Theory HOL_Alignment_Functions
subsection ‹Alignment With Function Definitions from HOL.Main›
theory HOL_Alignment_Functions
imports
HOL_Alignment_Binary_Relations
HOL_Syntax_Bundles_Functions
LFunctions
begin
unbundle no_HOL_function_syntax
named_theorems HOL_fun_alignment
paragraph ‹Functions›
subparagraph ‹Bijection›
definition "bijection_on_set (S :: 'a set) (S' :: 'b set) :: ('a ⇒ 'b) ⇒ ('b ⇒ 'a) ⇒ bool ≡
bijection_on (mem_of S) (mem_of S')"
adhoc_overloading bijection_on bijection_on_set
lemma bijection_on_set_eq_bijection_on_pred [simp]:
"bijection_on (S :: 'a set) (S' :: 'b set) = bijection_on (mem_of S) (mem_of S')"
unfolding bijection_on_set_def by simp
lemma bijection_on_set_eq_bijection_on_pred_uhint [uhint]:
assumes "P ≡ mem_of S"
and "Q ≡ mem_of S'"
shows "bijection_on S S' ≡ bijection_on P Q"
using assms by simp
lemma bijection_on_set_iff_bijection_on_pred [iff]:
"bijection_on (S :: 'a set) (S' :: 'b set) (f :: 'a ⇒ 'b) (g :: 'b ⇒ 'a) ⟷
bijection_on (mem_of S) (mem_of S') f g"
by simp
lemma bij_betw_bijection_onE:
assumes "bij_betw (f :: 'a ⇒ 'b) S S'"
obtains g :: "'b ⇒ 'a" where "bijection_on S S' f g"
proof
let ?g = "the_inv_into S f"
from assms bij_betw_the_inv_into have "bij_betw ?g S' S" by blast
with assms show "bijection_on S S' f ?g"
by (auto intro!: bijection_onI
dest: bij_betw_apply bij_betw_imp_inj_on the_inv_into_f_f
simp: f_the_inv_into_f_bij_betw)
qed
lemma bij_betw_if_bijection_on:
assumes "bijection_on S S' (f :: 'a ⇒ 'b) (g :: 'b ⇒ 'a)"
shows "bij_betw f S S'"
using assms by (intro bij_betw_byWitness[where ?f'=g])
(auto elim: bijection_onE dest: inverse_onD)
corollary bij_betw_iff_ex_bijection_on [HOL_fun_alignment]:
"bij_betw (f :: 'a ⇒ 'b) S S' ⟷ (∃(g :: 'b ⇒ 'a). bijection_on S S' f g)"
by (intro iffI) (auto elim!: bij_betw_bijection_onE intro: bij_betw_if_bijection_on)
subparagraph ‹Injective›
overloading
injective_on_set ≡ "injective_on :: 'a set ⇒ ('a ⇒ 'b) ⇒ bool"
begin
definition "injective_on_set (S :: 'a set) :: ('a ⇒ 'b) ⇒ bool ≡
injective_on (mem_of S)"
end
lemma injective_on_set_eq_injective_on_pred [simp]:
"(injective_on (S :: 'a set) :: ('a ⇒ 'b) ⇒ _) = injective_on (mem_of S)"
unfolding injective_on_set_def by simp
lemma injective_on_set_eq_injective_on_pred_uhint [uhint]:
assumes "P ≡ mem_of S"
shows "injective_on (S :: 'a set) :: ('a ⇒ 'b) ⇒ _ ≡ injective_on P"
using assms by simp
lemma injective_on_set_iff_injective_on_pred [iff]:
"injective_on (S :: 'a set) (f :: 'a ⇒ 'b) ⟷ injective_on (mem_of S) f"
by simp
lemma inj_on_iff_injective_on [HOL_fun_alignment]: "inj_on f P ⟷ injective_on P f"
by (auto intro: inj_onI dest: inj_onD injective_onD)
lemma inj_eq_injective [HOL_fun_alignment]: "inj = injective"
by (auto intro: injI dest: injD injectiveD)
subparagraph ‹Inverse›
overloading
inverse_on_set ≡ "inverse_on :: 'a set ⇒ ('a ⇒ 'b) ⇒ ('b ⇒ 'a) ⇒ bool"
begin
definition "inverse_on_set (S :: 'a set) :: ('a ⇒ 'b) ⇒ ('b ⇒ 'a) ⇒ bool ≡
inverse_on (mem_of S)"
end
lemma inverse_on_set_eq_inverse_on_pred [simp]:
"(inverse_on (S :: 'a set) :: ('a ⇒ 'b) ⇒ ('b ⇒ 'a) ⇒ _) = inverse_on (mem_of S)"
unfolding inverse_on_set_def by simp
lemma inverse_on_set_eq_inverse_on_pred_uhint [uhint]:
assumes "P ≡ mem_of S"
shows "inverse_on (S :: 'a set) :: ('a ⇒ 'b) ⇒ ('b ⇒ 'a) ⇒ _ ≡ inverse_on P"
using assms by simp
lemma inverse_on_set_iff_inverse_on_pred [iff]:
"inverse_on (S :: 'a set) (f :: 'a ⇒ 'b) (g :: 'b ⇒ 'a) ⟷ inverse_on (mem_of S) f g"
by simp
subparagraph ‹Monotone›
lemma monotone_on_eq_mono_wrt_rel_restrict_left_right [HOL_fun_alignment]:
"monotone_on S R = mono_wrt_rel R↾⇘S⇙↿⇘S⇙"
by (intro ext) (auto intro!: monotone_onI dest: monotone_onD)
lemma monotone_eq_mono_wrt_rel [HOL_fun_alignment]: "monotone = mono_wrt_rel"
by (intro ext) (auto intro: monotoneI dest: monotoneD)
lemma pred_fun_eq_mono_wrt_pred [HOL_fun_alignment]: "pred_fun = mono_wrt_pred"
by (intro ext) auto
lemma Fun_mono_eq_mono [HOL_fun_alignment]: "Fun.mono = mono"
by (intro ext) (auto intro: Fun.mono_onI dest: Fun.monoD)
lemma Fun_antimono_eq_antimono [HOL_fun_alignment]: "Fun.antimono = antimono"
by (intro ext) (auto intro: monotoneI dest: monotoneD)
subparagraph ‹Surjective›
overloading
surjective_at_set ≡ "surjective_at :: 'a set ⇒ ('b ⇒ 'a) ⇒ bool"
begin
definition "surjective_at_set (S :: 'a set) :: ('b ⇒ 'a) ⇒ bool ≡
surjective_at (mem_of S)"
end
lemma surjective_at_set_eq_surjective_at_pred [simp]:
"(surjective_at (S :: 'a set) :: ('b ⇒ 'a) ⇒ _) = surjective_at (mem_of S)"
unfolding surjective_at_set_def by simp
lemma surjective_at_set_eq_surjective_at_pred_uhint [uhint]:
assumes "P ≡ mem_of S"
shows "surjective_at (S :: 'a set) :: ('b ⇒ 'a) ⇒ _ ≡ surjective_at P"
using assms by simp
lemma surjective_at_set_iff_surjective_at_pred [iff]:
"surjective_at (S :: 'a set) (f :: 'b ⇒ 'a) ⟷ surjective_at (mem_of S) f"
by simp
lemma surj_eq_surjective [HOL_fun_alignment]: "surj = surjective"
by (intro ext) (fast intro: surjI dest: surjD elim: surjectiveE)
paragraph ‹Functions›
lemma Fun_id_eq_id [HOL_fun_alignment]: "Fun.id = Functions_Base.id"
by (intro ext) simp
lemma Fun_comp_eq_comp [HOL_fun_alignment]: "Fun.comp = Functions_Base.comp"
by (intro ext) simp
lemma map_fun_eq_fun_map [HOL_fun_alignment]: "map_fun = fun_map"
by (intro ext) simp
paragraph ‹Relators›
lemma rel_fun_eq_Fun_Rel_rel [HOL_fun_alignment]: "BNF_Def.rel_fun = Fun_Rel"
by (intro ext) (auto dest: rel_funD)
end