Theory Binary_Relations_Function_Base
subsection ‹Functions as Binary Relations›
theory Binary_Relations_Function_Base
imports
Binary_Relations_Function_Evaluation
Binary_Relations_Left_Total
begin
text ‹Function relations may contain further elements outside their specification.›
consts rel_dep_fun :: "'a ⇒ ('b ⇒ 'c) ⇒ 'd ⇒ bool"
consts rel_fun :: "'a ⇒ 'b ⇒ 'c ⇒ bool"
bundle rel_fun_syntax
begin
syntax
"_rel_fun" :: "'a ⇒ 'b ⇒ 'c ⇒ bool" ("(_) → (_)" [41, 40] 40)
"_rel_dep_fun" :: "idt ⇒ 'a ⇒ 'b ⇒ 'c ⇒ bool" ("'(_/ :/ _') → (_)" [41, 41, 40] 40)
end
bundle no_rel_fun_syntax
begin
no_syntax
"_rel_fun" :: "'a ⇒ 'b ⇒ 'c ⇒ bool" ("(_) → (_)" [41, 40] 40)
"_rel_dep_fun" :: "idt ⇒ 'a ⇒ 'b ⇒ 'c ⇒ bool" ("'(_/ :/ _') → (_)" [41, 41, 40] 40)
end
unbundle rel_fun_syntax
translations
"A → B" ⇌ "CONST rel_fun A B"
"(x : A) → B" ⇌ "CONST rel_dep_fun A (λx. B)"
definition "rel_dep_fun_pred (A :: 'a ⇒ bool) (B :: 'a ⇒ 'b ⇒ bool) (R :: 'a ⇒ 'b ⇒ bool) ≡
left_total_on A R ∧ right_unique_on A R ∧ ((x : A) ⇛⇩m B x) (eval R)"
adhoc_overloading rel_dep_fun rel_dep_fun_pred
definition "rel_fun_pred (A :: 'a ⇒ bool) (B :: 'b ⇒ bool) :: ('a ⇒ 'b ⇒ bool) ⇒ bool ≡
rel_dep_fun_pred A (λ(_ :: 'a). B)"
adhoc_overloading rel_fun rel_fun_pred
lemma rel_fun_eq_rel_dep_fun:
"(((A :: 'a ⇒ bool) → (B :: 'b ⇒ bool)) :: ('a ⇒ 'b ⇒ bool) ⇒ bool) = (((_ :: 'a) : A) → B)"
by (simp add: rel_fun_pred_def)
lemma rel_fun_eq_rel_dep_fun_uhint [uhint]:
assumes "(A :: 'a ⇒ bool) ≡ A'"
and "B' ≡ (λ(_ :: 'a). (B :: 'b ⇒ bool))"
shows "(A → B) ≡ ((x : A') → B' x)"
using assms by (simp add: rel_fun_eq_rel_dep_fun)
lemma rel_fun_iff_rel_dep_fun:
"((A :: 'a ⇒ bool) → (B :: 'b ⇒ bool)) (R :: 'a ⇒ 'b ⇒ bool) ⟷ (((_ :: 'a) : A) → B) R"
by (simp add: rel_fun_pred_def)
lemma rel_dep_funI [intro]:
assumes "left_total_on A R"
and "right_unique_on A R"
and "((x : A) ⇛⇩m B x) (eval R)"
shows "((x : A) → B x) R"
using assms unfolding rel_dep_fun_pred_def by auto
lemma rel_dep_funE [elim]:
assumes "((x : A) → B x) R"
obtains "left_total_on A R" "right_unique_on A R" "((x : A) ⇛⇩m B x) (eval R)"
using assms unfolding rel_dep_fun_pred_def by auto
lemma rel_dep_fun_cong [cong]:
assumes "⋀x. A x ⟷ A' x"
and "⋀x y. A' x ⟹ B x y ⟷ B' x y"
shows "((x : A) → B x) = ((x : A') → B' x)"
using assms by (intro ext) (auto intro!: rel_dep_funI left_total_onI
dep_mono_wrt_predI intro: right_unique_onD elim!: rel_dep_funE)
lemma rel_funI [intro]:
assumes "left_total_on A R"
and "right_unique_on A R"
and "(A ⇛⇩m B) (eval R)"
shows "(A → B) R"
using assms by (urule rel_dep_funI)
lemma rel_funE [elim]:
assumes "(A → B) R"
obtains "left_total_on A R" "right_unique_on A R" "(A ⇛⇩m B) (eval R)"
using assms by (urule (e) rel_dep_funE)
lemma mono_rel_dep_fun_mono_wrt_pred_eval: "(((x : A) → B x) ⇛⇩m (x : A) ⇛⇩m B x) eval"
by auto
lemma ex1_rel_right_if_rel_dep_funI:
assumes "((x : A) → B x) R"
and "A x"
shows "∃!y. R x y"
using assms by (blast dest: right_unique_onD)
lemma eq_if_rel_if_rel_if_rel_dep_funI:
assumes "((x : A) → B x) R"
and "A x"
and "R x y" "R x y'"
shows "y = y'"
using assms by (blast dest: right_unique_onD)
lemma eval_eq_if_rel_if_rel_dep_funI [simp]:
assumes "((x : A) → B x) R"
and "A x"
and "R x y"
shows "R`x = y"
using assms by (intro eq_if_rel_if_rel_if_rel_dep_funI[OF assms, symmetric])
(blast intro!: rel_eval_if_ex1[where ?R=R] ex1_rel_right_if_rel_dep_funI)
lemma rel_if_eval_eq_if_rel_dep_funI:
assumes "((x : A) → B x) R"
and "A x"
and "R`x = y"
shows "R x y"
by (rule rel_if_eval_eq_if_in_dom_if_right_unique_on_eq[where ?R=R])
(use assms in ‹blast dest: right_unique_onD›)+
corollary rel_eval_if_rel_dep_funI:
assumes "((x : A) → B x) R"
and "A x"
shows "R x (R`x)"
using assms by (rule rel_if_eval_eq_if_rel_dep_funI) simp
corollary rel_iff_eval_eq_if_rel_dep_funI:
assumes "((x : A) → B x) R"
and "A x"
shows "R x y ⟷ R`x = y"
using assms by (intro iffI; rule eval_eq_if_rel_if_rel_dep_funI rel_if_eval_eq_if_rel_dep_funI)
lemma rel_dep_fun_relE:
assumes "((x : A) → B x) R"
and "A x"
and "R x y"
obtains "B x y" "R`x = y"
proof
from assms show "R`x = y" by simp
with assms show "B x y" by blast
qed
lemma rel_dep_fun_relE':
assumes "((x : A) → B x) R"
obtains "⋀x y. A x ⟹ R x y ⟹ B x y ∧ R`x = y"
using assms by (auto elim: rel_dep_fun_relE)
lemma rel_codom_if_rel_if_pred_if_rel_dep_fun:
assumes "((x : A) → B x) R"
and "A x"
and "R x y"
shows "B x y"
using assms by (auto elim: rel_dep_fun_relE)
lemma rel_dep_fun_contravariant_dom:
assumes "((x : A) → B x) R"
and [dest]: "⋀x. A' x ⟹ A x"
shows "((x : A') → B x) R"
using assms by (fast intro!: rel_dep_funI dest: right_unique_onD)
lemma rel_dep_fun_covariant_codom:
assumes "((x : A) → B x) R"
and "⋀x. A x ⟹ B x (R`x) ⟹ B' x (R`x)"
shows "((x : A) → B' x) R"
using assms by (fast dest: right_unique_onD)
lemma rel_fun_in_codom_on_if_rel_dep_fun:
assumes "((x : A) → B x) R"
shows "(A → in_codom_on A B) R"
using assms by fastforce
lemma comp_eq_eval_restrict_left_le_if_rel_dep_fun:
assumes "((x : A) → B x) R"
shows "((=) ∘ eval R)↾⇘A⇙ ≤ R↾⇘A⇙"
using assms by (intro le_relI) (force intro: rel_eval_if_rel_dep_funI)
lemma restrict_left_le_comp_eq_eval_restrict_left_if_rel_dep_fun:
assumes "((x : A) → B x) R"
shows "R↾⇘A⇙ ≤ ((=) ∘ eval R)↾⇘A⇙"
using assms by (intro le_relI) force
corollary restrict_left_eq_comp_eq_eval_if_rel_dep_fun:
assumes "((x : A) → B x) R"
shows "R↾⇘A⇙ = ((=) ∘ eval R)↾⇘A⇙"
using assms comp_eq_eval_restrict_left_le_if_rel_dep_fun
restrict_left_le_comp_eq_eval_restrict_left_if_rel_dep_fun
by (intro antisym) auto
lemma eval_eq_if_rel_dep_funI:
fixes R :: "'a ⇒ 'b ⇒ bool"
assumes "((x : A) → B x) R" "((x : A') → B' x) R'"
and "R ≤ R'"
and "(A ⊓ A') x"
shows "R`x = R'`x"
proof -
from assms have "R' x (R`x)" "R' x (R'`x)" by (auto intro: rel_eval_if_rel_dep_funI)
with assms show ?thesis by (intro eval_eq_if_rel_if_rel_dep_funI[symmetric]) force+
qed
lemma rel_agree_on_if_eval_eq_if_rel_dep_fun:
assumes crel_dep_fun: "⋀R. ℛ R ⟹ ∃B. ((x : A) → B x) R"
and "⋀R R' x. ℛ R ⟹ ℛ R' ⟹ A x ⟹ R`x = R'`x"
shows "rel_agree_on A ℛ"
proof (rule rel_agree_onI)
fix x y R R' assume hyps: "ℛ R" "ℛ R'" "A x" "R x y"
with crel_dep_fun have "y = R`x" by fastforce
also from assms hyps have "... = R'`x" by blast
finally have "y = R'`x" .
moreover from crel_dep_fun[OF ‹ℛ R'›] obtain B where "((x : A) → B x) R'" by blast
ultimately show "R' x y" using ‹A x› by (auto intro: rel_eval_if_rel_dep_funI)
qed
lemma mono_rel_dep_fun_top_rel_dep_fun_inf_rel_restrict_left:
"(((x : A) → B x) ⇛⇩m (A' : ⊤) ⇛⇩m (x : A ⊓ A') → B x) rel_restrict_left"
by (intro mono_wrt_predI dep_mono_wrt_predI rel_dep_funI
mono_right_unique_on_top_right_unique_on_inf_rel_restrict_left
[THEN dep_mono_wrt_predD, THEN dep_mono_wrt_predD]
mono_left_total_on_top_left_total_on_inf_rel_restrict_left
[THEN dep_mono_wrt_predD, THEN dep_mono_wrt_predD])
auto
end