure_pmf.expectation (geometric_pmf p) real = (1 - p) / p"
proof -
  have "(λn. p * ((1 - p) ^ n * n)) sums (p * ((1 - p) / p^2))"
    using assms geometric_sums_times_n[of "1-p"] by (intro sums_mult) auto
  moreover have "(λn. p * ((1 - p) ^ n * n)) = (λn. (1 - p) ^ n * p  * real n)"
    by auto
  ultimately have *: "(λn. (1 - p) ^ n * p  * real n) sums ((1 - p) / p)"
    using assms sums_subst by (auto simp add: power2_eq_square)
  have "measure_pmf.expectation (geometric_pmf p) real =
        (n. pmf (geometric_pmf p) n * real n count_space UNIV)"
    unfolding measure_pmf_eq_density by (subst integral_density) auto
  also have "integrable (count_space UNIV) (λn. pmf (geometric_pmf p) n * real n)"
    using * assms unfolding integrable_count_space_nat_iff by (simp add: sums_iff)
  hence "(n. pmf (geometric_pmf p) n * real n count_space UNIV) = (1 - p) / p"
    using * assms by (subst integral_count_space_nat) (simp_all add: sums_iff)
  finally show ?thesis by auto
qed

lemma geometric_bind_pmf_unfold:
  assumes "p  {0<..1}"
  shows "geometric_pmf p =
     do {b  bernoulli_pmf p;
         if b then return_pmf 0 else map_pmf Suc (geometric_pmf p)}"
proof -
  have *: "(Suc -` {i}) = (if i = 0 then {} else {i - 1})" for i
    by force
  have "pmf (geometric_pmf p) i =
        pmf (bernoulli_pmf p 
            (λb. if b then return_pmf 0 else map_pmf Suc (geometric_pmf p)))
            i" for i
  proof -
    have "pmf (geometric_pmf p) i =
          (if i = 0 then p else (1 - p) * pmf (geometric_pmf p) (i - 1))"
      using assms by (simp add: power_eq_if)
    also have " = (if i = 0  then p else (1 - p) * pmf (map_pmf Suc (geometric_pmf p)) i)"
      by (simp add: pmf_map indicator_def measure_pmf_single *)
    also have " = measure_pmf.expectation (bernoulli_pmf p)
          (λx. pmf (if x then return_pmf 0 else map_pmf Suc (geometric_pmf p)) i)"
      using assms by (auto simp add: pmf_map *)
    also have " = pmf (bernoulli_pmf p 
                   (λb. if b then return_pmf 0 else map_pmf Suc (geometric_pmf p)))
                   i"
      by (auto simp add: pmf_bind)
    finally show ?thesis .
  qed
  then show ?thesis
    using pmf_eqI by blast
qed


subsubsection ‹ Uniform Multiset Distribution ›

context
  fixes M :: "'a multiset" assumes M_not_empty: "M  {#}"
begin

lift_definition pmf_of_multiset :: "'a pmf" is "λx. count M x / size M"
proof
  show "(+ x. ennreal (real (count M x) / real (size M)) count_space UNIV) = 1"
    using M_not_empty
    by (simp add: zero_less_divide_iff nn_integral_count_space nonempty_has_size
                  sum_divide_distrib[symmetric])
       (auto simp: size_multiset_overloaded_eq intro!: sum.cong)
qed simp

lemma pmf_of_multiset[simp]: "pmf pmf_of_multiset x = count M x / size M"
  by transfer rule

lemma set_pmf_of_multiset[simp]: "set_pmf pmf_of_multiset = set_mset M"
  by (auto simp: set_pmf_iff)

end

subsubsection ‹ Uniform Distribution ›

context
  fixes S :: "'a set" assumes S_not_empty: "S  {}" and S_finite: "finite S"
begin

lift_definition pmf_of_set :: "'a pmf" is "λx. indicator S x / card S"
proof
  show "(+ x. ennreal (indicator S x / real (card S)) count_space UNIV) = 1"
    using S_not_empty S_finite
    by (subst nn_integral_count_space'[of S])
       (auto simp: ennreal_of_nat_eq_real_of_nat ennreal_mult[symmetric])
qed simp

lemma pmf_of_set[simp]: "pmf pmf_of_set x = indicator S x / card S"
  by transfer rule

lemma set_pmf_of_set[simp]: "set_pmf pmf_of_set = S"
  using S_finite S_not_empty by (auto simp: set_pmf_iff)

lemma emeasure_pmf_of_set_space[simp]: "emeasure pmf_of_set S = 1"
  by (rule measure_pmf.emeasure_eq_1_AE) (auto simp: AE_measure_pmf_iff)

lemma nn_integral_pmf_of_set: "nn_integral (measure_pmf pmf_of_set) f = sum f S / card S"
  by (subst nn_integral_measure_pmf_finite)
     (simp_all add: sum_distrib_right[symmetric] card_gt_0_iff S_not_empty S_finite divide_ennreal_def
                divide_ennreal[symmetric] ennreal_of_nat_eq_real_of_nat[symmetric] ennreal_times_divide)

lemma integral_pmf_of_set: "integralL (measure_pmf pmf_of_set) f = sum f S / card S"
  by (subst integral_measure_pmf[of S]) (auto simp: S_finite sum_divide_distrib)

lemma emeasure_pmf_of_set: "emeasure (measure_pmf pmf_of_set) A = card (S  A) / card S"
  by (subst nn_integral_indicator[symmetric], simp)
     (simp add: S_finite S_not_empty card_gt_0_iff indicator_def sum.If_cases divide_ennreal
                ennreal_of_nat_eq_real_of_nat nn_integral_pmf_of_set)

lemma measure_pmf_of_set: "measure (measure_pmf pmf_of_set) A = card (S  A) / card S"
  using emeasure_pmf_of_set[of A]
  by (simp add: measure_nonneg measure_pmf.emeasure_eq_measure)

end

lemma pmf_expectation_bind_pmf_of_set:
  fixes A :: "'a set" and f :: "'a  'b pmf"
    and  h :: "'b  'c::{banach, second_countable_topology}"
  assumes "A  {}" "finite A" "x. x  A  finite (set_pmf (f x))"
  shows "measure_pmf.expectation (pmf_of_set A  f) h =
           (aA. measure_pmf.expectation (f a) h /R real (card A))"
  using assms by (subst pmf_expectation_bind[of A]) (auto simp: field_split_simps)

lemma map_pmf_of_set:
  assumes "finite A" "A  {}"
  shows   "map_pmf f (pmf_of_set A) = pmf_of_multiset (image_mset f (mset_set A))"
    (is "?lhs = ?rhs")
proof (intro pmf_eqI)
  fix x
  from assms have "ennreal (pmf ?lhs x) = ennreal (pmf ?rhs x)"
    by (subst ennreal_pmf_map)
       (simp_all add: emeasure_pmf_of_set mset_set_empty_iff count_image_mset Int_commute)
  thus "pmf ?lhs x = pmf ?rhs x" by simp
qed

lemma pmf_bind_pmf_of_set:
  assumes "A  {}" "finite A"
  shows   "pmf (bind_pmf (pmf_of_set A) f) x =
             (xaA. pmf (f xa) x) / real_of_nat (card A)" (is "?lhs = ?rhs")
proof -
  from assms have "card A > 0" by auto
  with assms have "ennreal ?lhs = ennreal ?rhs"
    by (subst ennreal_pmf_bind)
       (simp_all add: nn_integral_pmf_of_set max_def pmf_nonneg divide_ennreal [symmetric]
        sum_nonneg ennreal_of_nat_eq_real_of_nat)
  thus ?thesis by (subst (asm) ennreal_inj) (auto intro!: sum_nonneg divide_nonneg_nonneg)
qed

lemma pmf_of_set_singleton: "pmf_of_set {x} = return_pmf x"
by(rule pmf_eqI)(simp add: indicator_def)

lemma map_pmf_of_set_inj:
  assumes f: "inj_on f A"
  and [simp]: "A  {}" "finite A"
  shows "map_pmf f (pmf_of_set A) = pmf_of_set (f ` A)" (is "?lhs = ?rhs")
proof(rule pmf_eqI)
  fix i
  show "pmf ?lhs i = pmf ?rhs i"
  proof(cases "i  f ` A")
    case True
    then obtain i' where "i = f i'" "i'  A" by auto
    thus ?thesis using f by(simp add: card_image pmf_map_inj)
  next
    case False
    hence "pmf ?lhs i = 0" by(simp add: pmf_eq_0_set_pmf set_map_pmf)
    moreover have "pmf ?rhs i = 0" using False by simp
    ultimately show ?thesis by simp
  qed
qed

lemma map_pmf_of_set_bij_betw:
  assumes "bij_betw f A B" "A  {}" "finite A"
  shows   "map_pmf f (pmf_of_set A) = pmf_of_set B"
proof -
  have "map_pmf f (pmf_of_set A) = pmf_of_set (f ` A)"
    by (intro map_pmf_of_set_inj assms bij_betw_imp_inj_on[OF assms(1)])
  also from assms have "f ` A = B" by (simp add: bij_betw_def)
  finally show ?thesis .
qed

text ‹
  Choosing an element uniformly at random from the union of a disjoint family
  of finite non-empty sets with the same size is the same as first choosing a set
  from the family uniformly at random and then choosing an element from the chosen set
  uniformly at random.
›
lemma pmf_of_set_UN:
  assumes "finite ((f ` A))" "A  {}" "x. x  A  f x  {}"
          "x. x  A  card (f x) = n" "disjoint_family_on f A"
  shows   "pmf_of_set ((f ` A)) = do {x  pmf_of_set A; pmf_of_set (f x)}"
            (is "?lhs = ?rhs")
proof (intro pmf_eqI)
  fix x
  from assms have [simp]: "finite A"
    using infinite_disjoint_family_imp_infinite_UNION[of A f] by blast
  from assms have "ereal (pmf (pmf_of_set ((f ` A))) x) =
    ereal (indicator (xA. f x) x / real (card (xA. f x)))"
    by (subst pmf_of_set) auto
  also from assms have "card (xA. f x) = card A * n"
    by (subst card_UN_disjoint) (auto simp: disjoint_family_on_def)
  also from assms
    have "indicator (xA. f x) x / real  =
              indicator (xA. f x) x / (n * real (card A))"
      by (simp add: sum_divide_distrib [symmetric] mult_ac)
  also from assms have "indicator (xA. f x) x = (yA. indicator (f y) x)"
    by (intro indicator_UN_disjoint) simp_all
  also from assms have "ereal ((yA. indicator (f y) x) / (real n * real (card A))) =
                          ereal (pmf ?rhs x)"
    by (subst pmf_bind_pmf_of_set) (simp_all add: sum_divide_distrib)
  finally show "pmf ?lhs x = pmf ?rhs x" by simp
qed

lemma bernoulli_pmf_half_conv_pmf_of_set: "bernoulli_pmf (1 / 2) = pmf_of_set UNIV"
  by (rule pmf_eqI) simp_all

subsubsection ‹ Poisson Distribution ›

context
  fixes rate :: real assumes rate_pos: "0 < rate"
begin

lift_definition poisson_pmf :: "nat pmf" is "λk. rate ^ k / fact k * exp (-rate)"
proof  (* by Manuel Eberl *)
  have summable: "summable (λx::nat. rate ^ x / fact x)" using summable_exp
    by (simp add: field_simps divide_inverse [symmetric])
  have "(+(x::nat). rate ^ x / fact x * exp (-rate) count_space UNIV) =
          exp (-rate) * (+(x::nat). rate ^ x / fact x count_space UNIV)"
    by (simp add: field_simps nn_integral_cmult[symmetric] ennreal_mult'[symmetric])
  also from rate_pos have "(+(x::nat). rate ^ x / fact x count_space UNIV) = (x. rate ^ x / fact x)"
    by (simp_all add: nn_integral_count_space_nat suminf_ennreal summable ennreal_suminf_neq_top)
  also have "... = exp rate" unfolding exp_def
    by (simp add: field_simps divide_inverse [symmetric])
  also have "ennreal (exp (-rate)) * ennreal (exp rate) = 1"
    by (simp add: mult_exp_exp ennreal_mult[symmetric])
  finally show "(+ x. ennreal (rate ^ x / (fact x) * exp (- rate)) count_space UNIV) = 1" .
qed (simp add: rate_pos[THEN less_imp_le])

lemma pmf_poisson[simp]: "pmf poisson_pmf k = rate ^ k / fact k * exp (-rate)"
  by transfer rule

lemma set_pmf_poisson[simp]: "set_pmf poisson_pmf = UNIV"
  using rate_pos by (auto simp: set_pmf_iff)

end

subsubsection ‹ Binomial Distribution ›

context
  fixes n :: nat and p :: real assumes p_nonneg: "0  p" and p_le_1: "p  1"
begin

lift_definition binomial_pmf :: "nat pmf" is "λk. (n choose k) * p^k * (1 - p)^(n - k)"
proof
  have "(+k. ennreal (real (n choose k) * p ^ k * (1 - p) ^ (n - k)) count_space UNIV) =
    ennreal (kn. real (n choose k) * p ^ k * (1 - p) ^ (n - k))"
    using p_le_1 p_nonneg by (subst nn_integral_count_space') auto
  also have "(kn. real (n choose k) * p ^ k * (1 - p) ^ (n - k)) = (p + (1 - p)) ^ n"
    by (subst binomial_ring) (simp add: atLeast0AtMost)
  finally show "(+ x. ennreal (real (n choose x) * p ^ x * (1 - p) ^ (n - x)) count_space UNIV) = 1"
    by simp
qed (insert p_nonneg p_le_1, simp)

lemma pmf_binomial[simp]: "pmf binomial_pmf k = (n choose k) * p^k * (1 - p)^(n - k)"
  by transfer rule

lemma set_pmf_binomial_eq: "set_pmf binomial_pmf = (if p = 0 then {0} else if p = 1 then {n} else {.. n})"
  using p_nonneg p_le_1 unfolding set_eq_iff set_pmf_iff pmf_binomial by (auto simp: set_pmf_iff)

end

end

lemma set_pmf_binomial_0[simp]: "set_pmf (binomial_pmf n 0) = {0}"
  by (simp add: set_pmf_binomial_eq)

lemma set_pmf_binomial_1[simp]: "set_pmf (binomial_pmf n 1) = {n}"
  by (simp add: set_pmf_binomial_eq)

lemma set_pmf_binomial[simp]: "0 < p  p < 1  set_pmf (binomial_pmf n p) = {..n}"
  by (simp add: set_pmf_binomial_eq)

lemma finite_set_pmf_binomial_pmf [intro]: "p  {0..1}  finite (set_pmf (binomial_pmf n p))"
  by (subst set_pmf_binomial_eq) auto

lemma expectation_binomial_pmf':
  fixes f :: "nat  'a :: {banach, second_countable_topology}"
  assumes p: "p  {0..1}"
  shows   "measure_pmf.expectation (binomial_pmf n p) f =
             (kn. (real (n choose k) * p ^ k * (1 - p) ^ (n - k)) *R f k)"
  using p by (subst integral_measure_pmf[where A = "{..n}"])
             (auto simp: set_pmf_binomial_eq split: if_splits)

lemma integrable_binomial_pmf [simp, intro]:
  fixes f :: "nat  'a :: {banach, second_countable_topology}"
  assumes p: "p  {0..1}"
  shows "integrable (binomial_pmf n p) f"
  by (rule integrable_measure_pmf_finite) (use assms in auto)

context includes lifting_syntax
begin

lemma bind_pmf_parametric [transfer_rule]:
  "(rel_pmf A ===> (A ===> rel_pmf B) ===> rel_pmf B) bind_pmf bind_pmf"
by(blast intro: rel_pmf_bindI dest: rel_funD)

lemma return_pmf_parametric [transfer_rule]: "(A ===> rel_pmf A) return_pmf return_pmf"
by(rule rel_funI) simp

end


primrec replicate_pmf :: "nat  'a pmf  'a list pmf" where
  "replicate_pmf 0 _ = return_pmf []"
| "replicate_pmf (Suc n) p = do {x  p; xs  replicate_pmf n p; return_pmf (x#xs)}"

lemma replicate_pmf_1: "replicate_pmf 1 p = map_pmf (λx. [x]) p"
  by (simp add: map_pmf_def bind_return_pmf)

lemma set_replicate_pmf:
  "set_pmf (replicate_pmf n p) = {xslists (set_pmf p). length xs = n}"
  by (induction n) (auto simp: length_Suc_conv)

lemma replicate_pmf_distrib:
  "replicate_pmf (m + n) p =
     do {xs  replicate_pmf m p; ys  replicate_pmf n p; return_pmf (xs @ ys)}"
  by (induction m) (simp_all add: bind_return_pmf bind_return_pmf' bind_assoc_pmf)

lemma power_diff':
  assumes "b  a"
  shows   "x ^ (a - b) = (if x = 0  a = b then 1 else x ^ a / (x::'a::field) ^ b)"
proof (cases "x = 0")
  case True
  with assms show ?thesis by (cases "a - b") simp_all
qed (insert assms, simp_all add: power_diff)


lemma binomial_pmf_Suc:
  assumes "p  {0..1}"
  shows   "binomial_pmf (Suc n) p =
             do {b  bernoulli_pmf p;
                 k  binomial_pmf n p;
                 return_pmf ((if b then 1 else 0) + k)}" (is "_ = ?rhs")
proof (intro pmf_eqI)
  fix k
  have A: "indicator {Suc a} (Suc b) = indicator {a} b" for a b
    by (simp add: indicator_def)
  show "pmf (binomial_pmf (Suc n) p) k = pmf ?rhs k"
    by (cases k; cases "k > n")
       (insert assms, auto simp: pmf_bind measure_pmf_single A field_split_simps algebra_simps
          not_less less_eq_Suc_le [symmetric] power_diff')
qed

lemma binomial_pmf_0: "p  {0..1}  binomial_pmf 0 p = return_pmf 0"
  by (rule pmf_eqI) (simp_all add: indicator_def)

lemma binomial_pmf_altdef:
  assumes "p  {0..1}"
  shows   "binomial_pmf n p = map_pmf (length  filter id) (replicate_pmf n (bernoulli_pmf p))"
  by (induction n)
     (insert assms, auto simp: binomial_pmf_Suc map_pmf_def bind_return_pmf bind_assoc_pmf
        bind_return_pmf' binomial_pmf_0 intro!: bind_pmf_cong)


subsection ‹Negative Binomial distribution›

text ‹
  The negative binomial distribution counts the number of times a weighted coin comes up
  tails before having come up heads n› times. In other words: how many failures do we see before
  seeing the n›-th success?

  An alternative view is that the negative binomial distribution is the sum of n› i.i.d.
  geometric variables (this is the definition that we use).

  Note that there are sometimes different conventions for this distributions in the literature;
  for instance, sometimes the number of ‹attempts› is counted instead of the number of failures.
  This only shifts the entire distribution by a constant number and is thus not a big difference.
  I think that the convention we use is the most natural one since the support of the distribution
  starts at 0, whereas for the other convention it starts at n›.
›
primrec neg_binomial_pmf :: "nat  real  nat pmf" where
  "neg_binomial_pmf 0 p = return_pmf 0"
| "neg_binomial_pmf (Suc n) p =
     map_pmf (λ(x,y). (x + y)) (pair_pmf (geometric_pmf p) (neg_binomial_pmf n p))"

lemma neg_binomial_pmf_Suc_0 [simp]: "neg_binomial_pmf (Suc 0) p = geometric_pmf p"
  by (auto simp: pair_pmf_def bind_return_pmf map_pmf_def bind_assoc_pmf bind_return_pmf')

lemmas neg_binomial_pmf_Suc [simp del] = neg_binomial_pmf.simps(2)

lemma neg_binomial_prob_1 [simp]: "neg_binomial_pmf n 1 = return_pmf 0"
  by (induction n) (simp_all add: neg_binomial_pmf_Suc)

text ‹
  We can now show the aforementioned intuition about counting the failures before the
  n›-th success with the following recurrence:
›
lemma neg_binomial_pmf_unfold:
  assumes p: "p  {0<..1}"
  shows "neg_binomial_pmf (Suc n) p =
           do {b  bernoulli_pmf p;
               if b then neg_binomial_pmf n p else map_pmf Suc (neg_binomial_pmf (Suc n) p)}"
  (is "_ = ?rhs")
  unfolding neg_binomial_pmf_Suc
  by (subst geometric_bind_pmf_unfold[OF p])
     (auto simp: map_pmf_def pair_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf'
           intro!: bind_pmf_cong)

text ‹
  Next, we show an explicit formula for the probability mass function of the negative
  binomial distribution:
›
lemma pmf_neg_binomial:
  assumes p: "p  {0<..1}"
  shows   "pmf (neg_binomial_pmf n p) k = real ((k + n - 1) choose k) * p ^ n * (1 - p) ^ k"
proof (induction n arbitrary: k)
  case 0
  thus ?case using assms by (auto simp: indicator_def)
next
  case (Suc n)
  show ?case
  proof (cases "n = 0")
    case True
    thus ?thesis using assms by auto
  next
    case False
    let ?f = "pmf (neg_binomial_pmf n p)"
    have "pmf (neg_binomial_pmf (Suc n) p) k =
            pmf (geometric_pmf p  (λx. map_pmf ((+) x) (neg_binomial_pmf n p))) k"
      by (auto simp: pair_pmf_def bind_return_pmf map_pmf_def bind_assoc_pmf neg_binomial_pmf_Suc)
    also have " = measure_pmf.expectation (geometric_pmf p)
                      (λx. measure_pmf.prob (neg_binomial_pmf n p) ((+) x -` {k}))"
      by (simp add: pmf_bind pmf_map)
    also have "(λx. (+) x -` {k}) = (λx. if x  k then {k - x} else {})"
      by (auto simp: fun_eq_iff)
    also have "(λx. measure_pmf.prob (neg_binomial_pmf n p) ( x)) =
               (λx. if x  k then ?f(k - x) else 0)"
      by (auto simp: fun_eq_iff measure_pmf_single)
    also have "measure_pmf.expectation (geometric_pmf p)  =
                 (ik. pmf (neg_binomial_pmf n p) (k - i) * pmf (geometric_pmf p) i)"
      by (subst integral_measure_pmf_real[where A = "{..k}"]) (auto split: if_splits)
    also have " = p^(n+1) * (1-p)^k * real (ik. (k - i + n - 1) choose (k - i))"
      unfolding sum_distrib_left of_nat_sum
    proof (intro sum.cong refl, goal_cases)
      case (1 i)
      have "pmf (neg_binomial_pmf n p) (k - i) * pmf (geometric_pmf p) i =
              real ((k - i + n - 1) choose (k - i)) * p^(n+1) * ((1-p)^(k-i) * (1-p)^i)"
        using assms Suc.IH by (simp add: mult_ac)
      also have "(1-p)^(k-i) * (1-p)^i = (1-p)^k"
        using 1 by (subst power_add [symmetric]) auto
      finally show ?case by simp
    qed
    also have "(ik. (k - i + n - 1) choose (k - i)) = (ik. (n - 1 + i) choose i)"
      by (intro sum.reindex_bij_witness[of _ "λi. k - i" "λi. k - i"])
         (use n  0 in auto simp: algebra_simps)
    also have " = (n + k) choose k"
      by (subst sum_choose_lower) (use n  0 in auto)
    finally show ?thesis
      by (simp add: add_ac)
  qed
qed

(* TODO: Move? *)
lemma gbinomial_0_left: "0 gchoose k = (if k = 0 then 1 else 0)"
  by (cases k) auto

text ‹
  The following alternative formula highlights why it is called `negative binomial distribution':
›
lemma pmf_neg_binomial':
  assumes p: "p  {0<..1}"
  shows   "pmf (neg_binomial_pmf n p) k = (-1) ^ k * ((-real n) gchoose k) * p ^ n * (1 - p) ^ k"
proof (cases "n > 0")
  case n: True
  have "pmf (neg_binomial_pmf n p) k = real ((k + n - 1) choose k) * p ^ n * (1 - p) ^ k"
    by (rule pmf_neg_binomial) fact+
  also have "real ((k + n - 1) choose k) = ((real k + real n - 1) gchoose k)"
    using n by (subst binomial_gbinomial) (auto simp: of_nat_diff)
  also have " = (-1) ^ k * ((-real n) gchoose k)"
    by (subst gbinomial_negated_upper) auto
  finally show ?thesis by simp
qed (auto simp: indicator_def gbinomial_0_left)

text ‹
  The cumulative distribution function of the negative binomial distribution can be
  expressed in terms of that of the `normal' binomial distribution.
›
lemma prob_neg_binomial_pmf_atMost:
  assumes p: "p  {0<..1}"
  shows "measure_pmf.prob (neg_binomial_pmf n p) {..k} =
         measure_pmf.prob (binomial_pmf (n + k) (1 - p)) {..k}"
proof (cases "n = 0")
  case [simp]: True
  have "set_pmf (binomial_pmf (n + k) (1 - p))  {..n+k}"
    using p by (subst set_pmf_binomial_eq) auto
  hence "measure_pmf.prob (binomial_pmf (n + k) (1 - p)) {..k} = 1"
    by (subst measure_pmf.prob_eq_1) (auto intro!: AE_pmfI)
  thus ?thesis by simp
next
  case False
  hence n: "n > 0" by auto
  have "measure_pmf.prob (binomial_pmf (n + k) (1 - p)) {..k} = (ik. pmf (binomial_pmf (n + k) (1 - p)) i)"
    by (intro measure_measure_pmf_finite) auto
  also have " = (ik. real ((n + k) choose i) * p ^ (n + k - i) * (1 - p) ^ i)"
    using p by (simp add: mult_ac)
  also have " = p ^ n * (ik. real ((n + k) choose i) * (1 - p) ^ i * p ^ (k - i))"
    unfolding sum_distrib_left by (intro sum.cong) (auto simp: algebra_simps simp flip: power_add)
  also have "(ik. real ((n + k) choose i) * (1 - p) ^ i * p ^ (k - i)) =
             (ik. ((n + i - 1) choose i) * (1 - p) ^ i)"
    using gbinomial_partial_sum_poly_xpos[of k "real n" "1 - p" p] n
    by (simp add: binomial_gbinomial add_ac of_nat_diff)
  also have "p ^ n *  = (ik. pmf (neg_binomial_pmf n p) i)"
    using p unfolding sum_distrib_left by (simp add: pmf_neg_binomial algebra_simps)
  also have " = measure_pmf.prob (neg_binomial_pmf n p) {..k}"
    by (intro measure_measure_pmf_finite [symmetric]) auto
  finally show ?thesis ..
qed

lemma prob_neg_binomial_pmf_lessThan:
  assumes p: "p  {0<..1}"
  shows "measure_pmf.prob (neg_binomial_pmf n p) {..<k} =
         measure_pmf.prob (binomial_pmf (n + k - 1) (1 - p)) {..<k}"
proof (cases "k = 0")
  case False
  hence "{..<k} = {..k-1}"
    by auto
  thus ?thesis
    using prob_neg_binomial_pmf_atMost[OF p, of n "k - 1"] False by simp
qed auto

text ‹
  The expected value of the negative binomial distribution is $n(1-p)/p$:
›
lemma nn_integral_neg_binomial_pmf_real:
  assumes p: "p  {0<..1}"
  shows "nn_integral (measure_pmf (neg_binomial_pmf n p)) of_nat = ennreal (n * (1 - p) / p)"
proof (induction n)
  case 0
  thus ?case by auto
next
  case (Suc n)
  have "nn_integral (measure_pmf (neg_binomial_pmf (Suc n) p)) of_nat =
        nn_integral (measure_pmf (geometric_pmf p)) of_nat +
        nn_integral (measure_pmf (neg_binomial_pmf n p)) of_nat"
    by (simp add: neg_binomial_pmf_Suc case_prod_unfold nn_integral_add nn_integral_pair_pmf')
  also have "nn_integral (measure_pmf (geometric_pmf p)) of_nat = ennreal ((1-p) / p)"
    unfolding ennreal_of_nat_eq_real_of_nat
    using expectation_geometric_pmf[OF p] integrable_real_geometric_pmf[OF p]
    by (subst nn_integral_eq_integral) auto
  also have "nn_integral (measure_pmf (neg_binomial_pmf n p)) of_nat = n * (1 - p) / p" using p
    by (subst Suc.IH)
       (auto simp: ennreal_of_nat_eq_real_of_nat ennreal_mult simp flip: divide_ennreal ennreal_minus)
  also have "ennreal ((1 - p) / p) + ennreal (real n * (1 - p) / p) =
             ennreal ((1-p) / p + real n * (1 - p) / p)"
    by (intro ennreal_plus [symmetric] divide_nonneg_pos mult_nonneg_nonneg) (use p in auto)
  also have "(1-p) / p + real n * (1 - p) / p = real (Suc n) * (1 - p) / p"
    using p by (auto simp: field_simps)
  finally show ?case
    by (simp add: ennreal_of_nat_eq_real_of_nat)
qed

lemma integrable_neg_binomial_pmf_real:
  assumes p: "p  {0<..1}"
  shows "integrable (measure_pmf (neg_binomial_pmf n p)) real"
  using nn_integral_neg_binomial_pmf_real[OF p, of n]
  by (subst integrable_iff_bounded) (auto simp flip: ennreal_of_nat_eq_real_of_nat)

lemma expectation_neg_binomial_pmf:
  assumes p: "p  {0<..1}"
  shows "measure_pmf.expectation (neg_binomial_pmf n p) real = n * (1 - p) / p"
proof -
  have "nn_integral (measure_pmf (neg_binomial_pmf n p)) of_nat = ennreal (n * (1 - p) / p)"
    by (intro nn_integral_neg_binomial_pmf_real p)
  also have "of_nat = (λx. ennreal (real x))"
    by (simp add: ennreal_of_nat_eq_real_of_nat fun_eq_iff)
  finally show ?thesis
    using p by (subst (asm) nn_integral_eq_integrable) auto
qed


subsection ‹PMFs from association lists›

definition pmf_of_list ::" ('a × real) list  'a pmf" where
  "pmf_of_list xs = embed_pmf (λx. sum_list (map snd (filter (λz. fst z = x) xs)))"

definition pmf_of_list_wf where
  "pmf_of_list_wf xs  (xset (map snd xs) . x  0)  sum_list (map snd xs) = 1"

lemma pmf_of_list_wfI:
  "(x. x  set (map snd xs)  x  0)  sum_list (map snd xs) = 1  pmf_of_list_wf xs"
  unfolding pmf_of_list_wf_def by simp

context
begin

private lemma pmf_of_list_aux:
  assumes "x. x  set (map snd xs)  x  0"
  assumes "sum_list (map snd xs) = 1"
  shows "(+ x. ennreal (sum_list (map snd [zxs . fst z = x])) count_space UNIV) = 1"
proof -
  have "(+ x. ennreal (sum_list (map snd (filter (λz. fst z = x) xs))) count_space UNIV) =
            (+ x. ennreal (sum_list (map (λ(x',p). indicator {x'} x * p) xs)) count_space UNIV)"
    apply (intro nn_integral_cong ennreal_cong, subst sum_list_map_filter')
    apply (rule arg_cong[where f = sum_list])
    apply (auto cong: map_cong)
    done
  also have " = ((x',p)xs. (+ x. ennreal (indicator {x'} x * p) count_space UNIV))"
    using assms(1)
  proof (induction xs)
    case (Cons x xs)
    from Cons.prems have "snd x  0" by simp
    moreover have "b  0" if "(a,b)  set xs" for a b
      using Cons.prems[of b] that by force
    ultimately have "(+ y. ennreal ((x', p)x # xs. indicator {x'} y * p) count_space UNIV) =
            (+ y. ennreal (indicator {fst x} y * snd x) +
            ennreal ((x', p)xs. indicator {x'} y * p) count_space UNIV)"
      by (intro nn_integral_cong, subst ennreal_plus [symmetric])
         (auto simp: case_prod_unfold indicator_def intro!: sum_list_nonneg)
    also have " = (+ y. ennreal (indicator {fst x} y * snd x) count_space UNIV) +
                      (+ y. ennreal ((x', p)xs. indicator {x'} y * p) count_space UNIV)"
      by (intro nn_integral_add)
         (force intro!: sum_list_nonneg AE_I2 intro: Cons simp: indicator_def)+
    also have "(+ y. ennreal ((x', p)xs. indicator {x'} y * p) count_space UNIV) =
               ((x', p)xs. (+ y. ennreal (indicator {x'} y * p) count_space UNIV))"
      using Cons(1) by (intro Cons) simp_all
    finally show ?case by (simp add: case_prod_unfold)
  qed simp
  also have " = ((x',p)xs. ennreal p * (+ x. indicator {x'} x count_space UNIV))"
    using assms(1)
    by (simp cong: map_cong only: case_prod_unfold, subst nn_integral_cmult [symmetric])
       (auto intro!: assms(1) simp: max_def times_ereal.simps [symmetric] mult_ac ereal_indicator
             simp del: times_ereal.simps)+
  also from assms have " = sum_list (map snd xs)" by (simp add: case_prod_unfold sum_list_ennreal)
  also have " = 1" using assms(2) by simp
  finally show ?thesis .
qed

lemma pmf_pmf_of_list:
  assumes "pmf_of_list_wf xs"
  shows   "pmf (pmf_of_list xs) x = sum_list (map snd (filter (λz. fst z = x) xs))"
  using assms pmf_of_list_aux[of xs] unfolding pmf_of_list_def pmf_of_list_wf_def
  by (subst pmf_embed_pmf) (auto intro!: sum_list_nonneg)

end

lemma set_pmf_of_list:
  assumes "pmf_of_list_wf xs"
  shows   "set_pmf (pmf_of_list xs)  set (map fst xs)"
proof clarify
  fix x assume A: "x  set_pmf (pmf_of_list xs)"
  show "x  set (map fst xs)"
  proof (rule ccontr)
    assume "x  set (map fst xs)"
    hence "[zxs . fst z = x] = []" by (auto simp: filter_empty_conv)
    with A assms show False by (simp add: pmf_pmf_of_list set_pmf_eq)
  qed
qed

lemma finite_set_pmf_of_list:
  assumes "pmf_of_list_wf xs"
  shows   "finite (set_pmf (pmf_of_list xs))"
  using assms by (rule finite_subset[OF set_pmf_of_list]) simp_all

lemma emeasure_Int_set_pmf:
  "emeasure (measure_pmf p) (A  set_pmf p) = emeasure (measure_pmf p) A"
  by (rule emeasure_eq_AE) (auto simp: AE_measure_pmf_iff)

lemma measure_Int_set_pmf:
  "measure (measure_pmf p) (A  set_pmf p) = measure (measure_pmf p) A"
  using emeasure_Int_set_pmf[of p A] by (simp add: Sigma_Algebra.measure_def)

lemma measure_prob_cong_0:
  assumes "x. x  A - B  pmf p x = 0"
  assumes "x. x  B - A  pmf p x = 0"
  shows   "measure (measure_pmf p) A = measure (measure_pmf p) B"
proof -
  have "measure_pmf.prob p A = measure_pmf.prob p (A  set_pmf p)"
    by (simp add: measure_Int_set_pmf)
  also have "A  set_pmf p = B  set_pmf p"
    using assms by (auto simp: set_pmf_eq)
  also have "measure_pmf.prob p  = measure_pmf.prob p B"
    by (simp add: measure_Int_set_pmf)
  finally show ?thesis .
qed

lemma emeasure_pmf_of_list:
  assumes "pmf_of_list_wf xs"
  shows   "emeasure (pmf_of_list xs) A = ennreal (sum_list (map snd (filter (λx. fst x  A) xs)))"
proof -
  have "emeasure (pmf_of_list xs) A = nn_integral (measure_pmf (pmf_of_list xs)) (indicator A)"
    by simp
  also from assms
    have " = (xset_pmf (pmf_of_list xs)  A. ennreal (sum_list (map snd [zxs . fst z = x])))"
    by (subst nn_integral_measure_pmf_finite) (simp_all add: finite_set_pmf_of_list pmf_pmf_of_list Int_def)
  also from assms
    have " = ennreal (xset_pmf (pmf_of_list xs)  A. sum_list (map snd [zxs . fst z = x]))"
    by (subst sum_ennreal) (auto simp: pmf_of_list_wf_def intro!: sum_list_nonneg)
  also have " = ennreal (xset_pmf (pmf_of_list xs)  A.
      indicator A x * pmf (pmf_of_list xs) x)" (is "_ = ennreal ?S")
    using assms by (intro ennreal_cong sum.cong) (auto simp: pmf_pmf_of_list)
  also have "?S = (xset_pmf (pmf_of_list xs). indicator A x * pmf (pmf_of_list xs) x)"
    using assms by (intro sum.mono_neutral_left set_pmf_of_list finite_set_pmf_of_list) auto
  also have " = (xset (map fst xs). indicator A x * pmf (pmf_of_list xs) x)"
    using assms by (intro sum.mono_neutral_left set_pmf_of_list) (auto simp: set_pmf_eq)
  also have " = (xset (map fst xs). indicator A x *
                      sum_list (map snd (filter (λz. fst z = x) xs)))"
    using assms by (simp add: pmf_pmf_of_list)
  also have " = (xset (map fst xs). sum_list (map snd (filter (λz. fst z = x  x  A) xs)))"
    by (intro sum.cong) (auto simp: indicator_def)
  also have " = (xset (map fst xs). (xa = 0..<length xs.
                     if fst (xs ! xa) = x  x  A then snd (xs ! xa) else 0))"
    by (intro sum.cong refl, subst sum_list_map_filter', subst sum_list_sum_nth) simp
  also have " = (xa = 0..<length xs. (xset (map fst xs).
                     if fst (xs ! xa) = x  x  A then snd (xs ! xa) else 0))"
    by (rule sum.swap)
  also have " = (xa = 0..<length xs. if fst (xs ! xa)  A then
                     (xset (map fst xs). if x = fst (xs ! xa) then snd (xs ! xa) else 0) else 0)"
    by (auto intro!: sum.cong sum.neutral simp del: sum.delta)
  also have " = (xa = 0..<length xs. if fst (xs ! xa)  A then snd (xs ! xa) else 0)"
    by (intro sum.cong refl) (simp_all add: sum.delta)
  also have " = sum_list (map snd (filter (λx. fst x  A) xs))"
    by (subst sum_list_map_filter', subst sum_list_sum_nth) simp_all
  finally show ?thesis .
qed

lemma measure_pmf_of_list:
  assumes "pmf_of_list_wf xs"
  shows   "measure (pmf_of_list xs) A = sum_list (map snd (filter (λx. fst x  A) xs))"
  using assms unfolding pmf_of_list_wf_def Sigma_Algebra.measure_def
  by (subst emeasure_pmf_of_list [OF assms], subst enn2real_ennreal) (auto intro!: sum_list_nonneg)

(* TODO Move? *)
lemma sum_list_nonneg_eq_zero_iff:
  fixes xs :: "'a :: linordered_ab_group_add list"
  shows "(x. x  set xs  x  0)  sum_list xs = 0  set xs  {0}"
proof (induction xs)
  case (Cons x xs)
  from Cons.prems have "sum_list (x#xs) = 0  x = 0  sum_list xs = 0"
    unfolding sum_list_simps by (subst add_nonneg_eq_0_iff) (auto intro: sum_list_nonneg)
  with Cons.IH Cons.prems show ?case by simp
qed simp_all

lemma sum_list_filter_nonzero:
  "sum_list (filter (λx. x  0) xs) = sum_list xs"
  by (induction xs) simp_all
(* END MOVE *)

lemma set_pmf_of_list_eq:
  assumes "pmf_of_list_wf xs" "x. x  snd ` set xs  x > 0"
  shows   "set_pmf (pmf_of_list xs) = fst ` set xs"
proof
  {
    fix x assume A: "x  fst ` set xs" and B: "x  set_pmf (pmf_of_list xs)"
    then obtain y where y: "(x, y)  set xs" by auto
    from B have "sum_list (map snd [zxs. fst z = x]) = 0"
      by (simp add: pmf_pmf_of_list[OF assms(1)] set_pmf_eq)
    moreover from y have "y  snd ` {xa  set xs. fst xa = x}" by force
    ultimately have "y = 0" using assms(1)
      by (subst (asm) sum_list_nonneg_eq_zero_iff) (auto simp: pmf_of_list_wf_def)
    with assms(2) y have False by force
  }
  thus "fst ` set xs  set_pmf (pmf_of_list xs)" by blast
qed (insert set_pmf_of_list[OF assms(1)], simp_all)

lemma pmf_of_list_remove_zeros:
  assumes "pmf_of_list_wf xs"
  defines "xs'  filter (λz. snd z  0) xs"
  shows   "pmf_of_list_wf xs'" "pmf_of_list xs' = pmf_of_list xs"
proof -
  have "map snd [zxs . snd z  0] = filter (λx. x  0) (map snd xs)"
    by (induction xs) simp_all
  with assms(1) show wf: "pmf_of_list_wf xs'"
    by (auto simp: pmf_of_list_wf_def xs'_def sum_list_filter_nonzero)
  have "sum_list (map snd [zxs' . fst z = i]) = sum_list (map snd [zxs . fst z = i])" for i
    unfolding xs'_def by (induction xs) simp_all
  with assms(1) wf show "pmf_of_list xs' = pmf_of_list xs"
    by (intro pmf_eqI) (simp_all add: pmf_pmf_of_list)
qed

end