Theory Transport_Base

✐‹creator "Kevin Kappelmann"›
chapter ‹Transport›
section ‹Basic Setup›
theory Transport_Base
  imports
    Galois_Equivalences
    Galois_Relator
begin

paragraph ‹Summary›
text ‹Basic setup for commonly used concepts in Transport, including a suitable
locale.›

locale transport = galois L R l r
  for L :: "'a  'a  bool"
  and R :: "'b  'b  bool"
  and l :: "'a  'b"
  and r :: "'b  'a"
begin

subsection ‹Ordered Galois Connections›

definition "preorder_galois_connection 
  ((≤L)  (≤R)) l r
   preorder_on (in_field (≤L)) (≤L)
   preorder_on (in_field (≤R)) (≤R)"

notation transport.preorder_galois_connection (infix "pre" 50)

lemma preorder_galois_connectionI [intro]:
  assumes "((≤L)  (≤R)) l r"
  and "preorder_on (in_field (≤L)) (≤L)"
  and "preorder_on (in_field (≤R)) (≤R)"
  shows "((≤L) ⊣pre (≤R)) l r"
  unfolding preorder_galois_connection_def using assms by blast

lemma preorder_galois_connectionE [elim]:
  assumes "((≤L) ⊣pre (≤R)) l r"
  obtains "((≤L)  (≤R)) l r" "preorder_on (in_field (≤L)) (≤L)"
    "preorder_on (in_field (≤R)) (≤R)"
  using assms unfolding preorder_galois_connection_def by blast

context
begin

interpretation t : transport S T f g for S T f g .

lemma rel_inv_preorder_galois_connection_eq_preorder_galois_connection_rel_inv [simp]:
  "((≤R) ⊣pre (≤L))¯ = ((≥L) ⊣pre (≥R))"
  by (intro ext) (auto intro!: t.preorder_galois_connectionI)

end

corollary preorder_galois_connection_rel_inv_iff_preorder_galois_connection [iff]:
  "((≥L) ⊣pre (≥R)) l r  ((≤R) ⊣pre (≤L)) r l"
  by (simp flip:
    rel_inv_preorder_galois_connection_eq_preorder_galois_connection_rel_inv)

definition "partial_equivalence_rel_galois_connection 
  ((≤L)  (≤R)) l r
   partial_equivalence_rel (≤L)
   partial_equivalence_rel (≤R)"

notation transport.partial_equivalence_rel_galois_connection (infix "PER" 50)

lemma partial_equivalence_rel_galois_connectionI [intro]:
  assumes "((≤L)  (≤R)) l r"
  and "partial_equivalence_rel_on (in_field (≤L)) (≤L)"
  and "partial_equivalence_rel_on (in_field (≤R)) (≤R)"
  shows "((≤L) ⊣PER (≤R)) l r"
  unfolding partial_equivalence_rel_galois_connection_def using assms by blast

lemma partial_equivalence_rel_galois_connectionE [elim]:
  assumes "((≤L) ⊣PER (≤R)) l r"
  obtains "((≤L) ⊣pre (≤R)) l r" "symmetric (≤L)" "symmetric (≤R)"
  using assms unfolding partial_equivalence_rel_galois_connection_def by blast

context
begin

interpretation t : transport S T f g for S T f g .

lemma rel_inv_partial_equivalence_rel_galois_connection_eq_partial_equivalence_rel_galois_connection_rel_inv
  [simp]: "((≤R) ⊣PER (≤L))¯ = ((≥L) ⊣PER (≥R))"
  by (intro ext) blast

end

corollary partial_equivalence_rel_galois_connection_rel_inv_iff_partial_equivalence_rel_galois_connection
  [iff]: "((≥L) ⊣PER (≥R)) l r  ((≤R) ⊣PER (≤L)) r l"
  by (simp flip:
    rel_inv_partial_equivalence_rel_galois_connection_eq_partial_equivalence_rel_galois_connection_rel_inv)

lemma left_Galois_comp_ge_Galois_left_eq_left_if_partial_equivalence_rel_galois_connection:
  assumes "((≤L) ⊣PER (≤R)) l r"
  shows "((L⪅) ∘∘ (⪆L)) = (≤L)"
proof (intro ext iffI)
  fix x x' assume "((L⪅) ∘∘ (⪆L)) x x'"
  then obtain y where "xL r y" "r yL x'" by blast
  with assms show "xL x'" by (blast dest: symmetricD)
next
  fix x x' assume "xL x'"
  with assms have "x Ll x'" "x' Ll x'"
    by (blast intro: left_Galois_left_if_left_relI)+
  with assms show "((L⪅) ∘∘ (⪆L)) x x'" by auto
qed


subsection ‹Ordered Equivalences›

definition "preorder_equivalence 
  ((≤L) G (≤R)) l r
   preorder_on (in_field (≤L)) (≤L)
   preorder_on (in_field (≤R)) (≤R)"

notation transport.preorder_equivalence (infix "pre" 50)

lemma preorder_equivalence_if_galois_equivalenceI [intro]:
  assumes "((≤L) G (≤R)) l r"
  and "preorder_on (in_field (≤L)) (≤L)"
  and "preorder_on (in_field (≤R)) (≤R)"
  shows "((≤L) ≡pre (≤R)) l r"
  unfolding preorder_equivalence_def using assms by blast

lemma preorder_equivalence_if_order_equivalenceI:
  assumes "((≤L) o (≤R)) l r"
  and "transitive (≤L)"
  and "transitive (≤R)"
  shows "((≤L) ≡pre (≤R)) l r"
  unfolding preorder_equivalence_def using assms
  by (blast intro: reflexive_on_in_field_if_transitive_if_rel_equivalence_on
    dest: galois_equivalence_left_right_if_transitive_if_order_equivalence)

lemma preorder_equivalence_galois_equivalenceE [elim]:
  assumes "((≤L) ≡pre (≤R)) l r"
  obtains "((≤L) G (≤R)) l r" "preorder_on (in_field (≤L)) (≤L)"
    "preorder_on (in_field (≤R)) (≤R)"
  using assms unfolding preorder_equivalence_def by blast

lemma preorder_equivalence_order_equivalenceE:
  assumes "((≤L) ≡pre (≤R)) l r"
  obtains "((≤L) o (≤R)) l r" "preorder_on (in_field (≤L)) (≤L)"
    "preorder_on (in_field (≤R)) (≤R)"
  using assms by (blast intro:
    order_equivalence_if_reflexive_on_in_field_if_galois_equivalence)

context
begin

interpretation t : transport S T f g for S T f g .

lemma rel_inv_preorder_equivalence_eq_preorder_equivalence [simp]:
  "((≤R) ≡pre (≤L))¯ = ((≤L) ≡pre (≤R))"
  by (intro ext) blast

end

corollary preorder_equivalence_right_left_iff_preorder_equivalence_left_right:
  "((≤R) ≡pre (≤L)) r l  ((≤L) ≡pre (≤R)) l r"
  by (simp flip: rel_inv_preorder_equivalence_eq_preorder_equivalence)

lemma preorder_equivalence_rel_inv_eq_preorder_equivalence [simp]:
  "((≥L) ≡pre (≥R)) = ((≤L) ≡pre (≤R))"
  by (intro ext iffI)
  (auto intro!: transport.preorder_equivalence_if_galois_equivalenceI
    elim!: transport.preorder_equivalence_galois_equivalenceE)

definition "partial_equivalence_rel_equivalence 
  ((≤L) G (≤R)) l r
   partial_equivalence_rel (≤L)
   partial_equivalence_rel (≤R)"

notation transport.partial_equivalence_rel_equivalence (infix "PER" 50)

lemma partial_equivalence_rel_equivalence_if_galois_equivalenceI [intro]:
  assumes "((≤L) G (≤R)) l r"
  and "partial_equivalence_rel (≤L)"
  and "partial_equivalence_rel (≤R)"
  shows "((≤L) ≡PER (≤R)) l r"
  unfolding partial_equivalence_rel_equivalence_def using assms by blast

lemma partial_equivalence_rel_equivalence_if_order_equivalenceI:
  assumes "((≤L) o (≤R)) l r"
  and "partial_equivalence_rel (≤L)"
  and "partial_equivalence_rel (≤R)"
  shows "((≤L) ≡PER (≤R)) l r"
  unfolding partial_equivalence_rel_equivalence_def using assms
  by (blast dest: galois_equivalence_left_right_if_transitive_if_order_equivalence)

lemma partial_equivalence_rel_equivalenceE [elim]:
  assumes "((≤L) ≡PER (≤R)) l r"
  obtains "((≤L) ≡pre (≤R)) l r" "symmetric (≤L)" "symmetric (≤R)"
  using assms unfolding partial_equivalence_rel_equivalence_def by blast

context
begin

interpretation t : transport S T f g for S T f g .

lemma rel_inv_partial_equivalence_rel_equivalence_eq_partial_equivalence_rel_equivalence [simp]:
  "((≤R) ≡PER (≤L))¯ = ((≤L) ≡PER (≤R))"
  by (intro ext) blast

end

corollary partial_equivalence_rel_equivalence_right_left_iff_partial_equivalence_rel_equivalence_left_right:
  "((≤R) ≡PER (≤L)) r l  ((≤L) ≡PER (≤R)) l r"
  by (simp flip:
    rel_inv_partial_equivalence_rel_equivalence_eq_partial_equivalence_rel_equivalence)

lemma partial_equivalence_rel_equivalence_rel_inv_eq_partial_equivalence_rel_equivalence
  [simp]: "((≥L) ≡PER (≥R)) = ((≤L) ≡PER (≤R))"
  by (intro ext iffI)
  (auto intro!: transport.partial_equivalence_rel_equivalence_if_galois_equivalenceI
    elim!: transport.partial_equivalence_rel_equivalenceE
      transport.preorder_equivalence_galois_equivalenceE
      preorder_on_in_fieldE)

end


end