Theory Galois_Relator
subsection ‹Relator For Galois Connections›
theory Galois_Relator
imports
Galois_Relator_Base
Galois_Property
begin
context galois_prop
begin
interpretation flip_inv : galois_rel "(≥⇘R⇙)" "(≥⇘L⇙)" l .
lemma left_Galois_if_Galois_right_if_half_galois_prop_right:
assumes "((≤⇘L⇙) ⊴⇩h (≤⇘R⇙)) l r"
and "x ⪅⇘R⇙ y"
shows "x ⇘L⇙⪅ y"
using assms by (intro left_GaloisI) auto
lemma Galois_right_if_left_Galois_if_half_galois_prop_left:
assumes "((≤⇘L⇙) ⇩h⊴ (≤⇘R⇙)) l r"
and "x ⇘L⇙⪅ y"
shows "x ⪅⇘R⇙ y"
using assms by fast
corollary Galois_right_iff_left_Galois_if_galois_prop [iff]:
assumes "((≤⇘L⇙) ⊴ (≤⇘R⇙)) l r"
shows "x ⪅⇘R⇙ y ⟷ x ⇘L⇙⪅ y"
using assms
left_Galois_if_Galois_right_if_half_galois_prop_right
Galois_right_if_left_Galois_if_half_galois_prop_left
by blast
lemma rel_inv_Galois_eq_flip_Galois_rel_inv_if_galois_prop [simp]:
assumes "((≤⇘L⇙) ⊴ (≤⇘R⇙)) l r"
shows "(⪆⇘L⇙) = (⇘R⇙⪆)"
using assms by blast
corollary flip_Galois_rel_inv_iff_Galois_if_galois_prop [iff]:
assumes "((≤⇘L⇙) ⊴ (≤⇘R⇙)) l r"
shows "y ⇘R⇙⪆ x ⟷ x ⇘L⇙⪅ y"
using assms by blast
corollary inv_flip_Galois_rel_inv_eq_Galois_if_galois_prop [simp]:
assumes "((≤⇘L⇙) ⊴ (≤⇘R⇙)) l r"
shows "(⪅⇘R⇙) = (⇘L⇙⪅)"
using assms by (subst rel_inv_eq_iff_eq[symmetric]) simp
end
context galois
begin
interpretation flip_inv : galois "(≥⇘R⇙)" "(≥⇘L⇙)" r l .
context
begin
interpretation flip : galois R L r l .
lemma left_Galois_left_if_left_relI:
assumes "((≤⇘L⇙) ⇛⇩m (≤⇘R⇙)) l"
and "((≤⇘L⇙) ⊴⇩h (≤⇘R⇙)) l r"
and "x ≤⇘L⇙ x'"
shows "x ⇘L⇙⪅ l x'"
using assms
by (intro left_Galois_if_Galois_right_if_half_galois_prop_right) (auto 5 0)
corollary left_Galois_left_if_reflexive_on_if_half_galois_prop_rightI:
assumes "((≤⇘L⇙) ⇛⇩m (≤⇘R⇙)) l"
and "((≤⇘L⇙) ⊴⇩h (≤⇘R⇙)) l r"
and "reflexive_on P (≤⇘L⇙)"
and "P x"
shows "x ⇘L⇙⪅ l x"
using assms by (intro left_Galois_left_if_left_relI) auto
lemma left_Galois_left_if_in_codom_if_inflationary_onI:
assumes "((≤⇘L⇙) ⇛⇩m (≤⇘R⇙)) l"
and "inflationary_on P (≤⇘L⇙) η"
and "in_codom (≤⇘L⇙) x"
and "P x"
shows "x ⇘L⇙⪅ l x"
using assms by (intro left_GaloisI) (auto elim!: in_codomE)
lemma left_Galois_left_if_in_codom_if_inflationary_on_in_codomI:
assumes "((≤⇘L⇙) ⇛⇩m (≤⇘R⇙)) l"
and "inflationary_on (in_codom (≤⇘L⇙)) (≤⇘L⇙) η"
and "in_codom (≤⇘L⇙) x"
shows "x ⇘L⇙⪅ l x"
using assms by (auto intro!: left_Galois_left_if_in_codom_if_inflationary_onI)
lemma left_Galois_left_if_left_rel_if_inflationary_on_in_fieldI:
assumes "((≤⇘L⇙) ⇛⇩m (≤⇘R⇙)) l"
and "inflationary_on (in_field (≤⇘L⇙)) (≤⇘L⇙) η"
and "x ≤⇘L⇙ x"
shows "x ⇘L⇙⪅ l x"
using assms by (auto intro!: left_Galois_left_if_in_codom_if_inflationary_onI)
lemma right_left_Galois_if_right_relI:
assumes "((≤⇘R⇙) ⇛⇩m (≤⇘L⇙)) r"
and "y ≤⇘R⇙ y'"
shows "r y ⇘L⇙⪅ y'"
using assms by (intro left_GaloisI) auto
corollary right_left_Galois_if_reflexive_onI:
assumes "((≤⇘R⇙) ⇛⇩m (≤⇘L⇙)) r"
and "reflexive_on P (≤⇘R⇙)"
and "P y"
shows "r y ⇘L⇙⪅ y"
using assms by (intro right_left_Galois_if_right_relI) auto
lemma left_Galois_if_right_rel_if_left_GaloisI:
assumes "((≤⇘R⇙) ⇛⇩m (≤⇘L⇙)) r"
and "transitive (≤⇘L⇙)"
and "x ⇘L⇙⪅ y"
and "y ≤⇘R⇙ z"
shows "x ⇘L⇙⪅ z"
using assms by (intro left_GaloisI) (auto 5 0)
lemma left_Galois_if_left_Galois_if_left_relI:
assumes "transitive (≤⇘L⇙)"
and "x ≤⇘L⇙ y"
and "y ⇘L⇙⪅ z"
shows "x ⇘L⇙⪅ z"
using assms by (intro left_GaloisI) auto
lemma left_rel_if_right_Galois_if_left_GaloisI:
assumes "((≤⇘R⇙) ⇩h⊴ (≤⇘L⇙)) r l"
and "transitive (≤⇘L⇙)"
and "x ⇘L⇙⪅ y"
and "y ⇘R⇙⪅ z"
shows "x ≤⇘L⇙ z"
using assms by auto
lemma Dep_Fun_Rel_left_Galois_right_Galois_if_mono_wrt_rel [intro]:
assumes "((≤⇘L⇙) ⇛⇩m (≤⇘R⇙)) l"
shows "((⇘L⇙⪅) ⇛ (⇘R⇙⪅)) l r"
using assms by blast
lemma left_ge_Galois_eq_left_Galois_if_in_codom_eq_in_dom_if_symmetric:
assumes "symmetric (≤⇘L⇙)"
and "in_codom (≤⇘R⇙) = in_dom (≤⇘R⇙)"
shows "(⇘L⇙⪆) = (⇘L⇙⪅)"
using assms by (intro ext iffI)
(auto elim!: galois_rel.left_GaloisE intro!: galois_rel.left_GaloisI)
end
interpretation flip : galois R L r l .
lemma ge_Galois_right_eq_left_Galois_if_symmetric_if_in_codom_eq_in_dom_if_galois_prop:
assumes "((≤⇘L⇙) ⊴ (≤⇘R⇙)) l r"
and "in_codom (≤⇘L⇙) = in_dom (≤⇘L⇙)"
and "symmetric (≤⇘R⇙)"
shows "(⪆⇘R⇙) = (⇘L⇙⪅)"
using assms
by (simp only: inv_flip_Galois_rel_inv_eq_Galois_if_galois_prop
flip: flip.left_ge_Galois_eq_left_Galois_if_in_codom_eq_in_dom_if_symmetric)
interpretation gp : galois_prop "(⇘L⇙⪅)" "(⇘R⇙⪅)" l l .
lemma half_galois_prop_left_left_Galois_right_Galois_if_half_galois_prop_leftI [intro]:
assumes "((≤⇘L⇙) ⇩h⊴ (≤⇘R⇙)) l r"
shows "((⇘L⇙⪅) ⇩h⊴ (⇘R⇙⪅)) l l"
using assms by fast
lemma half_galois_prop_right_left_Galois_right_Galois_if_half_galois_prop_rightI [intro]:
assumes "((≤⇘L⇙) ⊴⇩h (≤⇘R⇙)) l r"
shows "((⇘L⇙⪅) ⊴⇩h (⇘R⇙⪅)) l l"
using assms by fast
corollary galois_prop_left_Galois_right_Galois_if_galois_prop [intro]:
assumes "((≤⇘L⇙) ⊴ (≤⇘R⇙)) l r"
shows "((⇘L⇙⪅) ⊴ (⇘R⇙⪅)) l l"
using assms by blast
end
end