Theory HOL-Analysis.Lebesgue_Measure

(*  Title:      HOL/Analysis/Lebesgue_Measure.thy
    Author:     Johannes Hölzl, TU München
    Author:     Robert Himmelmann, TU München
    Author:     Jeremy Avigad
    Author:     Luke Serafin
*)

section ‹Lebesgue Measure›

theory Lebesgue_Measure
imports
  Finite_Product_Measure
  Caratheodory
  Complete_Measure
  Summation_Tests
  Regularity
begin

lemma measure_eqI_lessThan:
  fixes M N :: "real measure"
  assumes sets: "sets M = sets borel" "sets N = sets borel"
  assumes fin: "x. emeasure M {x <..} < "
  assumes "x. emeasure M {x <..} = emeasure N {x <..}"
  shows "M = N"
proof (rule measure_eqI_generator_eq_countable)
  let ?LT = "λa::real. {a <..}" let ?E = "range ?LT"
  show "Int_stable ?E"
    by (auto simp: Int_stable_def lessThan_Int_lessThan)

  show "?E  Pow UNIV" "sets M = sigma_sets UNIV ?E" "sets N = sigma_sets UNIV ?E"
    unfolding sets borel_Ioi by auto

  show "?LT`Rats  ?E" "(iRats. ?LT i) = UNIV" "a. a  ?LT`Rats  emeasure M a  "
    using fin by (auto intro: Rats_no_bot_less simp: less_top)
qed (auto intro: assms countable_rat)

subsection ‹Measures defined by monotonous functions›

text ‹
  Every right-continuous and nondecreasing function gives rise to a measure on the reals:
›

definitiontag important› interval_measure :: "(real  real)  real measure" where
  "interval_measure F =
     extend_measure UNIV {(a, b). a  b} (λ(a, b). {a<..b}) (λ(a, b). ennreal (F b - F a))"

lemmatag important› emeasure_interval_measure_Ioc:
  assumes "a  b"
  assumes mono_F: "x y. x  y  F x  F y"
  assumes right_cont_F : "a. continuous (at_right a) F"
  shows "emeasure (interval_measure F) {a<..b} = F b - F a"
proof (rule extend_measure_caratheodory_pair[OF interval_measure_def a  b])
  show "semiring_of_sets UNIV {{a<..b} |a b :: real. a  b}"
  proof (unfold_locales, safe)
    fix a b c d :: real assume *: "a  b" "c  d"
    then show "C{{a<..b} |a b. a  b}. finite C  disjoint C  {a<..b} - {c<..d} = C"
    proof cases
      let ?C = "{{a<..b}}"
      assume "b < c  d  a  d  c"
      with * have "?C  {{a<..b} |a b. a  b}  finite ?C  disjoint ?C  {a<..b} - {c<..d} = ?C"
        by (auto simp add: disjoint_def)
      thus ?thesis ..
    next
      let ?C = "{{a<..c}, {d<..b}}"
      assume "¬ (b < c  d  a  d  c)"
      with * have "?C  {{a<..b} |a b. a  b}  finite ?C  disjoint ?C  {a<..b} - {c<..d} = ?C"
        by (auto simp add: disjoint_def Ioc_inj) (metis linear)+
      thus ?thesis ..
    qed
  qed (auto simp: Ioc_inj, metis linear)
next
  fix l r :: "nat  real" and a b :: real
  assume l_r[simp]: "n. l n  r n" and "a  b" and disj: "disjoint_family (λn. {l n<..r n})"
  assume lr_eq_ab: "(i. {l i<..r i}) = {a<..b}"

  have [intro, simp]: "a b. a  b  F a  F b"
    by (auto intro!: l_r mono_F)

  { fix S :: "nat set" assume "finite S"
    moreover note a  b
    moreover have "i. i  S  {l i <.. r i}  {a <.. b}"
      unfolding lr_eq_ab[symmetric] by auto
    ultimately have "(iS. F (r i) - F (l i))  F b - F a"
    proof (induction S arbitrary: a rule: finite_psubset_induct)
      case (psubset S)
      show ?case
      proof cases
        assume "iS. l i < r i"
        with finite S have "Min (l ` {iS. l i < r i})  l ` {iS. l i < r i}"
          by (intro Min_in) auto
        then obtain m where m: "m  S" "l m < r m" "l m = Min (l ` {iS. l i < r i})"
          by fastforce

        have "(iS. F (r i) - F (l i)) = (F (r m) - F (l m)) + (iS - {m}. F (r i) - F (l i))"
          using m psubset by (intro sum.remove) auto
        also have "(iS - {m}. F (r i) - F (l i))  F b - F (r m)"
        proof (intro psubset.IH)
          show "S - {m}  S"
            using mS by auto
          show "r m  b"
            using psubset.prems(2)[OF mS] l m < r m by auto
        next
          fix i assume "i  S - {m}"
          then have i: "i  S" "i  m" by auto
          { assume i': "l i < r i" "l i < r m"
            with finite S i m have "l m  l i"
              by auto
            with i' have "{l i <.. r i}  {l m <.. r m}  {}"
              by auto
            then have False
              using disjoint_family_onD[OF disj, of i m] i by auto }
          then have "l i  r i  r m  l i"
            unfolding not_less[symmetric] using l_r[of i] by auto
          then show "{l i <.. r i}  {r m <.. b}"
            using psubset.prems(2)[OF iS] by auto
        qed
        also have "F (r m) - F (l m)  F (r m) - F a"
          using psubset.prems(2)[OF m  S] l m < r m
          by (auto simp add: Ioc_subset_iff intro!: mono_F)
        finally show ?case
          by (auto intro: add_mono)
      qed (auto simp add: a  b less_le)
    qed }
  note claim1 = this

  (* second key induction: a lower bound on the measures of any finite collection of Ai's
     that cover an interval {u..v} *)

  { fix S u v and l r :: "nat  real"
    assume "finite S" "i. iS  l i < r i" "{u..v}  (iS. {l i<..< r i})"
    then have "F v - F u  (iS. F (r i) - F (l i))"
    proof (induction arbitrary: v u rule: finite_psubset_induct)
      case (psubset S)
      show ?case
      proof cases
        assume "S = {}" then show ?case
          using psubset by (simp add: mono_F)
      next
        assume "S  {}"
        then obtain j where "j  S"
          by auto

        let ?R = "r j < u  l j > v  (iS-{j}. l i  l j  r j  r i)"
        show ?case
        proof cases
          assume "?R"
          with j  S psubset.prems have "{u..v}  (iS-{j}. {l i<..< r i})"
            apply (simp add: subset_eq Ball_def Bex_def)
            by (metis order_le_less_trans order_less_le_trans order_less_not_sym)
          with j  S have "F v - F u  (iS - {j}. F (r i) - F (l i))"
            by (intro psubset) auto
          also have "  (iS. F (r i) - F (l i))"
            using psubset.prems
            by (intro sum_mono2 psubset) (auto intro: less_imp_le)
          finally show ?thesis .
        next
          assume "¬ ?R"
          then have j: "u  r j" "l j  v" "i. i  S - {j}  r i < r j  l i > l j"
            by (auto simp: not_less)
          let ?S1 = "{i  S. l i < l j}"
          let ?S2 = "{i  S. r i > r j}"
          have *: "?S1  ?S2 = {}"
            using j by (fastforce simp add: disjoint_iff)
          have "(iS. F (r i) - F (l i))  (i?S1  ?S2  {j}. F (r i) - F (l i))"
            using j  S finite S psubset.prems j
            by (intro sum_mono2) (auto intro: less_imp_le)
          also have "(i?S1  ?S2  {j}. F (r i) - F (l i)) =
            (i?S1. F (r i) - F (l i)) + (i?S2 . F (r i) - F (l i)) + (F (r j) - F (l j))"
            using psubset(1) by (simp add: * sum.union_disjoint disjoint_iff_not_equal)
          also (xtrans) have "(i?S1. F (r i) - F (l i))  F (l j) - F u"
            using j  S finite S psubset.prems j
            apply (intro psubset.IH psubset)
            apply (auto simp: subset_eq Ball_def)
            apply (metis less_le_trans not_le)
            done
          also (xtrans) have "(i?S2. F (r i) - F (l i))  F v - F (r j)"
            using j  S finite S psubset.prems j
            apply (intro psubset.IH psubset)
            apply (auto simp: subset_eq Ball_def)
            apply (metis le_less_trans not_le)
            done
          finally (xtrans) show ?case
            by (auto simp: add_mono)
        qed
      qed
    qed }
  note claim2 = this

  (* now prove the inequality going the other way *)
  have "ennreal (F b - F a)  (i. ennreal (F (r i) - F (l i)))"
  proof (rule ennreal_le_epsilon)
    fix epsilon :: real assume egt0: "epsilon > 0"
    have "i. d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)"
    proof
      fix i
      note right_cont_F [of "r i"]
      then have "d>0. F (r i + d) - F (r i) < epsilon / 2 ^ (i + 2)"
        by (simp add: continuous_at_right_real_increasing egt0)
      thus "d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)"
        by force
    qed
    then obtain delta where
        deltai_gt0: "i. delta i > 0" and
        deltai_prop: "i. F (r i + delta i) < F (r i) + epsilon / 2^(i+2)"
      by metis
    have "a' > a. F a' - F a < epsilon / 2"
      using right_cont_F [of a]
      by (metis continuous_at_right_real_increasing egt0 half_gt_zero less_add_same_cancel1 mono_F)
    then obtain a' where a'lea [arith]: "a' > a" and
      a_prop: "F a' - F a < epsilon / 2"
      by auto
    define S' where "S' = {i. l i < r i}"
    obtain S :: "nat set" where "S  S'" and finS: "finite S" 
      and Sprop: "{a'..b}  (i  S. {l i<..<r i + delta i})"
    proof (rule compactE_image)
      show "compact {a'..b}"
        by (rule compact_Icc)
      show "i. i  S'  open ({l i<..<r i + delta i})" by auto
      have "{a'..b}  {a <.. b}"
        by auto
      also have "{a <.. b} = (iS'. {l i<..r i})"
        unfolding lr_eq_ab[symmetric] by (fastforce simp add: S'_def intro: less_le_trans)
      also have "  (i  S'. {l i<..<r i + delta i})"
        by (intro UN_mono; simp add: add.commute add_strict_increasing deltai_gt0 subset_iff)
      finally show "{a'..b}  (i  S'. {l i<..<r i + delta i})" .
    qed
    with S'_def have Sprop2: "i. i  S  l i < r i" by auto
    obtain n where Sbound: "i. i  S  i  n"
      using Max_ge finS by blast
    have "F b - F a = (F b - F a') + (F a' - F a)"
      by auto
    also have "...  (F b - F a') + epsilon / 2"
      using a_prop by (intro add_left_mono) simp
    also have "...  (iS. F (r i) - F (l i)) + epsilon / 2 + epsilon / 2"
    proof -
      have "F b - F a'  (iS. F (r i + delta i) - F (l i))"
        using claim2 l_r Sprop by (simp add: deltai_gt0 finS add.commute add_strict_increasing)
      also have "...  (i  S. F(r i) - F(l i) + epsilon / 2^(i+2))"
        by (smt (verit) sum_mono deltai_prop)
      also have "... = (i  S. F(r i) - F(l i)) +
        (epsilon / 4) * (i  S. (1 / 2)^i)" (is "_ = ?t + _")
        by (subst sum.distrib) (simp add: field_simps sum_distrib_left)
      also have "...  ?t + (epsilon / 4) * ( i < Suc n. (1 / 2)^i)"
        using egt0 Sbound by (intro add_left_mono mult_left_mono sum_mono2) force+
      also have "...  ?t + (epsilon / 2)"
        using egt0 by (simp add: geometric_sum add_left_mono mult_left_mono)
      finally have "F b - F a'  (iS. F (r i) - F (l i)) + epsilon / 2"
        by simp
      then show ?thesis
        by linarith
    qed
    also have "... = (iS. F (r i) - F (l i)) + epsilon"
      by auto
    also have "...  (in. F (r i) - F (l i)) + epsilon"
      using finS Sbound Sprop by (auto intro!: add_right_mono sum_mono2)
    finally have "ennreal (F b - F a)  (in. ennreal (F (r i) - F (l i))) + epsilon"
      using egt0 by (simp add: sum_nonneg flip: ennreal_plus)
    then show "ennreal (F b - F a)  (i. ennreal (F (r i) - F (l i))) + (epsilon :: real)"
      by (rule order_trans) (auto intro!: add_mono sum_le_suminf simp del: sum_ennreal)
  qed
  moreover have "(i. ennreal (F (r i) - F (l i)))  ennreal (F b - F a)"
    using a  b by (auto intro!: suminf_le_const ennreal_le_iff[THEN iffD2] claim1)
  ultimately show "(n. ennreal (F (r n) - F (l n))) = ennreal (F b - F a)"
    by (rule antisym[rotated])
qed (auto simp: Ioc_inj mono_F)

lemma measure_interval_measure_Ioc:
  assumes "a  b" and "x y. x  y  F x  F y" and "a. continuous (at_right a) F"
  shows "measure (interval_measure F) {a <.. b} = F b - F a"
  unfolding measure_def
  by (simp add: assms emeasure_interval_measure_Ioc)

lemma emeasure_interval_measure_Ioc_eq:
  "(x y. x  y  F x  F y)  (a. continuous (at_right a) F) 
    emeasure (interval_measure F) {a <.. b} = (if a  b then F b - F a else 0)"
  using emeasure_interval_measure_Ioc[of a b F] by auto

lemmatag important› sets_interval_measure [simp, measurable_cong]:
    "sets (interval_measure F) = sets borel"
  apply (simp add: sets_extend_measure interval_measure_def borel_sigma_sets_Ioc image_def split: prod.split)
  by (metis greaterThanAtMost_empty nle_le)

lemma space_interval_measure [simp]: "space (interval_measure F) = UNIV"
  by (simp add: interval_measure_def space_extend_measure)

lemma emeasure_interval_measure_Icc:
  assumes "a  b"
  assumes mono_F: "x y. x  y  F x  F y"
  assumes cont_F : "continuous_on UNIV F"
  shows "emeasure (interval_measure F) {a .. b} = F b - F a"
proof (rule tendsto_unique)
  { fix a b :: real assume "a  b" then have "emeasure (interval_measure F) {a <.. b} = F b - F a"
      using cont_F
      by (subst emeasure_interval_measure_Ioc)
         (auto intro: mono_F continuous_within_subset simp: continuous_on_eq_continuous_within) }
  note * = this

  let ?F = "interval_measure F"
  show "((λa. F b - F a)  emeasure ?F {a..b}) (at_left a)"
  proof (rule tendsto_at_left_sequentially)
    show "a - 1 < a" by simp
    fix X assume X: "n. X n < a" "incseq X" "X  a"
    then have "emeasure (interval_measure F) {X n<..b}  " for n
      by (smt (verit) "*" a  b ennreal_neq_top infinity_ennreal_def)
    with X have "(λn. emeasure ?F {X n<..b})  emeasure ?F (n. {X n <..b})"
      by (intro Lim_emeasure_decseq; force simp: decseq_def incseq_def emeasure_interval_measure_Ioc *)
    also have "(n. {X n <..b}) = {a..b}"
      apply auto
      apply (rule LIMSEQ_le_const2[OF X  a])
      using less_eq_real_def apply presburger
      using X(1) order_less_le_trans by blast
    also have "(λn. emeasure ?F {X n<..b}) = (λn. F b - F (X n))"
      using n. X n < a a  b by (subst *) (auto intro: less_imp_le less_le_trans)
    finally show "(λn. F b - F (X n))  emeasure ?F {a..b}" .
  qed
  show "((λa. ennreal (F b - F a))  F b - F a) (at_left a)"
    by (rule continuous_on_tendsto_compose[where g="λx. x" and s=UNIV])
       (auto simp: continuous_on_ennreal continuous_on_diff cont_F)
qed (rule trivial_limit_at_left_real)

lemmatag important› sigma_finite_interval_measure:
  assumes mono_F: "x y. x  y  F x  F y"
  assumes right_cont_F : "a. continuous (at_right a) F"
  shows "sigma_finite_measure (interval_measure F)"
  apply unfold_locales
  apply (intro exI[of _ "(λ(a, b). {a <.. b}) ` ( × )"])
  apply (auto intro!: Rats_no_top_le Rats_no_bot_less countable_rat simp: emeasure_interval_measure_Ioc_eq[OF assms])
  done

subsection ‹Lebesgue-Borel measure›

definitiontag important› lborel :: "('a :: euclidean_space) measure" where
  "lborel = distr (ΠM bBasis. interval_measure (λx. x)) borel (λf. bBasis. f b *R b)"

abbreviationtag important› lebesgue :: "'a::euclidean_space measure"
  where "lebesgue  completion lborel"

abbreviationtag important› lebesgue_on :: "'a set  'a::euclidean_space measure"
  where "lebesgue_on Ω  restrict_space (completion lborel) Ω"

lemma lebesgue_on_mono:
  assumes major: "AE x in lebesgue_on S. P x" and minor: "x.P x; x  S  Q x"
  shows "AE x in lebesgue_on S. Q x"
proof -
  have "AE a in lebesgue_on S. P a  Q a"
    using minor space_restrict_space by fastforce
  then show ?thesis
    using major by auto
qed

lemma integral_eq_zero_null_sets:
  assumes "S  null_sets lebesgue"
  shows "integralL (lebesgue_on S) f = 0"
proof (rule integral_eq_zero_AE)
  show "AE x in lebesgue_on S. f x = 0"
    by (metis (no_types, lifting) assms AE_not_in lebesgue_on_mono null_setsD2 null_sets_restrict_space order_refl)
qed

lemma
  shows sets_lborel[simp, measurable_cong]: "sets lborel = sets borel"
    and space_lborel[simp]: "space lborel = space borel"
    and measurable_lborel1[simp]: "measurable M lborel = measurable M borel"
    and measurable_lborel2[simp]: "measurable lborel M = measurable borel M"
  by (simp_all add: lborel_def)

lemma space_lebesgue_on [simp]: "space (lebesgue_on S) = S"
  by (simp add: space_restrict_space)

lemma sets_lebesgue_on_refl [iff]: "S  sets (lebesgue_on S)"
    by (metis inf_top.right_neutral sets.top space_borel space_completion space_lborel space_restrict_space)

lemma Compl_in_sets_lebesgue: "-A  sets lebesgue  A   sets lebesgue"
  by (metis Compl_eq_Diff_UNIV double_compl space_borel space_completion space_lborel Sigma_Algebra.sets.compl_sets)

lemma measurable_lebesgue_cong:
  assumes "x. x  S  f x = g x"
  shows "f  measurable (lebesgue_on S) M  g  measurable (lebesgue_on S) M"
  by (metis (mono_tags, lifting) IntD1 assms measurable_cong_simp space_restrict_space)

lemma lebesgue_on_UNIV_eq: "lebesgue_on UNIV = lebesgue"
  by (simp add: emeasure_restrict_space measure_eqI)

lemma integral_restrict_Int:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  assumes "S  sets lebesgue" "T  sets lebesgue"
  shows "integralL (lebesgue_on T) (λx. if x  S then f x else 0) = integralL (lebesgue_on (S  T)) f"
proof -
  have "(λx. indicat_real T x *R (if x  S then f x else 0)) = (λx. indicat_real (S  T) x *R f x)"
    by (force simp: indicator_def)
  then show ?thesis
    by (simp add: assms sets.Int Bochner_Integration.integral_restrict_space)
qed

lemma integral_restrict:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  assumes "S  T" "S  sets lebesgue" "T  sets lebesgue"
  shows "integralL (lebesgue_on T) (λx. if x  S then f x else 0) = integralL (lebesgue_on S) f"
  using integral_restrict_Int [of S T f] assms
  by (simp add: Int_absorb2)

lemma integral_restrict_UNIV:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  assumes "S  sets lebesgue"
  shows "integralL lebesgue (λx. if x  S then f x else 0) = integralL (lebesgue_on S) f"
  using integral_restrict_Int [of S UNIV f] assms
  by (simp add: lebesgue_on_UNIV_eq)

lemma integrable_lebesgue_on_empty [iff]:
  fixes f :: "'a::euclidean_space  'b::{second_countable_topology,banach}"
  shows "integrable (lebesgue_on {}) f"
  by (simp add: integrable_restrict_space)

lemma integral_lebesgue_on_empty [simp]:
  fixes f :: "'a::euclidean_space  'b::{second_countable_topology,banach}"
  shows "integralL (lebesgue_on {}) f = 0"
  by (simp add: Bochner_Integration.integral_empty)
lemma has_bochner_integral_restrict_space:
  fixes f :: "'a  'b::{banach, second_countable_topology}"
  assumes Ω: "Ω  space M  sets M"
  shows "has_bochner_integral (restrict_space M Ω) f i
      has_bochner_integral M (λx. indicator Ω x *R f x) i"
  by (simp add: integrable_restrict_space [OF assms] integral_restrict_space [OF assms] has_bochner_integral_iff)

lemma integrable_restrict_UNIV:
  fixes f :: "'a::euclidean_space  'b::{banach, second_countable_topology}"
  assumes S: "S  sets lebesgue"
  shows  "integrable lebesgue (λx. if x  S then f x else 0)  integrable (lebesgue_on S) f"
  using has_bochner_integral_restrict_space [of S lebesgue f] assms
  by (simp add: integrable.simps indicator_scaleR_eq_if)

lemma integral_mono_lebesgue_on_AE:
  fixes f::"_  real"
  assumes f: "integrable (lebesgue_on T) f"
    and gf: "AE x in (lebesgue_on S). g x  f x"
    and f0: "AE x in (lebesgue_on T). 0  f x"
    and "S  T" and S: "S  sets lebesgue" and T: "T  sets lebesgue"
  shows "(x. g x (lebesgue_on S))  (x. f x (lebesgue_on T))"
proof -
  have "(x. g x (lebesgue_on S)) = (x. (if x  S then g x else 0) lebesgue)"
    by (simp add: Lebesgue_Measure.integral_restrict_UNIV S)
  also have "  (x. (if x  T then f x else 0) lebesgue)"
  proof (rule Bochner_Integration.integral_mono_AE')
    show "integrable lebesgue (λx. if x  T then f x else 0)"
      by (simp add: integrable_restrict_UNIV T f)
    show "AE x in lebesgue. (if x  S then g x else 0)  (if x  T then f x else 0)"
      using assms by (auto simp: AE_restrict_space_iff)
    show "AE x in lebesgue. 0  (if x  T then f x else 0)"
      using f0 by (simp add: AE_restrict_space_iff T)
  qed
  also have " = (x. f x (lebesgue_on T))"
    using Lebesgue_Measure.integral_restrict_UNIV T by blast
  finally show ?thesis .
qed


subsection ‹Borel measurability›

lemma borel_measurable_if_I:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  assumes f: "f  borel_measurable (lebesgue_on S)" and S: "S  sets lebesgue"
  shows "(λx. if x  S then f x else 0)  borel_measurable lebesgue"
proof -
  have eq: "{x. x  S}  {x. f x  Y} = {x. x  S}  {x. f x  Y}  S" for Y
    by blast
  show ?thesis
  using f S
  apply (simp add: vimage_def in_borel_measurable_borel Ball_def)
  apply (elim all_forward imp_forward asm_rl)
  apply (simp only: Collect_conj_eq Collect_disj_eq imp_conv_disj eq)
  apply (auto simp: Compl_eq [symmetric] Compl_in_sets_lebesgue sets_restrict_space_iff)
  done
qed

lemma borel_measurable_if_D:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  assumes "(λx. if x  S then f x else 0)  borel_measurable lebesgue"
  shows "f  borel_measurable (lebesgue_on S)"
  using assms by (smt (verit) measurable_lebesgue_cong measurable_restrict_space1)

lemma borel_measurable_if:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  assumes "S  sets lebesgue"
  shows "(λx. if x  S then f x else 0)  borel_measurable lebesgue  f  borel_measurable (lebesgue_on S)"
  using assms borel_measurable_if_D borel_measurable_if_I by blast

lemma borel_measurable_if_lebesgue_on:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  assumes "S  sets lebesgue" "T  sets lebesgue" "S  T"
  shows "(λx. if x  S then f x else 0)  borel_measurable (lebesgue_on T)  f  borel_measurable (lebesgue_on S)"
    (is "?lhs = ?rhs")
proof
  assume ?lhs then show ?rhs
    using measurable_restrict_mono [OF _ S  T]
    by (subst measurable_lebesgue_cong [where g = "(λx. if x  S then f x else 0)"]) auto
next
  assume ?rhs then show ?lhs
    by (simp add: S  sets lebesgue borel_measurable_if_I measurable_restrict_space1)
qed

lemma borel_measurable_vimage_halfspace_component_lt:
     "f  borel_measurable (lebesgue_on S) 
      (a i. i  Basis  {x  S. f x  i < a}  sets (lebesgue_on S))"
  by (force simp add: space_restrict_space trans [OF borel_measurable_iff_halfspace_less])

lemma borel_measurable_vimage_halfspace_component_ge:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  shows "f  borel_measurable (lebesgue_on S) 
         (a i. i  Basis  {x  S. f x  i  a}  sets (lebesgue_on S))"
  by (force simp add: space_restrict_space trans [OF borel_measurable_iff_halfspace_ge])

lemma borel_measurable_vimage_halfspace_component_gt:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  shows "f  borel_measurable (lebesgue_on S) 
         (a i. i  Basis  {x  S. f x  i > a}  sets (lebesgue_on S))"
  by (force simp add: space_restrict_space trans [OF borel_measurable_iff_halfspace_greater])

lemma borel_measurable_vimage_halfspace_component_le:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  shows "f  borel_measurable (lebesgue_on S) 
         (a i. i  Basis  {x  S. f x  i  a}  sets (lebesgue_on S))"
  by (force simp add: space_restrict_space trans [OF borel_measurable_iff_halfspace_le])

lemma
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  shows borel_measurable_vimage_open_interval:
         "f  borel_measurable (lebesgue_on S) 
         (a b. {x  S. f x  box a b}  sets (lebesgue_on S))" (is ?thesis1)
   and borel_measurable_vimage_open:
         "f  borel_measurable (lebesgue_on S) 
         (T. open T  {x  S. f x  T}  sets (lebesgue_on S))" (is ?thesis2)
proof -
  have "{x  S. f x  box a b}  sets (lebesgue_on S)" if "f  borel_measurable (lebesgue_on S)" for a b
  proof -
    have "S = S  space lebesgue"
      by simp
    then have "S  (f -` box a b)  sets (lebesgue_on S)"
      by (metis (no_types) box_borel in_borel_measurable_borel inf_sup_aci(1) space_restrict_space that)
    then show ?thesis
      by (simp add: Collect_conj_eq vimage_def)
  qed
  moreover
  have "{x  S. f x  T}  sets (lebesgue_on S)"
       if T: "a b. {x  S. f x  box a b}  sets (lebesgue_on S)" "open T" for T
  proof -
    obtain 𝒟 where "countable 𝒟" and 𝒟: "X. X  𝒟  a b. X = box a b" "𝒟 = T"
      using open_countable_Union_open_box that open T by metis
    then have eq: "{x  S. f x  T} = (U  𝒟. {x  S. f x  U})"
      by blast
    have "{x  S. f x  U}  sets (lebesgue_on S)" if "U  𝒟" for U
      using that T 𝒟 by blast
    then show ?thesis
      by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF countable 𝒟])
  qed
  moreover
  have eq: "{x  S. f x  i < a} = {x  S. f x  {y. y  i < a}}" for i a
    by auto
  have "f  borel_measurable (lebesgue_on S)"
    if "T. open T  {x  S. f x  T}  sets (lebesgue_on S)"
    by (metis (no_types) eq borel_measurable_vimage_halfspace_component_lt open_halfspace_component_lt that)
  ultimately show "?thesis1" "?thesis2"
    by blast+
qed

lemma borel_measurable_vimage_closed:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  shows "f  borel_measurable (lebesgue_on S) 
         (T. closed T  {x  S. f x  T}  sets (lebesgue_on S))"
proof -
  have eq: "{x  S. f x  T} = S - (S  f -` (- T))" for T
    by auto
  show ?thesis
    unfolding borel_measurable_vimage_open eq
    by (metis Diff_Diff_Int closed_Compl diff_eq open_Compl sets.Diff sets_lebesgue_on_refl vimage_Compl)
qed

lemma borel_measurable_vimage_closed_interval:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  shows "f  borel_measurable (lebesgue_on S) 
         (a b. {x  S. f x  cbox a b}  sets (lebesgue_on S))"
        (is "?lhs = ?rhs")
proof
  assume ?lhs then show ?rhs
    using borel_measurable_vimage_closed by blast
next
  assume RHS: ?rhs
  have "{x  S. f x  T}  sets (lebesgue_on S)" if "open T" for T
  proof -
    obtain 𝒟 where "countable 𝒟" and 𝒟: "𝒟  Pow T" "X. X  𝒟  a b. X = cbox a b" "𝒟 = T"
      using open_countable_Union_open_cbox that open T by metis
    then have eq: "{x  S. f x  T} = (U  𝒟. {x  S. f x  U})"
      by blast
    have "{x  S. f x  U}  sets (lebesgue_on S)" if "U  𝒟" for U
      using that 𝒟 by (metis RHS)
    then show ?thesis
      by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF countable 𝒟])
  qed
  then show ?lhs
    by (simp add: borel_measurable_vimage_open)
qed

lemma borel_measurable_vimage_borel:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  shows "f  borel_measurable (lebesgue_on S) 
         (T. T  sets borel  {x  S. f x  T}  sets (lebesgue_on S))"
        (is "?lhs = ?rhs")
proof
  assume f: ?lhs
  then show ?rhs
    using measurable_sets [OF f]
      by (simp add: Collect_conj_eq inf_sup_aci(1) space_restrict_space vimage_def)
qed (simp add: borel_measurable_vimage_open_interval)

lemma lebesgue_measurable_vimage_borel:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  assumes "f  borel_measurable lebesgue" "T  sets borel"
  shows "{x. f x  T}  sets lebesgue"
  using assms borel_measurable_vimage_borel [of f UNIV] by auto

lemma borel_measurable_lebesgue_preimage_borel:
  fixes f :: "'a::euclidean_space  'b::euclidean_space"
  shows "f  borel_measurable lebesgue 
         (T. T  sets borel  {x. f x  T}  sets lebesgue)"
  by (smt (verit, best) Collect_cong UNIV_I borel_measurable_vimage_borel lebesgue_on_UNIV_eq)


subsection tag unimportant› ‹Measurability of continuous functions›

lemma continuous_imp_measurable_on_sets_lebesgue:
  assumes f: "continuous_on S f" and S: "S  sets lebesgue"
  shows "f  borel_measurable (lebesgue_on S)"
  by (metis borel_measurable_continuous_on_restrict borel_measurable_subalgebra f 
      lebesgue_on_UNIV_eq mono_restrict_space sets_completionI_sets sets_lborel space_borel 
      space_lebesgue_on space_restrict_space subsetI)

lemma id_borel_measurable_lebesgue [iff]: "id  borel_measurable lebesgue"
  by (simp add: measurable_completion)

lemma id_borel_measurable_lebesgue_on [iff]: "id  borel_measurable (lebesgue_on S)"
  by (simp add: measurable_completion measurable_restrict_space1)

context
begin

interpretation sigma_finite_measure "interval_measure (λx. x)"
  by (rule sigma_finite_interval_measure) auto
interpretation finite_product_sigma_finite "λ_. interval_measure (λx. x)" Basis
  proof qed simp

lemma lborel_eq_real: "lborel = interval_measure (λx. x)"
  unfolding lborel_def Basis_real_def
  using distr_id[of "interval_measure (λx. x)"]
  by (subst distr_component[symmetric])
     (simp_all add: distr_distr comp_def del: distr_id cong: distr_cong)

lemma lborel_eq: "lborel = distr (ΠM bBasis. lborel) borel (λf. bBasis. f b *R b)"
  by (subst lborel_def) (simp add: lborel_eq_real)

lemma nn_integral_lborel_prod:
  assumes [measurable]: "b. b  Basis  f b  borel_measurable borel"
  assumes nn[simp]: "b x. b  Basis  0  f b x"
  shows "(+x. (bBasis. f b (x  b)) lborel) = (bBasis. (+x. f b x lborel))"
  by (simp add: lborel_def nn_integral_distr product_nn_integral_prod
                product_nn_integral_singleton)

lemma emeasure_lborel_Icc[simp]:
  fixes l u :: real
  assumes [simp]: "l  u"
  shows "emeasure lborel {l .. u} = u - l"
  by (simp add: emeasure_interval_measure_Icc lborel_eq_real)

lemma emeasure_lborel_Icc_eq: "emeasure lborel {l .. u} = ennreal (if l  u then u - l else 0)"
  by simp

lemmatag important› emeasure_lborel_cbox[simp]:
  assumes [simp]: "b. b  Basis  l  b  u  b"
  shows "emeasure lborel (cbox l u) = (bBasis. (u - l)  b)"
proof -
  have "(λx. bBasis. indicator {lb .. ub} (x  b) :: ennreal) = indicator (cbox l u)"
    by (auto simp: fun_eq_iff cbox_def split: split_indicator)
  then have "emeasure lborel (cbox l u) = (+x. (bBasis. indicator {lb .. ub} (x  b)) lborel)"
    by simp
  also have " = (bBasis. (u - l)  b)"
    by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left)
  finally show ?thesis .
qed

lemma AE_lborel_singleton: "AE x in lborel::'a::euclidean_space measure. x  c"
  using SOME_Basis AE_discrete_difference [of "{c}" lborel] emeasure_lborel_cbox [of c c]
  by (auto simp add: power_0_left)

lemma emeasure_lborel_Ioo[simp]:
  assumes [simp]: "l  u"
  shows "emeasure lborel {l <..< u} = ennreal (u - l)"
proof -
  have "emeasure lborel {l <..< u} = emeasure lborel {l .. u}"
    using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto
  then show ?thesis
    by simp
qed

lemma emeasure_lborel_Ioc[simp]:
  assumes [simp]: "l  u"
  shows "emeasure lborel {l <.. u} = ennreal (u - l)"
  by (simp add: emeasure_interval_measure_Ioc lborel_eq_real)

lemma emeasure_lborel_Ico[simp]:
  assumes [simp]: "l  u"
  shows "emeasure lborel {l ..< u} = ennreal (u - l)"
proof -
  have "emeasure lborel {l ..< u} = emeasure lborel {l .. u}"
    using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto
  then show ?thesis
    by simp
qed

lemma emeasure_lborel_box[simp]:
  assumes [simp]: "b. b  Basis  l  b  u  b"
  shows "emeasure lborel (box l u) = (bBasis. (u - l)  b)"
proof -
  have "(λx. bBasis. indicator {lb <..< ub} (x  b) :: ennreal) = indicator (box l u)"
    by (auto simp: fun_eq_iff box_def split: split_indicator)
  then have "emeasure lborel (box l u) = (+x. (bBasis. indicator {lb <..< ub} (x  b)) lborel)"
    by simp
  also have " = (bBasis. (u - l)  b)"
    by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left)
  finally show ?thesis .
qed

lemma emeasure_lborel_cbox_eq:
  "emeasure lborel (cbox l u) = (if bBasis. l  b  u  b then bBasis. (u - l)  b else 0)"
  using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le)

lemma emeasure_lborel_box_eq:
  "emeasure lborel (box l u) = (if bBasis. l  b  u  b then bBasis. (u - l)  b else 0)"
  using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force

lemma emeasure_lborel_singleton[simp]: "emeasure lborel {x} = 0"
  using emeasure_lborel_cbox[of x x] nonempty_Basis
  by (auto simp del: emeasure_lborel_cbox nonempty_Basis)

lemma emeasure_lborel_cbox_finite: "emeasure lborel (cbox a b) < "
  by (auto simp: emeasure_lborel_cbox_eq)

lemma emeasure_lborel_box_finite: "emeasure lborel (box a b) < "
  by (auto simp: emeasure_lborel_box_eq)

lemma emeasure_lborel_ball_finite: "emeasure lborel (ball c r) < "
  by (metis bounded_ball bounded_subset_cbox_symmetric cbox_borel emeasure_lborel_cbox_finite
      emeasure_mono order_le_less_trans sets_lborel)

lemma emeasure_lborel_cball_finite: "emeasure lborel (cball c r) < "
  by (metis bounded_cball bounded_subset_cbox_symmetric cbox_borel emeasure_lborel_cbox_finite 
            emeasure_mono order_le_less_trans sets_lborel)

lemma fmeasurable_cbox [iff]: "cbox a b  fmeasurable lborel"
  and fmeasurable_box [iff]: "box a b  fmeasurable lborel"
  by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq)

lemma
  fixes l u :: real
  assumes [simp]: "l  u"
  shows measure_lborel_Icc[simp]: "measure lborel {l .. u} = u - l"
    and measure_lborel_Ico[simp]: "measure lborel {l ..< u} = u - l"
    and measure_lborel_Ioc[simp]: "measure lborel {l <.. u} = u - l"
    and measure_lborel_Ioo[simp]: "measure lborel {l <..< u} = u - l"
  by (simp_all add: measure_def)

lemma
  assumes [simp]: "b. b  Basis  l  b  u  b"
  shows measure_lborel_box[simp]: "measure lborel (box l u) = (bBasis. (u - l)  b)"
    and measure_lborel_cbox[simp]: "measure lborel (cbox l u) = (bBasis. (u - l)  b)"
  by (simp_all add: measure_def inner_diff_left prod_nonneg)

lemma measure_lborel_cbox_eq:
  "measure lborel (cbox l u) = (if bBasis. l  b  u  b then bBasis. (u - l)  b else 0)"
  using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le)

lemma measure_lborel_box_eq:
  "measure lborel (box l u) = (if bBasis. l  b  u  b then bBasis. (u - l)  b else 0)"
  using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force

lemma measure_lborel_singleton[simp]: "measure lborel {x} = 0"
  by (simp add: measure_def)

lemma sigma_finite_lborel: "sigma_finite_measure lborel"
proof
  show "A::'a set set. countable A  A  sets lborel  A = space lborel  (aA. emeasure lborel a  )"
    by (intro exI[of _ "range (λn::nat. box (- real n *R One) (real n *R One))"])
       (auto simp: emeasure_lborel_cbox_eq UN_box_eq_UNIV)
qed

end

lemma emeasure_lborel_UNIV [simp]: "emeasure lborel (UNIV::'a::euclidean_space set) = "
proof -
  { fix n::nat
    let ?Ba = "Basis :: 'a set"
    have "real n  (2::real) ^ card ?Ba * real n"
      by (simp add: mult_le_cancel_right1)
    also
    have "...  (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba"
      apply (rule mult_left_mono)
      apply (metis DIM_positive One_nat_def less_eq_Suc_le less_imp_le of_nat_le_iff of_nat_power self_le_power zero_less_Suc)
      apply (simp)
      done
    finally have "real n  (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba" .
  } note [intro!] = this
  show ?thesis
    unfolding UN_box_eq_UNIV[symmetric]
    apply (subst SUP_emeasure_incseq[symmetric])
    apply (auto simp: incseq_def subset_box inner_add_left
      simp del: Sup_eq_top_iff SUP_eq_top_iff
      intro!: ennreal_SUP_eq_top)
    done
qed

lemma emeasure_lborel_countable:
  fixes A :: "'a::euclidean_space set"
  assumes "countable A"
  shows "emeasure lborel A = 0"
proof -
  have "A  (i. {from_nat_into A i})" using from_nat_into_surj assms by force
  then have "emeasure lborel A  emeasure lborel (i. {from_nat_into A i})"
    by (intro emeasure_mono) auto
  also have "emeasure lborel (i. {from_nat_into A i}) = 0"
    by (rule emeasure_UN_eq_0) auto
  finally show ?thesis
    by simp
qed

lemma countable_imp_null_set_lborel: "countable A  A  null_sets lborel"
  by (simp add: null_sets_def emeasure_lborel_countable sets.countable)

lemma finite_imp_null_set_lborel: "finite A  A  null_sets lborel"
  by (intro countable_imp_null_set_lborel countable_finite)

lemma insert_null_sets_iff [simp]: "insert a N  null_sets lebesgue  N  null_sets lebesgue"     
  by (meson completion.complete2 finite.simps finite_imp_null_set_lborel null_sets.insert_in_sets 
      null_sets_completionI subset_insertI)

lemma insert_null_sets_lebesgue_on_iff [simp]:
  assumes "a  S" "S  sets lebesgue"
  shows "insert a N  null_sets (lebesgue_on S)  N  null_sets (lebesgue_on S)"     
  by (simp add: assms null_sets_restrict_space)

lemma lborel_neq_count_space[simp]: 
  fixes A :: "('a::ordered_euclidean_space) set"
  shows "lborel  count_space A"
  by (metis finite.simps finite_imp_null_set_lborel insert_not_empty null_sets_count_space singleton_iff)

lemma mem_closed_if_AE_lebesgue_open:
  assumes "open S" "closed C"
  assumes "AE x  S in lebesgue. x  C"
  assumes "x  S"
  shows "x  C"
proof (rule ccontr)
  assume xC: "x  C"
  with openE[of "S - C"] assms
  obtain e where e: "0 < e" "ball x e  S - C"
    by blast
  then obtain a b where box: "x  box a b" "box a b  S - C"
    by (metis rational_boxes order_trans)
  then have "0 < emeasure lebesgue (box a b)"
    by (auto simp: emeasure_lborel_box_eq mem_box algebra_simps intro!: prod_pos)
  also have "  emeasure lebesgue (S - C)"
    using assms box
    by (auto intro!: emeasure_mono)
  also have " = 0"
    using assms
    by (auto simp: eventually_ae_filter completion.complete2 set_diff_eq null_setsD1)
  finally show False by simp
qed

lemma mem_closed_if_AE_lebesgue: "closed C  (AE x in lebesgue. x  C)  x  C"
  using mem_closed_if_AE_lebesgue_open[OF open_UNIV] by simp


subsection ‹Affine transformation on the Lebesgue-Borel›

lemmatag important› lborel_eqI:
  fixes M :: "'a::euclidean_space measure"
  assumes emeasure_eq: "l u. (b. b  Basis  l  b  u  b)  emeasure M (box l u) = (bBasis. (u - l)  b)"
  assumes sets_eq: "sets M = sets borel"
  shows "lborel = M"
proof (rule measure_eqI_generator_eq)
  let ?E = "range (λ(a, b). box a b::'a set)"
  show "Int_stable ?E"
    by (auto simp: Int_stable_def box_Int_box)

  show "?E  Pow UNIV" "sets lborel = sigma_sets UNIV ?E" "sets M = sigma_sets UNIV ?E"
    by (simp_all add: borel_eq_box sets_eq)

  let ?A = "λn::nat. box (- (real n *R One)) (real n *R One) :: 'a set"
  show "range ?A  ?E" "(i. ?A i) = UNIV"
    unfolding UN_box_eq_UNIV by auto
  show "emeasure lborel (?A i)  " for i by auto 
  show "emeasure lborel X = emeasure M X" if "X  ?E" for X
    using that box_eq_empty(1) by (fastforce simp: emeasure_eq emeasure_lborel_box_eq)
qed

lemmatag important› lborel_affine_euclidean:
  fixes c :: "'a::euclidean_space  real" and t
  defines "T x  t + (jBasis. (c j * (x  j)) *R j)"
  assumes c: "j. j  Basis  c j  0"
  shows "lborel = density (distr lborel borel T) (λ_. (jBasis. ¦c j¦))" (is "_ = ?D")
proof (rule lborel_eqI)
  let ?B = "Basis :: 'a set"
  fix l u assume le: "b. b  ?B  l  b  u  b"
  have [measurable]: "T  borel M borel"
    by (simp add: T_def[abs_def])
  have eq: "T -` box l u = box
    (jBasis. (((if 0 < c j then l - t else u - t)  j) / c j) *R j)
    (jBasis. (((if 0 < c j then u - t else l - t)  j) / c j) *R j)"
    using c by (auto simp: box_def T_def field_simps inner_simps divide_less_eq)
  with le c show "emeasure ?D (box l u) = (b?B. (u - l)  b)"
    by (auto simp: emeasure_density emeasure_distr nn_integral_multc emeasure_lborel_box_eq inner_simps
                   field_split_simps ennreal_mult'[symmetric] prod_nonneg prod.distrib[symmetric]
             intro!: prod.cong)
qed simp

lemma lborel_affine:
  fixes t :: "'a::euclidean_space"
  shows "c  0  lborel = density (distr lborel borel (λx. t + c *R x)) (λ_. ¦c¦^DIM('a))"
  using lborel_affine_euclidean[where c="λ_::'a. c" and t=t]
  unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation prod_constant by simp

lemma lborel_real_affine:
  "c  0  lborel = density (distr lborel borel (λx. t + c * x)) (λ_. ennreal (abs c))"
  using lborel_affine[of c t] by simp

lemma AE_borel_affine:
  fixes P :: "real  bool"
  shows "c  0  Measurable.pred borel P  AE x in lborel. P x  AE x in lborel. P (t + c * x)"
  by (subst lborel_real_affine[where t="- t / c" and c="1 / c"])
     (simp_all add: AE_density AE_distr_iff field_simps)

lemma nn_integral_real_affine:
  fixes c :: real assumes [measurable]: "f  borel_measurable borel" and c: "c  0"
  shows "(+x. f x lborel) = ¦c¦ * (+x. f (t + c * x) lborel)"
  by (subst lborel_real_affine[OF c, of t])
     (simp add: nn_integral_density nn_integral_distr nn_integral_cmult)

lemma lborel_integrable_real_affine:
  fixes f :: "real  'a :: {banach, second_countable_topology}"
  assumes f: "integrable lborel f"
  shows "c  0  integrable lborel (λx. f (t + c * x))"
  using f f[THEN borel_measurable_integrable] unfolding integrable_iff_bounded
  by (subst (asm) nn_integral_real_affine[where c=c and t=t]) (auto simp: ennreal_mult_less_top)

lemma lborel_integrable_real_affine_iff:
  fixes f :: "real  'a :: {banach, second_countable_topology}"
  shows "c  0  integrable lborel (λx. f (t + c * x))  integrable lborel f"
  using
    lborel_integrable_real_affine[of f c t]
    lborel_integrable_real_affine[of "λx. f (t + c * x)" "1/c" "-t/c"]
  by (auto simp add: field_simps)

lemmatag important› lborel_integral_real_affine:
  fixes f :: "real  'a :: {banach, second_countable_topology}" and c :: real
  assumes c: "c  0" shows "(x. f x  lborel) = ¦c¦ *R (x. f (t + c * x) lborel)"
proof cases
  assume f[measurable]: "integrable lborel f" then show ?thesis
    using c f f[THEN borel_measurable_integrable] f[THEN lborel_integrable_real_affine, of c t]
    by (subst lborel_real_affine[OF c, of t])
       (simp add: integral_density integral_distr)
next
  assume "¬ integrable lborel f" with c show ?thesis
    by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq)
qed

lemma
  fixes c :: "'a::euclidean_space  real" and t
  assumes c: "j. j  Basis  c j  0"
  defines "T == (λx. t + (jBasis. (c j * (x  j)) *R j))"
  shows lebesgue_affine_euclidean: "lebesgue = density (distr lebesgue lebesgue T) (λ_. (jBasis. ¦c j¦))" (is "_ = ?D")
    and lebesgue_affine_measurable: "T  lebesgue M lebesgue"
proof -
  have T_borel[measurable]: "T  borel M borel"
    by (auto simp: T_def[abs_def])
  { fix A :: "'a set" assume A: "A  sets borel"
    then have "emeasure lborel A = 0  emeasure (density (distr lborel borel T) (λ_. (jBasis. ¦c j¦))) A = 0"
      unfolding T_def using c by (subst lborel_affine_euclidean[symmetric]) auto
    also have "  emeasure (distr lebesgue lborel T) A = 0"
      using A c by (simp add: distr_completion emeasure_density nn_integral_cmult prod_nonneg cong: distr_cong)
    finally have "emeasure lborel A = 0  emeasure (distr lebesgue lborel T) A = 0" . }
  then have eq: "null_sets lborel = null_sets (distr lebesgue lborel T)"
    by (auto simp: null_sets_def)

  show "T  lebesgue M lebesgue"
    by (simp add: completion.measurable_completion2 eq measurable_completion)

  have "lebesgue = completion (density (distr lborel borel T) (λ_. (jBasis. ¦c j¦)))"
    using c by (subst lborel_affine_euclidean[of c t]) (simp_all add: T_def[abs_def])
  also have " = density (completion (distr lebesgue lborel T)) (λ_. (jBasis. ¦c j¦))"
    using c by (auto intro!: always_eventually prod_pos completion_density_eq simp: distr_completion cong: distr_cong)
  also have " = density (distr lebesgue lebesgue T) (λ_. (jBasis. ¦c j¦))"
    by (subst completion.completion_distr_eq) (auto simp: eq measurable_completion)
  finally show "lebesgue = density (distr lebesgue lebesgue T) (λ_. (jBasis. ¦c j¦))" .
qed

corollary lebesgue_real_affine:
  "c  0  lebesgue = density (distr lebesgue lebesgue (λx. t + c * x)) (λ_. ennreal (abs c))"
    using lebesgue_affine_euclidean [where c= "λx::real. c"] by simp

lemma nn_integral_real_affine_lebesgue:
  fixes c :: real assumes f[measurable]: "f  borel_measurable lebesgue" and c: "c  0"
  shows "(+x. f x lebesgue) = ennreal¦c¦ * (+x. f(t + c * x) lebesgue)"
proof -
  have "(+x. f x lebesgue) = (+x. f x density (distr lebesgue lebesgue (λx. t + c * x)) (λx. ennreal ¦c¦))"
    using lebesgue_real_affine c by auto
  also have " = + x. ennreal ¦c¦ * f x distr lebesgue lebesgue (λx. t + c * x)"
    by (subst nn_integral_density) auto
  also have " = ennreal ¦c¦ * integralN (distr lebesgue lebesgue (λx. t + c * x)) f"
    using f measurable_distr_eq1 nn_integral_cmult by blast
  also have " = ¦c¦ * (+x. f(t + c * x) lebesgue)"
    using lebesgue_affine_measurable[where c= "λx::real. c"]
    by (subst nn_integral_distr) (force+)
  finally show ?thesis .
qed

lemma lebesgue_measurable_scaling[measurable]: "(*R) x  lebesgue M lebesgue"
proof cases
  assume "x = 0" 
  then have "(*R) x = (λx. 0::'a)"
    by (auto simp: fun_eq_iff)
  then show ?thesis by auto
next
  assume "x  0" then show ?thesis
    using lebesgue_affine_measurable[of "λ_. x" 0]
    unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation
    by (auto simp add: ac_simps)
qed

lemma
  fixes m :: real and δ :: "'a::euclidean_space"
  defines "T r d x  r *R x + d"
  shows emeasure_lebesgue_affine: "emeasure lebesgue (T m δ ` S) = ¦m¦ ^ DIM('a) * emeasure lebesgue S" (is ?e)
    and measure_lebesgue_affine: "measure lebesgue (T m δ ` S) = ¦m¦ ^ DIM('a) * measure lebesgue S" (is ?m)
proof -
  show ?e
  proof cases
    assume "m = 0" then show ?thesis
      by (simp add: image_constant_conv T_def[abs_def])
  next
    let ?T = "T m δ" and ?T' = "T (1 / m) (- ((1/m) *R δ))"
    assume "m  0"
    then have s_comp_s: "?T'  ?T = id" "?T  ?T' = id"
      by (auto simp: T_def[abs_def] fun_eq_iff scaleR_add_right scaleR_diff_right)
    then have "inv ?T' = ?T" "bij ?T'"
      by (auto intro: inv_unique_comp o_bij)
    then have eq: "T m δ ` S = T (1 / m) ((-1/m) *R δ) -` S  space lebesgue"
      using bij_vimage_eq_inv_image[OF bij ?T', of S] by auto

    have trans_eq_T: "(λx. δ + (jBasis. (m * (x  j)) *R j)) = T m δ" for m δ
      unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_sum_right[symmetric]
      by (auto simp add: euclidean_representation ac_simps)

    have T[measurable]: "T r d  lebesgue M lebesgue" for r d
      using lebesgue_affine_measurable[of "λ_. r" d]
      by (cases "r = 0") (auto simp: trans_eq_T T_def[abs_def])

    show ?thesis
    proof cases
      assume "S  sets lebesgue" with m  0 show ?thesis
        unfolding eq
        apply (subst lebesgue_affine_euclidean[of "λ_. m" δ])
        apply (simp_all add: emeasure_density trans_eq_T nn_integral_cmult emeasure_distr
                        del: space_completion emeasure_completion)
        apply (simp add: vimage_comp s_comp_s)
        done
    next
      assume "S  sets lebesgue"
      moreover have "?T ` S  sets lebesgue"
      proof
        assume "?T ` S  sets lebesgue"
        then have "?T -` (?T ` S)  space lebesgue  sets lebesgue"
          by (rule measurable_sets[OF T])
        also have "?T -` (?T ` S)  space lebesgue = S"
          by (simp add: vimage_comp s_comp_s eq)
        finally show False using S  sets lebesgue by auto
      qed
      ultimately show ?thesis
        by (simp add: emeasure_notin_sets)
    qed
  qed
  show ?m
    unfolding measure_def ?e by (simp add: enn2real_mult prod_nonneg)
qed

lemma lebesgue_real_scale:
  assumes "c  0"
  shows   "lebesgue = density (distr lebesgue lebesgue (λx. c * x)) (λx. ennreal ¦c¦)"
  using assms by (subst lebesgue_affine_euclidean[of "λ_. c" 0]) simp_all

lemma lborel_has_bochner_integral_real_affine_iff:
  fixes x :: "'a :: {banach, second_countable_topology}"
  shows "c  0 
    has_bochner_integral lborel f x 
    has_bochner_integral lborel (λx. f (t + c * x)) (x /R ¦c¦)"
  unfolding has_bochner_integral_iff lborel_integrable_real_affine_iff
  by (simp_all add: lborel_integral_real_affine[symmetric] divideR_right cong: conj_cong)

lemma lborel_distr_uminus: "distr lborel borel uminus = (lborel :: real measure)"
  by (subst lborel_real_affine[of "-1" 0])
     (auto simp: density_1 one_ennreal_def[symmetric])

lemma lborel_distr_mult:
  assumes "(c::real)  0"
  shows "distr lborel borel ((*) c) = density lborel (λ_. inverse ¦c¦)"
proof-
  have "distr lborel borel ((*) c) = distr lborel lborel ((*) c)" by (simp cong: distr_cong)
  also from assms have "... = density lborel (λ_. inverse ¦c¦)"
    by (subst lborel_real_affine[of "inverse c" 0]) (auto simp: o_def distr_density_distr)
  finally show ?thesis .
qed

lemma lborel_distr_mult':
  assumes "(c::real)  0"
  shows "lborel = density (distr lborel borel ((*) c)) (λ_. ¦c¦)"
proof-
  have "lborel = density lborel (λ_. 1)" by (rule density_1[symmetric])
  also from assms have "(λ_. 1 :: ennreal) = (λ_. inverse ¦c¦ * ¦c¦)" by (intro ext) simp
  also have "density lborel ... = density (density lborel (λ_. inverse ¦c¦)) (λ_. ¦c¦)"
    by (subst density_density_eq) (auto simp: ennreal_mult)
  also from assms have "density lborel (λ_. inverse ¦c¦) = distr lborel borel ((*) c)"
    by (rule lborel_distr_mult[symmetric])
  finally show ?thesis .
qed

lemma lborel_distr_plus:
  fixes c :: "'a::euclidean_space"
  shows "distr lborel borel ((+) c) = lborel"
by (subst lborel_affine[of 1 c], auto simp: density_1)

interpretation lborel: sigma_finite_measure lborel
  by (rule sigma_finite_lborel)

interpretation lborel_pair: pair_sigma_finite lborel lborel ..

lemmatag important› lborel_prod:
  "lborel M lborel = (lborel :: ('a::euclidean_space × 'b::euclidean_space) measure)"
proof (rule lborel_eqI[symmetric], clarify)
  fix la ua :: 'a and lb ub :: 'b
  assume lu: "a b. (a, b)  Basis  (la, lb)  (a, b)  (ua, ub)  (a, b)"
  have [simp]:
    "b. b  Basis  la  b  ua  b"
    "b. b  Basis  lb  b  ub  b"
    "inj_on (λu. (u, 0)) Basis" "inj_on (λu. (0, u)) Basis"
    "(λu. (u, 0)) ` Basis  (λu. (0, u)) ` Basis = {}"
    "box (la, lb) (ua, ub) = box la ua × box lb ub"
    using lu[of _ 0] lu[of 0] by (auto intro!: inj_onI simp add: Basis_prod_def ball_Un box_def)
  show "emeasure (lborel M lborel) (box (la, lb) (ua, ub)) =
      ennreal (prod ((∙) ((ua, ub) - (la, lb))) Basis)"
    by (simp add: lborel.emeasure_pair_measure_Times Basis_prod_def prod.union_disjoint
                  prod.reindex ennreal_mult inner_diff_left prod_nonneg)
qed (simp add: borel_prod[symmetric])

(* FIXME: conversion in measurable prover *)
lemma lborelD_Collect[measurable (raw)]: "{xspace borel. P x}  sets borel  {xspace lborel. P x}  sets lborel" 
  by simp

lemma lborelD[measurable (raw)]: "A  sets borel  A  sets lborel"
  by simp

lemma emeasure_bounded_finite:
  assumes "bounded A" shows "emeasure lborel A < "
proof -
  obtain a b where "A  cbox a b"
    by (meson bounded_subset_cbox_symmetric bounded A)
  then have "emeasure lborel A  emeasure lborel (cbox a b)"
    by (intro emeasure_mono) auto
  then show ?thesis
    by (auto simp: emeasure_lborel_cbox_eq prod_nonneg less_top[symmetric] top_unique split: if_split_asm)
qed

lemma emeasure_compact_finite: "compact A  emeasure lborel A < "
  using emeasure_bounded_finite[of A] by (auto intro: compact_imp_bounded)

lemma borel_integrable_compact:
  fixes f :: "'a::euclidean_space  'b::{banach, second_countable_topology}"
  assumes "compact S" "continuous_on S f"
  shows "integrable lborel (λx. indicator S x *R f x)"
proof cases
  assume "S  {}"
  have "continuous_on S (λx. norm (f x))"
    using assms by (intro continuous_intros)
  from continuous_attains_sup[OF compact S S  {} this]
  obtain M where M: "x. x  S  norm (f x)  M"
    by auto
  show ?thesis
  proof (rule integrable_bound)
    show "integrable lborel (λx. indicator S x * M)"
      using assms by (auto intro!: emeasure_compact_finite borel_compact integrable_mult_left)
    show "(λx. indicator S x *R f x)  borel_measurable lborel"
      using assms by (auto intro!: borel_measurable_continuous_on_indicator borel_compact)
    show "AE x in lborel. norm (indicator S x *R f x)  norm (indicator S x * M)"
      by (auto split: split_indicator simp: abs_real_def dest!: M)
  qed
qed simp

lemma borel_integrable_atLeastAtMost:
  fixes f :: "real  real"
  assumes f: "x. a  x  x  b  isCont f x"
  shows "integrable lborel (λx. f x * indicator {a .. b} x)" (is "integrable _ ?f")
proof -
  have "integrable lborel (λx. indicator {a .. b} x *R f x)"
  proof (rule borel_integrable_compact)
    from f show "continuous_on {a..b} f"
      by (auto intro: continuous_at_imp_continuous_on)
  qed simp
  then show ?thesis
    by (auto simp: mult.commute)
qed

subsection ‹Lebesgue measurable sets›

abbreviationtag important› lmeasurable :: "'a::euclidean_space set set"
where
  "lmeasurable  fmeasurable lebesgue"

lemma not_measurable_UNIV [simp]: "UNIV  lmeasurable"
  by (simp add: fmeasurable_def)

lemmatag important› lmeasurable_iff_integrable:
  "S  lmeasurable  integrable lebesgue (indicator S :: 'a::euclidean_space  real)"
  by (auto simp: fmeasurable_def integrable_iff_bounded borel_measurable_indicator_iff ennreal_indicator)

lemma lmeasurable_cbox [iff]: "cbox a b  lmeasurable"
  and lmeasurable_box [iff]: "box a b  lmeasurable"
  by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq)

lemma
  fixes a::real
  shows lmeasurable_interval [iff]: "{a..b}  lmeasurable" "{a<..<b}  lmeasurable"
  by (metis box_real lmeasurable_box lmeasurable_cbox)+

lemma fmeasurable_compact: "compact S  S  fmeasurable lborel"
  using emeasure_compact_finite[of S] by (intro fmeasurableI) (auto simp: borel_compact)

lemma lmeasurable_compact: "compact S  S  lmeasurable"
  using fmeasurable_compact by (force simp: fmeasurable_def)

lemma measure_frontier:
   "bounded S  measure lebesgue (frontier S) = measure lebesgue (closure S) - measure lebesgue (interior S)"
  using closure_subset interior_subset
  by (auto simp: frontier_def fmeasurable_compact intro!: measurable_measure_Diff)

lemma lmeasurable_closure:
   "bounded S  closure S  lmeasurable"
  by (simp add: lmeasurable_compact)

lemma lmeasurable_frontier:
   "bounded S  frontier S  lmeasurable"
  by (simp add: compact_frontier_bounded lmeasurable_compact)

lemma lmeasurable_open: "bounded S  open S  S  lmeasurable"
  using emeasure_bounded_finite[of S] by (intro fmeasurableI) (auto simp: borel_open)

lemma lmeasurable_ball [simp]: "ball a r  lmeasurable"
  by (simp add: lmeasurable_open)

lemma lmeasurable_cball [simp]: "cball a r  lmeasurable"
  by (simp add: lmeasurable_compact)

lemma lmeasurable_interior: "bounded S  interior S  lmeasurable"
  by (simp add: bounded_interior lmeasurable_open)

lemma null_sets_cbox_Diff_box: "cbox a b - box a b  null_sets lborel"
  by (simp add: emeasure_Diff emeasure_lborel_box_eq emeasure_lborel_cbox_eq null_setsI subset_box)

lemma bounded_set_imp_lmeasurable:
  assumes "bounded S" "S  sets lebesgue" shows "S  lmeasurable"
  by (metis assms bounded_Un emeasure_bounded_finite emeasure_completion fmeasurableI main_part_null_part_Un)

lemma finite_measure_lebesgue_on: "S  lmeasurable  finite_measure (lebesgue_on S)"
  by (auto simp: finite_measureI fmeasurable_def emeasure_restrict_space)

lemma integrable_const_ivl [iff]:
  fixes a::"'a::ordered_euclidean_space"
  shows "integrable (lebesgue_on {a..b}) (λx. c)"
  by (metis cbox_interval finite_measure.integrable_const finite_measure_lebesgue_on lmeasurable_cbox)

subsectiontag unimportant›‹Translation preserves Lebesgue measure›

lemma sigma_sets_image:
  assumes S: "S  sigma_sets Ω M" and "M  Pow Ω" "f ` Ω = Ω" "inj_on f Ω"
    and M: "y. y  M  f ` y  M"
  shows "(f ` S)  sigma_sets Ω M"
  using S
proof (induct S rule: sigma_sets.induct)
  case (Basic a) then show ?case
    by (simp add: M)
next
  case Empty then show ?case
    by (simp add: sigma_sets.Empty)
next
  case (Compl a)
  with assms show ?case
    by (metis inj_on_image_set_diff sigma_sets.Compl sigma_sets_into_sp)
next
  case (Union a) then show ?case
    by (metis image_UN sigma_sets.simps)
qed

lemma null_sets_translation:
  assumes "N  null_sets lborel" shows "{x. x - a  N}  null_sets lborel"
proof -
  have [simp]: "(λx. x + a) ` N = {x. x - a  N}"
    by force
  show ?thesis
    using assms emeasure_lebesgue_affine [of 1 a N] by (auto simp: null_sets_def)
qed

lemma lebesgue_sets_translation:
  fixes f :: "'a  'a::euclidean_space"
  assumes S: "S  sets lebesgue"
  shows "((λx. a + x) ` S)  sets lebesgue"
proof -
  have im_eq: "(+) a ` A = {x. x - a  A}" for A
    by force
  have "((λx. a + x) ` S) = ((λx. -a + x) -` S)  (space lebesgue)"
    using image_iff by fastforce
  also have "  sets lebesgue"
  proof (rule measurable_sets [OF measurableI assms])
    fix A :: "'b set"
    assume A: "A  sets lebesgue"
    have vim_eq: "(λx. x - a) -` A = (+) a ` A" for A
      by force
    have "s n N'. (+) a ` (S  N) = s  n  s  sets borel  N'  null_sets lborel  n  N'"
      if "S  sets borel" and "N'  null_sets lborel" and "N  N'" for S N N'
    proof (intro exI conjI)
      show "(+) a ` (S  N) = (λx. a + x) ` S  (λx. a + x) ` N"
        by auto
      show "(λx. a + x) ` N'  null_sets lborel"
        using that by (auto simp: null_sets_translation im_eq)
    qed (use that im_eq in auto)
    with A have "(λx. x - a) -` A  sets lebesgue"
      by (force simp: vim_eq completion_def intro!: sigma_sets_image)
    then show "(+) (- a) -` A  space lebesgue  sets lebesgue"
      by (auto simp: vimage_def im_eq)
  qed auto
  finally show ?thesis .
qed

lemma measurable_translation:
   "S  lmeasurable  ((+) a ` S)  lmeasurable"
  using emeasure_lebesgue_affine [of 1 a S]
  by (smt (verit, best) add.commute ennreal_1 fmeasurable_def image_cong lambda_one 
          lebesgue_sets_translation mem_Collect_eq power_one scaleR_one)

lemma measurable_translation_subtract:
   "S  lmeasurable  ((λx. x - a) ` S)  lmeasurable"
  using measurable_translation [of S "- a"] by (simp cong: image_cong_simp)

lemma measure_translation:
  "measure lebesgue ((+) a ` S) = measure lebesgue S"
  using measure_lebesgue_affine [of 1 a S] by (simp add: ac_simps cong: image_cong_simp)

lemma measure_translation_subtract:
  "measure lebesgue ((λx. x - a) ` S) = measure lebesgue S"
  using measure_translation [of "- a"] by (simp cong: image_cong_simp)


subsection ‹A nice lemma for negligibility proofs›

lemma summable_iff_suminf_neq_top: "(n. f n  0)  ¬ summable f  (i. ennreal (f i)) = top"
  by (metis summable_suminf_not_top)

propositiontag important› starlike_negligible_bounded_gmeasurable:
  fixes S :: "'a :: euclidean_space set"
  assumes S: "S  sets lebesgue" and "bounded S"
      and eq1: "c x. (c *R x)  S; 0  c; x  S  c = 1"
    shows "S  null_sets lebesgue"
proof -
  obtain M where "0 < M" "S  ball 0 M"
    using bounded S by (auto dest: bounded_subset_ballD)

  let ?f = "λn. root DIM('a) (Suc n)"

  have "?f n *R x  S  x  (*R) (1 / ?f n) ` S" for x n
    by (rule image_eqI[of _ _ "?f n *R x"]) auto
  then have vimage_eq_image: "(*R) (?f n) -` S = (*R) (1 / ?f n) ` S" for n
    by auto

  have eq: "(1 / ?f n) ^ DIM('a) = 1 / Suc n" for n
    by (simp add: field_simps)

  { fix n x assume x: "root DIM('a) (1 + real n) *R x  S"
    have "1 * norm x  root DIM('a) (1 + real n) * norm x"
      by (rule mult_mono) auto
    also have " < M"
      using x S  ball 0 M by auto
    finally have "norm x < M" by simp }
  note less_M = this

  have "(n. ennreal (1 / Suc n)) = top"
    using not_summable_harmonic[where 'a=real] summable_Suc_iff[where f="λn. 1 / (real n)"]
    by (intro summable_iff_suminf_neq_top) (auto simp add: inverse_eq_divide)
  then have "top * emeasure lebesgue S = (n. (1 / ?f n)^DIM('a) * emeasure lebesgue S)"
    unfolding ennreal_suminf_multc eq by simp
  also have " = (n. emeasure lebesgue ((*R) (?f n) -` S))"
    unfolding vimage_eq_image using emeasure_lebesgue_affine[of "1 / ?f n" 0 S for n] by simp
  also have " = emeasure lebesgue (n. (*R) (?f n) -` S)"
  proof (intro suminf_emeasure)
    show "disjoint_family (λn. (*R) (?f n) -` S)"
      unfolding disjoint_family_on_def
    proof safe
      fix m n :: nat and x assume "m  n" "?f m *R x  S" "?f n *R x  S"
      with eq1[of "?f m / ?f n" "?f n *R x"] show "x  {}"
        by auto
    qed
    have "(*R) (?f i) -` S  sets lebesgue" for i
      using measurable_sets[OF lebesgue_measurable_scaling[of "?f i"] S] by auto
    then show "range (λi. (*R) (?f i) -` S)  sets lebesgue"
      by auto
  qed
  also have "  emeasure lebesgue (ball 0 M :: 'a set)"
    using less_M by (intro emeasure_mono) auto
  also have " < top"
    using lmeasurable_ball by (auto simp: fmeasurable_def)
  finally have "emeasure lebesgue S = 0"
    by (simp add: ennreal_top_mult split: if_split_asm)
  then show "S  null_sets lebesgue"
    unfolding null_sets_def using S  sets lebesgue by auto
qed

corollary starlike_negligible_compact:
  "compact S  (c x. (c *R x)  S; 0  c; x  S  c = 1)  S  null_sets lebesgue"
  using starlike_negligible_bounded_gmeasurable[of S] by (auto simp: compact_eq_bounded_closed)

proposition outer_regular_lborel_le:
  assumes B[measurable]: "B  sets borel" and "0 < (e::real)"
  obtains U where "open U" "B  U" and "emeasure lborel (U - B)  e"
proof -
  let  = "emeasure lborel"
  let ?B = "λn::nat. ball 0 n :: 'a set"
  let ?e = "λn. e*((1/2)^Suc n)"
  have "n. U. open U  ?B n  B  U   (U - B) < ?e n"
  proof
    fix n :: nat
    let ?A = "density lborel (indicator (?B n))"
    have emeasure_A: "X  sets borel  emeasure ?A X =  (?B n  X)" for X
      by (auto simp: emeasure_density borel_measurable_indicator indicator_inter_arith[symmetric])

    have finite_A: "emeasure ?A (space ?A)  "
      using emeasure_bounded_finite[of "?B n"] by (auto simp: emeasure_A)
    interpret A: finite_measure ?A
      by rule fact
    have "emeasure ?A B + ?e n > (INF U{U. B  U  open U}. emeasure ?A U)"
      using 0<e by (auto simp: outer_regular[OF _ finite_A B, symmetric])
    then obtain U where U: "B  U" "open U" and muU: " (?B n  B) + ?e n >  (?B n  U)"
      unfolding INF_less_iff by (auto simp: emeasure_A)
    moreover
    { have " ((?B n  U) - B) =  ((?B n  U) - (?B n  B))"
        using U by (intro arg_cong[where f=""]) auto
      also have " =  (?B n  U) -  (?B n  B)"
        using U A.emeasure_finite[of B]
        by (intro emeasure_Diff) (auto simp del: A.emeasure_finite simp: emeasure_A)
      also have " < ?e n"
        using U muU A.emeasure_finite[of B]
        by (subst minus_less_iff_ennreal)
          (auto simp del: A.emeasure_finite simp: emeasure_A less_top ac_simps intro!: emeasure_mono)
      finally have " ((?B n  U) - B) < ?e n" . }
    ultimately show "U. open U  ?B n  B  U   (U - B) < ?e n"
      by (intro exI[of _ "?B n  U"]) auto
  qed
  then obtain U
    where U: "n. open (U n)" "n. ?B n  B  U n" "n.  (U n - B) < ?e n"
    by metis
  show ?thesis
  proof
    { fix x assume "x  B"
      moreover
      obtain n where "norm x < real n"
        using reals_Archimedean2 by blast
      ultimately have "x  (n. U n)"
        using U(2)[of n] by auto }
    note * = this
    then show "open (n. U n)" "B  (n. U n)"
      using U by auto
    have " (n. U n - B)  (n.  (U n - B))"
      using U(1) by (intro emeasure_subadditive_countably) auto
    also have "  (n. ennreal (?e n))"
      using U(3) by (intro suminf_le) (auto intro: less_imp_le)
    also have " = ennreal (e * 1)"
      using 0<e by (intro suminf_ennreal_eq sums_mult power_half_series) auto
    finally show "emeasure lborel ((n. U n) - B)  ennreal e"
      by simp
  qed
qed

lemmatag important› outer_regular_lborel:
  assumes B: "B  sets borel" and "0 < (e::real)"
  obtains U where "open U" "B  U" "emeasure lborel (U - B) < e"
proof -
  obtain U where U: "open U" "B  U" and "emeasure lborel (U-B)  e/2"
    using outer_regular_lborel_le [OF B, of "e/2"] e > 0
    by force
  moreover have "ennreal (e/2) < ennreal e"
    using e > 0 by (simp add: ennreal_lessI)
  ultimately have "emeasure lborel (U-B) < e"
    by auto
  with U show ?thesis
    using that by auto
qed

lemma completion_upper:
  assumes A: "A  sets (completion M)"
  obtains A' where "A  A'" "A'  sets M" "A' - A  null_sets (completion M)"
                   "emeasure (completion M) A = emeasure M A'"
proof -
  from AE_notin_null_part[OF A] obtain N where N: "N  null_sets M" "null_part M A  N"
    by (meson assms null_part)
  let ?A' = "main_part M A  N"
  show ?thesis
  proof
    show "A  ?A'"
      using null_part M A  N assms main_part_null_part_Un by blast
    have "main_part M A  A"
      using assms main_part_null_part_Un by auto
    then have "?A' - A  N"
      by blast
    with N show "?A' - A  null_sets (completion M)"
      by (blast intro: null_sets_completionI completion.complete_measure_axioms complete_measure.complete2)
    show "emeasure (completion M) A = emeasure M (main_part M A  N)"
      using A N  null_sets M by (simp add: emeasure_Un_null_set)
  qed (use A N in auto)
qed

lemma sets_lebesgue_outer_open:
  fixes e::real
  assumes S: "S  sets lebesgue" and "e > 0"
  obtains T where "open T" "S  T" "(T - S)  lmeasurable" "emeasure lebesgue (T - S) < ennreal e"
proof -
  obtain S' where S': "S  S'" "S'  sets borel"
              and null: "S' - S  null_sets lebesgue"
              and em: "emeasure lebesgue S = emeasure lborel S'"
    using completion_upper[of S lborel] S by auto
  then have f_S': "S'  sets borel"
    using S by (auto simp: fmeasurable_def)
  with outer_regular_lborel[OF _ 0<e]
  obtain U where U: "open U" "S'  U" "emeasure lborel (U - S') < e"
    by blast
  show thesis
  proof
    show "open U" "S  U"
      using f_S' U S' by auto
  have "(U - S) = (U - S')  (S' - S)"
    using S' U by auto
  then have eq: "emeasure lebesgue (U - S) = emeasure lborel (U - S')"
    using null  by (simp add: U(1) emeasure_Un_null_set f_S' sets.Diff)
  have "(U - S)  sets lebesgue"
    by (simp add: S U(1) sets.Diff)
  then show "(U - S)  lmeasurable"
    unfolding fmeasurable_def using U(3) eq less_le_trans by fastforce
  with eq U show "emeasure lebesgue (U - S) < e"
    by (simp add: eq)
  qed
qed

lemma sets_lebesgue_inner_closed:
  fixes e::real
  assumes "S  sets lebesgue" "e > 0"
  obtains T where "closed T" "T  S" "S-T  lmeasurable" "emeasure lebesgue (S - T) < ennreal e"
proof -
  have "-S  sets lebesgue"
    using assms by (simp add: Compl_in_sets_lebesgue)
  then obtain T where "open T" "-S  T"
          and T: "(T - -S)  lmeasurable" "emeasure lebesgue (T - -S) < e"
    using sets_lebesgue_outer_open assms  by blast
  show thesis
  proof
    show "closed (-T)"
      using open T by blast
    show "-T  S"
      using - S  T by auto
    show "S - ( -T)  lmeasurable" "emeasure lebesgue (S - (- T)) < e"
      using T by (auto simp: Int_commute)
  qed
qed

lemma lebesgue_openin:
   "openin (top_of_set S) T; S  sets lebesgue  T  sets lebesgue"
  by (metis borel_open openin_open sets.Int sets_completionI_sets sets_lborel)

lemma lebesgue_closedin:
   "closedin (top_of_set S) T; S  sets lebesgue  T  sets lebesgue"
  by (metis borel_closed closedin_closed sets.Int sets_completionI_sets sets_lborel)


subsectionF_sigma› and G_delta› sets.› 

― ‹🌐‹https://en.wikipedia.org/wiki/F-sigma_set››
inductivetag important› fsigma :: "'a::topological_space set  bool" where
  "(n::nat. closed (F n))  fsigma ((F ` UNIV))"

inductivetag important› gdelta :: "'a::topological_space set  bool" where
  "(n::nat. open (F n))  gdelta ((F ` UNIV))"

lemma fsigma_UNIV [iff]: "fsigma (UNIV :: 'a::real_inner set)"
proof -
  have "(UNIV ::'a set) = (i. cball 0 (of_nat i))"
    by (auto simp: real_arch_simple)
  then show ?thesis
    by (metis closed_cball fsigma.intros)
qed

lemma fsigma_Union_compact:
  fixes S :: "'a::{real_normed_vector,heine_borel} set"
  shows "fsigma S  (F::nat  'a set. range F  Collect compact  S = (F ` UNIV))"
proof safe
  assume "fsigma S"
  then obtain F :: "nat  'a set" where F: "range F  Collect closed" "S = (F ` UNIV)"
    by (meson fsigma.cases image_subsetI mem_Collect_eq)
  then have "D::nat  'a set. range D  Collect compact  (D ` UNIV) = F i" for i
    using closed_Union_compact_subsets [of "F i"]
    by (metis image_subsetI mem_Collect_eq range_subsetD)
  then obtain D :: "nat  nat  'a set"
    where D: "i. range (D i)  Collect compact  ((D i) ` UNIV) = F i"
    by metis
  let ?DD = "λn. (λ(i,j). D i j) (prod_decode n)"
  show "F::nat  'a set. range F  Collect compact  S = (F ` UNIV)"
  proof (intro exI conjI)
    show "range ?DD  Collect compact"
      using D by clarsimp (metis mem_Collect_eq rangeI split_conv subsetCE surj_pair)
    show "S =  (range ?DD)"
    proof
      show "S   (range ?DD)"
        using D F
        by clarsimp (metis UN_iff old.prod.case prod_decode_inverse prod_encode_eq)
      show " (range ?DD)  S"
        using D F  by fastforce
    qed
  qed
next
  fix F :: "nat  'a set"
  assume "range F  Collect compact" and "S = (F ` UNIV)"
  then show "fsigma ((F ` UNIV))"
    by (simp add: compact_imp_closed fsigma.intros image_subset_iff)
qed

lemma gdelta_imp_fsigma: "gdelta S  fsigma (- S)"
proof (induction rule: gdelta.induct)
  case (1 F)
  have "- (F ` UNIV) = (i. -(F i))"
    by auto
  then show ?case
    by (simp add: fsigma.intros closed_Compl 1)
qed

lemma fsigma_imp_gdelta: "fsigma S  gdelta (- S)"
proof (induction rule: fsigma.induct)
  case (1 F)
  have "- (F ` UNIV) = (i. -(F i))"
    by auto
  then show ?case
    by (simp add: 1 gdelta.intros open_closed)
qed

lemma gdelta_complement: "gdelta(- S)  fsigma S"
  using fsigma_imp_gdelta gdelta_imp_fsigma by force

lemma lebesgue_set_almost_fsigma:
  assumes "S  sets lebesgue"
  obtains C T where "fsigma C" "T  null_sets lebesgue" "C  T = S" "disjnt C T"
proof -
  { fix n::nat
    obtain T where "closed T" "T  S" "S-T  lmeasurable" "emeasure lebesgue (S - T) < ennreal (1 / Suc n)"
      using sets_lebesgue_inner_closed [OF assms]
      by (metis of_nat_0_less_iff zero_less_Suc zero_less_divide_1_iff)
    then have "T. closed T  T  S  S - T  lmeasurable  measure lebesgue (S-T) < 1 / Suc n"
      by (metis emeasure_eq_measure2 ennreal_leI not_le)
  }
  then obtain F where F: "n::nat. closed (F n)  F n  S  S - F n  lmeasurable  measure lebesgue (S - F n) < 1 / Suc n"
    by metis
  let ?C = "(F ` UNIV)"
  show thesis
  proof
    show "fsigma ?C"
      using F by (simp add: fsigma.intros)
    show "(S - ?C)  null_sets lebesgue"
    proof (clarsimp simp add: completion.null_sets_outer_le)
      fix e :: "real"
      assume "0 < e"
      then obtain n where n: "1 / Suc n < e"
        using nat_approx_posE by metis
      show "T  lmeasurable. S - (x. F x)  T  measure lebesgue T  e"
      proof (intro bexI conjI)
        show "measure lebesgue (S - F n)  e"
          by (meson F n less_trans not_le order.asym)
      qed (use F in auto)
    qed
    show "?C  (S - ?C) = S"
      using F by blast
    show "disjnt ?C (S - ?C)"
      by (auto simp: disjnt_def)
  qed
qed

lemma lebesgue_set_almost_gdelta:
  assumes "S  sets lebesgue"
  obtains C T where "gdelta C" "T  null_sets lebesgue" "S  T = C" "disjnt S T"
proof -
  have "-S  sets lebesgue"
    using assms Compl_in_sets_lebesgue by blast
  then obtain C T where C: "fsigma C" "T  null_sets lebesgue" "C  T = -S" "disjnt C T"
    using lebesgue_set_almost_fsigma by metis
  show thesis
  proof
    show "gdelta (-C)"
      by (simp add: fsigma C fsigma_imp_gdelta)
    show "S  T = -C" "disjnt S T"
      using C by (auto simp: disjnt_def)
  qed (use C in auto)
qed

end