Theory Transport_Dep_Fun_Rel_Examples

✐‹creator "Kevin Kappelmann"›
section ‹Example Transports for Dependent Function Relator›
theory Transport_Dep_Fun_Rel_Examples
  imports
    Transport_Prototype
    Transport_Syntax
    HOL_Alignment_Binary_Relations
    "HOL-Library.IArray"
begin

paragraph ‹Summary›
text ‹Dependent function relator examples from cite"transport".
Refer to the paper for more details.›

context
  includes galois_rel_syntax transport_syntax
  notes
    transport.rel_if_partial_equivalence_rel_equivalence_if_iff_if_partial_equivalence_rel_equivalenceI
      [rotated, per_intro]
    transport_Dep_Fun_Rel_no_dep_fun.partial_equivalence_rel_equivalenceI
      [ML_Krattr Drule.rearrange_prems [1] #> Drule.rearrange_prems [2,3], per_intro]
begin

interpretation transport L R l r for L R l r .

abbreviation "Zpos  ((=(≤)(0 :: int)) :: int  _)"

lemma Zpos_per [per_intro]: "(ZposPER (=)) nat int"
  by fastforce

lemma sub_parametric [trp_in_dom]:
  "((i _  Zpos)  (j _  Zpos | j  i)  Zpos) (-) (-)"
  by fastforce

trp_term nat_sub :: "nat  nat  nat" where x = "(-) :: int  _"
  and L = "(i _  Zpos)  (j _  Zpos | j  i)  Zpos"
  and R = "(n _  (=))  (m _  (=)| m  n)  (=)"
  (*fastforce discharges the remaining side-conditions*)
  by trp_prover fastforce+

thm nat_sub_app_eq
text ‹Note: as of now, @{command trp_term} does not rewrite the
Galois relator of dependent function relators.›
thm nat_sub_related'

abbreviation "LRel  list_all2"
abbreviation "IARel  rel_iarray"

lemma [per_intro]:
  assumes "partial_equivalence_rel R"
  shows "(LRel RPER IARel R) IArray.IArray IArray.list_of"
  using assms by (fastforce simp flip: transp_eq_transitive symp_eq_symmetric
    intro: list.rel_transp list.rel_symp iarray.rel_transp iarray.rel_symp
    elim: iarray.rel_cases)+

lemma [trp_in_dom]:
  "((xs _  LRel R)  (i _  (=) | i < length xs)  R) (!) (!)"
  by (fastforce simp: list_all2_lengthD list_all2_nthD2)

context
  fixes R :: "'a  'a  bool" assumes [per_intro]: "partial_equivalence_rel R"
begin

interpretation Rper : transport_partial_equivalence_rel_id R
  by unfold_locales per_prover

declare Rper.partial_equivalence_rel_equivalence [per_intro]

trp_term iarray_index where x = "(!) :: 'a list  _"
  and L = "((xs _  LRel R)  (i _  (=) | i < length xs)  R)"
  and R = "((xs _  IARel R)  (i _  (=) | i < IArray.length xs)  R)"
  by trp_prover
  (*fastforce discharges the remaining side-conditions*)
  (fastforce simp: list_all2_lengthD elim: iarray.rel_cases)+

end
end

end