Theory Transport_Base
chapter ‹Transport›
section ‹Basic Setup›
theory Transport_Base
imports
Galois_Equivalences
Galois_Relator
begin
paragraph ‹Summary›
text ‹Basic setup for commonly used concepts in Transport, including a suitable
locale.›
locale transport = galois L R l r
for L :: "'a ⇒ 'a ⇒ bool"
and R :: "'b ⇒ 'b ⇒ bool"
and l :: "'a ⇒ 'b"
and r :: "'b ⇒ 'a"
begin
subsection ‹Ordered Galois Connections›
definition "preorder_galois_connection ≡
((≤⇘L⇙) ⊣ (≤⇘R⇙)) l r
∧ preorder_on (in_field (≤⇘L⇙)) (≤⇘L⇙)
∧ preorder_on (in_field (≤⇘R⇙)) (≤⇘R⇙)"
notation transport.preorder_galois_connection (infix "⊣⇘pre⇙" 50)
lemma preorder_galois_connectionI [intro]:
assumes "((≤⇘L⇙) ⊣ (≤⇘R⇙)) l r"
and "preorder_on (in_field (≤⇘L⇙)) (≤⇘L⇙)"
and "preorder_on (in_field (≤⇘R⇙)) (≤⇘R⇙)"
shows "((≤⇘L⇙) ⊣⇘pre⇙ (≤⇘R⇙)) l r"
unfolding preorder_galois_connection_def using assms by blast
lemma preorder_galois_connectionE [elim]:
assumes "((≤⇘L⇙) ⊣⇘pre⇙ (≤⇘R⇙)) l r"
obtains "((≤⇘L⇙) ⊣ (≤⇘R⇙)) l r" "preorder_on (in_field (≤⇘L⇙)) (≤⇘L⇙)"
"preorder_on (in_field (≤⇘R⇙)) (≤⇘R⇙)"
using assms unfolding preorder_galois_connection_def by blast
context
begin
interpretation t : transport S T f g for S T f g .
lemma rel_inv_preorder_galois_connection_eq_preorder_galois_connection_rel_inv [simp]:
"((≤⇘R⇙) ⊣⇘pre⇙ (≤⇘L⇙))¯ = ((≥⇘L⇙) ⊣⇘pre⇙ (≥⇘R⇙))"
by (intro ext) (auto intro!: t.preorder_galois_connectionI)
end
corollary preorder_galois_connection_rel_inv_iff_preorder_galois_connection [iff]:
"((≥⇘L⇙) ⊣⇘pre⇙ (≥⇘R⇙)) l r ⟷ ((≤⇘R⇙) ⊣⇘pre⇙ (≤⇘L⇙)) r l"
by (simp flip:
rel_inv_preorder_galois_connection_eq_preorder_galois_connection_rel_inv)
definition "partial_equivalence_rel_galois_connection ≡
((≤⇘L⇙) ⊣ (≤⇘R⇙)) l r
∧ partial_equivalence_rel (≤⇘L⇙)
∧ partial_equivalence_rel (≤⇘R⇙)"
notation transport.partial_equivalence_rel_galois_connection (infix "⊣⇘PER⇙" 50)
lemma partial_equivalence_rel_galois_connectionI [intro]:
assumes "((≤⇘L⇙) ⊣ (≤⇘R⇙)) l r"
and "partial_equivalence_rel_on (in_field (≤⇘L⇙)) (≤⇘L⇙)"
and "partial_equivalence_rel_on (in_field (≤⇘R⇙)) (≤⇘R⇙)"
shows "((≤⇘L⇙) ⊣⇘PER⇙ (≤⇘R⇙)) l r"
unfolding partial_equivalence_rel_galois_connection_def using assms by blast
lemma partial_equivalence_rel_galois_connectionE [elim]:
assumes "((≤⇘L⇙) ⊣⇘PER⇙ (≤⇘R⇙)) l r"
obtains "((≤⇘L⇙) ⊣⇘pre⇙ (≤⇘R⇙)) l r" "symmetric (≤⇘L⇙)" "symmetric (≤⇘R⇙)"
using assms unfolding partial_equivalence_rel_galois_connection_def by blast
context
begin
interpretation t : transport S T f g for S T f g .
lemma rel_inv_partial_equivalence_rel_galois_connection_eq_partial_equivalence_rel_galois_connection_rel_inv
[simp]: "((≤⇘R⇙) ⊣⇘PER⇙ (≤⇘L⇙))¯ = ((≥⇘L⇙) ⊣⇘PER⇙ (≥⇘R⇙))"
by (intro ext) blast
end
corollary partial_equivalence_rel_galois_connection_rel_inv_iff_partial_equivalence_rel_galois_connection
[iff]: "((≥⇘L⇙) ⊣⇘PER⇙ (≥⇘R⇙)) l r ⟷ ((≤⇘R⇙) ⊣⇘PER⇙ (≤⇘L⇙)) r l"
by (simp flip:
rel_inv_partial_equivalence_rel_galois_connection_eq_partial_equivalence_rel_galois_connection_rel_inv)
lemma left_Galois_comp_ge_Galois_left_eq_left_if_partial_equivalence_rel_galois_connection:
assumes "((≤⇘L⇙) ⊣⇘PER⇙ (≤⇘R⇙)) l r"
shows "((⇘L⇙⪅) ∘∘ (⪆⇘L⇙)) = (≤⇘L⇙)"
proof (intro ext iffI)
fix x x' assume "((⇘L⇙⪅) ∘∘ (⪆⇘L⇙)) x x'"
then obtain y where "x ≤⇘L⇙ r y" "r y ≥⇘L⇙ x'" by blast
with assms show "x ≤⇘L⇙ x'" by (blast dest: symmetricD)
next
fix x x' assume "x ≤⇘L⇙ x'"
with assms have "x ⇘L⇙⪅ l x'" "x' ⇘L⇙⪅ l x'"
by (blast intro: left_Galois_left_if_left_relI)+
with assms show "((⇘L⇙⪅) ∘∘ (⪆⇘L⇙)) x x'" by auto
qed
subsection ‹Ordered Equivalences›
definition "preorder_equivalence ≡
((≤⇘L⇙) ≡⇩G (≤⇘R⇙)) l r
∧ preorder_on (in_field (≤⇘L⇙)) (≤⇘L⇙)
∧ preorder_on (in_field (≤⇘R⇙)) (≤⇘R⇙)"
notation transport.preorder_equivalence (infix "≡⇘pre⇙" 50)
lemma preorder_equivalence_if_galois_equivalenceI [intro]:
assumes "((≤⇘L⇙) ≡⇩G (≤⇘R⇙)) l r"
and "preorder_on (in_field (≤⇘L⇙)) (≤⇘L⇙)"
and "preorder_on (in_field (≤⇘R⇙)) (≤⇘R⇙)"
shows "((≤⇘L⇙) ≡⇘pre⇙ (≤⇘R⇙)) l r"
unfolding preorder_equivalence_def using assms by blast
lemma preorder_equivalence_if_order_equivalenceI:
assumes "((≤⇘L⇙) ≡⇩o (≤⇘R⇙)) l r"
and "transitive (≤⇘L⇙)"
and "transitive (≤⇘R⇙)"
shows "((≤⇘L⇙) ≡⇘pre⇙ (≤⇘R⇙)) l r"
unfolding preorder_equivalence_def using assms
by (blast intro: reflexive_on_in_field_if_transitive_if_rel_equivalence_on
dest: galois_equivalence_left_right_if_transitive_if_order_equivalence)
lemma preorder_equivalence_galois_equivalenceE [elim]:
assumes "((≤⇘L⇙) ≡⇘pre⇙ (≤⇘R⇙)) l r"
obtains "((≤⇘L⇙) ≡⇩G (≤⇘R⇙)) l r" "preorder_on (in_field (≤⇘L⇙)) (≤⇘L⇙)"
"preorder_on (in_field (≤⇘R⇙)) (≤⇘R⇙)"
using assms unfolding preorder_equivalence_def by blast
lemma preorder_equivalence_order_equivalenceE:
assumes "((≤⇘L⇙) ≡⇘pre⇙ (≤⇘R⇙)) l r"
obtains "((≤⇘L⇙) ≡⇩o (≤⇘R⇙)) l r" "preorder_on (in_field (≤⇘L⇙)) (≤⇘L⇙)"
"preorder_on (in_field (≤⇘R⇙)) (≤⇘R⇙)"
using assms by (blast intro:
order_equivalence_if_reflexive_on_in_field_if_galois_equivalence)
context
begin
interpretation t : transport S T f g for S T f g .
lemma rel_inv_preorder_equivalence_eq_preorder_equivalence [simp]:
"((≤⇘R⇙) ≡⇘pre⇙ (≤⇘L⇙))¯ = ((≤⇘L⇙) ≡⇘pre⇙ (≤⇘R⇙))"
by (intro ext) blast
end
corollary preorder_equivalence_right_left_iff_preorder_equivalence_left_right:
"((≤⇘R⇙) ≡⇘pre⇙ (≤⇘L⇙)) r l ⟷ ((≤⇘L⇙) ≡⇘pre⇙ (≤⇘R⇙)) l r"
by (simp flip: rel_inv_preorder_equivalence_eq_preorder_equivalence)
lemma preorder_equivalence_rel_inv_eq_preorder_equivalence [simp]:
"((≥⇘L⇙) ≡⇘pre⇙ (≥⇘R⇙)) = ((≤⇘L⇙) ≡⇘pre⇙ (≤⇘R⇙))"
by (intro ext iffI)
(auto intro!: transport.preorder_equivalence_if_galois_equivalenceI
elim!: transport.preorder_equivalence_galois_equivalenceE)
definition "partial_equivalence_rel_equivalence ≡
((≤⇘L⇙) ≡⇩G (≤⇘R⇙)) l r
∧ partial_equivalence_rel (≤⇘L⇙)
∧ partial_equivalence_rel (≤⇘R⇙)"
notation transport.partial_equivalence_rel_equivalence (infix "≡⇘PER⇙" 50)
lemma partial_equivalence_rel_equivalence_if_galois_equivalenceI [intro]:
assumes "((≤⇘L⇙) ≡⇩G (≤⇘R⇙)) l r"
and "partial_equivalence_rel (≤⇘L⇙)"
and "partial_equivalence_rel (≤⇘R⇙)"
shows "((≤⇘L⇙) ≡⇘PER⇙ (≤⇘R⇙)) l r"
unfolding partial_equivalence_rel_equivalence_def using assms by blast
lemma partial_equivalence_rel_equivalence_if_order_equivalenceI:
assumes "((≤⇘L⇙) ≡⇩o (≤⇘R⇙)) l r"
and "partial_equivalence_rel (≤⇘L⇙)"
and "partial_equivalence_rel (≤⇘R⇙)"
shows "((≤⇘L⇙) ≡⇘PER⇙ (≤⇘R⇙)) l r"
unfolding partial_equivalence_rel_equivalence_def using assms
by (blast dest: galois_equivalence_left_right_if_transitive_if_order_equivalence)
lemma partial_equivalence_rel_equivalenceE [elim]:
assumes "((≤⇘L⇙) ≡⇘PER⇙ (≤⇘R⇙)) l r"
obtains "((≤⇘L⇙) ≡⇘pre⇙ (≤⇘R⇙)) l r" "symmetric (≤⇘L⇙)" "symmetric (≤⇘R⇙)"
using assms unfolding partial_equivalence_rel_equivalence_def by blast
context
begin
interpretation t : transport S T f g for S T f g .
lemma rel_inv_partial_equivalence_rel_equivalence_eq_partial_equivalence_rel_equivalence [simp]:
"((≤⇘R⇙) ≡⇘PER⇙ (≤⇘L⇙))¯ = ((≤⇘L⇙) ≡⇘PER⇙ (≤⇘R⇙))"
by (intro ext) blast
end
corollary partial_equivalence_rel_equivalence_right_left_iff_partial_equivalence_rel_equivalence_left_right:
"((≤⇘R⇙) ≡⇘PER⇙ (≤⇘L⇙)) r l ⟷ ((≤⇘L⇙) ≡⇘PER⇙ (≤⇘R⇙)) l r"
by (simp flip:
rel_inv_partial_equivalence_rel_equivalence_eq_partial_equivalence_rel_equivalence)
lemma partial_equivalence_rel_equivalence_rel_inv_eq_partial_equivalence_rel_equivalence
[simp]: "((≥⇘L⇙) ≡⇘PER⇙ (≥⇘R⇙)) = ((≤⇘L⇙) ≡⇘PER⇙ (≤⇘R⇙))"
by (intro ext iffI)
(auto intro!: transport.partial_equivalence_rel_equivalence_if_galois_equivalenceI
elim!: transport.partial_equivalence_rel_equivalenceE
transport.preorder_equivalence_galois_equivalenceE
preorder_on_in_fieldE)
end
end