Theory Datatype_absolute
section ‹Absoluteness Properties for Recursive Datatypes›
theory Datatype_absolute imports Eclose_Absolute begin
locale M_datatypes = M_trancl +
assumes list_replacement1:
"M(A) ==> iterates_replacement(M, is_list_functor(M,A), 0)"
and list_replacement2:
"M(A) ==> strong_replacement(M,
λn y. n∈nat & is_iterates(M, is_list_functor(M,A), 0, n, y))"
and formula_replacement1:
"iterates_replacement(M, is_formula_functor(M), 0)"
and formula_replacement2:
"strong_replacement(M,
λn y. n∈nat & is_iterates(M, is_formula_functor(M), 0, n, y))"
and nth_replacement:
"M(l) ==> iterates_replacement(M, %l t. is_tl(M,l,t), l)"
subsubsection‹Absoluteness of the List Construction›
lemma (in M_datatypes) list_replacement2':
"M(A) ==> strong_replacement(M, λn y. n∈nat & y = (λX. {0} + A * X)^n (0))"
apply (insert list_replacement2 [of A])
apply (rule strong_replacement_cong [THEN iffD1])
apply (rule conj_cong [OF iff_refl iterates_abs [of "is_list_functor(M,A)"]])
apply (simp_all add: list_replacement1 relation1_def)
done
lemma (in M_datatypes) list_closed [intro,simp]:
"M(A) ==> M(list(A))"
apply (insert list_replacement1)
by (simp add: RepFun_closed2 list_eq_Union
list_replacement2' relation1_def
iterates_closed [of "is_list_functor(M,A)"])
text‹WARNING: use only with ‹dest:› or with variables fixed!›
lemmas (in M_datatypes) list_into_M = transM [OF _ list_closed]
lemma (in M_datatypes) list_N_abs [simp]:
"[|M(A); n∈nat; M(Z)|]
==> is_list_N(M,A,n,Z) ⟷ Z = list_N(A,n)"
apply (insert list_replacement1)
apply (simp add: is_list_N_def list_N_def relation1_def nat_into_M
iterates_abs [of "is_list_functor(M,A)" _ "λX. {0} + A*X"])
done
lemma (in M_datatypes) list_N_closed [intro,simp]:
"[|M(A); n∈nat|] ==> M(list_N(A,n))"
apply (insert list_replacement1)
apply (simp add: is_list_N_def list_N_def relation1_def nat_into_M
iterates_closed [of "is_list_functor(M,A)"])
done
lemma (in M_datatypes) mem_list_abs [simp]:
"M(A) ==> mem_list(M,A,l) ⟷ l ∈ list(A)"
apply (insert list_replacement1)
apply (simp add: mem_list_def list_N_def relation1_def list_eq_Union
iterates_closed [of "is_list_functor(M,A)"])
done
lemma (in M_datatypes) list_abs [simp]:
"[|M(A); M(Z)|] ==> is_list(M,A,Z) ⟷ Z = list(A)"
apply (simp add: is_list_def, safe)
apply (rule M_equalityI, simp_all)
done
subsubsection‹Absoluteness of Formulas›
lemma (in M_datatypes) formula_replacement2':
"strong_replacement(M, λn y. n∈nat & y = (λX. ((nat*nat) + (nat*nat)) + (X*X + X))^n (0))"
apply (insert formula_replacement2)
apply (rule strong_replacement_cong [THEN iffD1])
apply (rule conj_cong [OF iff_refl iterates_abs [of "is_formula_functor(M)"]])
apply (simp_all add: formula_replacement1 relation1_def)
done
lemma (in M_datatypes) formula_closed [intro,simp]:
"M(formula)"
apply (insert formula_replacement1)
apply (simp add: RepFun_closed2 formula_eq_Union
formula_replacement2' relation1_def
iterates_closed [of "is_formula_functor(M)"])
done
lemmas (in M_datatypes) formula_into_M = transM [OF _ formula_closed]
lemma (in M_datatypes) formula_N_abs [simp]:
"[|n∈nat; M(Z)|]
==> is_formula_N(M,n,Z) ⟷ Z = formula_N(n)"
apply (insert formula_replacement1)
apply (simp add: is_formula_N_def formula_N_def relation1_def nat_into_M
iterates_abs [of "is_formula_functor(M)" _
"λX. ((nat*nat) + (nat*nat)) + (X*X + X)"])
done
lemma (in M_datatypes) formula_N_closed [intro,simp]:
"n∈nat ==> M(formula_N(n))"
apply (insert formula_replacement1)
apply (simp add: is_formula_N_def formula_N_def relation1_def nat_into_M
iterates_closed [of "is_formula_functor(M)"])
done
lemma (in M_datatypes) mem_formula_abs [simp]:
"mem_formula(M,l) ⟷ l ∈ formula"
apply (insert formula_replacement1)
apply (simp add: mem_formula_def relation1_def formula_eq_Union formula_N_def
iterates_closed [of "is_formula_functor(M)"])
done
lemma (in M_datatypes) formula_abs [simp]:
"[|M(Z)|] ==> is_formula(M,Z) ⟷ Z = formula"
apply (simp add: is_formula_def, safe)
apply (rule M_equalityI, simp_all)
done
lemma (in M_datatypes) length_abs [simp]:
"[|M(A); l ∈ list(A); n ∈ nat|] ==> is_length(M,A,l,n) ⟷ n = length(l)"
apply (subgoal_tac "M(l) & M(n)")
prefer 2 apply (blast dest: transM)
apply (simp add: is_length_def)
apply (blast intro: list_imp_list_N nat_into_Ord list_N_imp_eq_length
dest: list_N_imp_length_lt)
done
definition
is_nth :: "[i=>o,i,i,i] => o" where
"is_nth(M,n,l,Z) ==
∃X[M]. is_iterates(M, is_tl(M), l, n, X) & is_hd(M,X,Z)"
lemma (in M_datatypes) nth_abs [simp]:
"[|M(A); n ∈ nat; l ∈ list(A); M(Z)|]
==> is_nth(M,n,l,Z) ⟷ Z = nth(n,l)"
apply (subgoal_tac "M(l)")
prefer 2 apply (blast intro: transM)
apply (simp add: is_nth_def nth_eq_hd_iterates_tl nat_into_M
tl'_closed iterates_tl'_closed
iterates_abs [OF _ relation1_tl] nth_replacement)
done
lemma (in M_datatypes) depth_abs [simp]:
"[|p ∈ formula; n ∈ nat|] ==> is_depth(M,p,n) ⟷ n = depth(p)"
apply (subgoal_tac "M(p) & M(n)")
prefer 2 apply (blast dest: transM)
apply (simp add: is_depth_def)
apply (blast intro: formula_imp_formula_N nat_into_Ord formula_N_imp_eq_depth
dest: formula_N_imp_depth_lt)
done
subsubsection‹\<^term>‹is_formula_case›: relativization of \<^term>‹formula_case››
definition
is_formula_case ::
"[i=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i]=>o, i, i] => o" where
"is_formula_case(M, is_a, is_b, is_c, is_d, p, z) ==
(∀x[M]. ∀y[M]. finite_ordinal(M,x) ⟶ finite_ordinal(M,y) ⟶
is_Member(M,x,y,p) ⟶ is_a(x,y,z)) &
(∀x[M]. ∀y[M]. finite_ordinal(M,x) ⟶ finite_ordinal(M,y) ⟶
is_Equal(M,x,y,p) ⟶ is_b(x,y,z)) &
(∀x[M]. ∀y[M]. mem_formula(M,x) ⟶ mem_formula(M,y) ⟶
is_Nand(M,x,y,p) ⟶ is_c(x,y,z)) &
(∀x[M]. mem_formula(M,x) ⟶ is_Forall(M,x,p) ⟶ is_d(x,z))"
lemma (in M_datatypes) formula_case_abs [simp]:
"[| Relation2(M,nat,nat,is_a,a); Relation2(M,nat,nat,is_b,b);
Relation2(M,formula,formula,is_c,c); Relation1(M,formula,is_d,d);
p ∈ formula; M(z) |]
==> is_formula_case(M,is_a,is_b,is_c,is_d,p,z) ⟷
z = formula_case(a,b,c,d,p)"
apply (simp add: formula_into_M is_formula_case_def)
apply (erule formula.cases)
apply (simp_all add: Relation1_def Relation2_def)
done
lemma (in M_datatypes) formula_case_closed [intro,simp]:
"[|p ∈ formula;
∀x[M]. ∀y[M]. x∈nat ⟶ y∈nat ⟶ M(a(x,y));
∀x[M]. ∀y[M]. x∈nat ⟶ y∈nat ⟶ M(b(x,y));
∀x[M]. ∀y[M]. x∈formula ⟶ y∈formula ⟶ M(c(x,y));
∀x[M]. x∈formula ⟶ M(d(x))|] ==> M(formula_case(a,b,c,d,p))"
by (erule formula.cases, simp_all)
subsubsection ‹Absoluteness for \<^term>‹formula_rec›: Final Results›
definition
is_formula_rec :: "[i=>o, [i,i,i]=>o, i, i] => o" where
"is_formula_rec(M,MH,p,z) ==
∃dp[M]. ∃i[M]. ∃f[M]. finite_ordinal(M,dp) & is_depth(M,p,dp) &
successor(M,dp,i) & fun_apply(M,f,p,z) & is_transrec(M,MH,i,f)"
text‹Sufficient conditions to relativize the instance of \<^term>‹formula_case›
in \<^term>‹formula_rec››
lemma (in M_datatypes) Relation1_formula_rec_case:
"[|Relation2(M, nat, nat, is_a, a);
Relation2(M, nat, nat, is_b, b);
Relation2 (M, formula, formula,
is_c, λu v. c(u, v, h`succ(depth(u))`u, h`succ(depth(v))`v));
Relation1(M, formula,
is_d, λu. d(u, h ` succ(depth(u)) ` u));
M(h) |]
==> Relation1(M, formula,
is_formula_case (M, is_a, is_b, is_c, is_d),
formula_rec_case(a, b, c, d, h))"
apply (simp (no_asm) add: formula_rec_case_def Relation1_def)
apply (simp)
done
text‹This locale packages the premises of the following theorems,
which is the normal purpose of locales. It doesn't accumulate
constraints on the class \<^term>‹M›, as in most of this development.›
locale Formula_Rec = M_eclose + M_datatypes +
fixes a and is_a and b and is_b and c and is_c and d and is_d and MH
defines
"MH(u::i,f,z) ==
∀fml[M]. is_formula(M,fml) ⟶
is_lambda
(M, fml, is_formula_case (M, is_a, is_b, is_c(f), is_d(f)), z)"
assumes a_closed: "[|x∈nat; y∈nat|] ==> M(a(x,y))"
and a_rel: "Relation2(M, nat, nat, is_a, a)"
and b_closed: "[|x∈nat; y∈nat|] ==> M(b(x,y))"
and b_rel: "Relation2(M, nat, nat, is_b, b)"
and c_closed: "[|x ∈ formula; y ∈ formula; M(gx); M(gy)|]
==> M(c(x, y, gx, gy))"
and c_rel:
"M(f) ==>
Relation2 (M, formula, formula, is_c(f),
λu v. c(u, v, f ` succ(depth(u)) ` u, f ` succ(depth(v)) ` v))"
and d_closed: "[|x ∈ formula; M(gx)|] ==> M(d(x, gx))"
and d_rel:
"M(f) ==>
Relation1(M, formula, is_d(f), λu. d(u, f ` succ(depth(u)) ` u))"
and fr_replace: "n ∈ nat ==> transrec_replacement(M,MH,n)"
and fr_lam_replace:
"M(g) ==>
strong_replacement
(M, λx y. x ∈ formula &
y = ⟨x, formula_rec_case(a,b,c,d,g,x)⟩)"
lemma (in Formula_Rec) formula_rec_case_closed:
"[|M(g); p ∈ formula|] ==> M(formula_rec_case(a, b, c, d, g, p))"
by (simp add: formula_rec_case_def a_closed b_closed c_closed d_closed)
lemma (in Formula_Rec) formula_rec_lam_closed:
"M(g) ==> M(Lambda (formula, formula_rec_case(a,b,c,d,g)))"
by (simp add: lam_closed2 fr_lam_replace formula_rec_case_closed)
lemma (in Formula_Rec) MH_rel2:
"relation2 (M, MH,
λx h. Lambda (formula, formula_rec_case(a,b,c,d,h)))"
apply (simp add: relation2_def MH_def, clarify)
apply (rule lambda_abs2)
apply (rule Relation1_formula_rec_case)
apply (simp_all add: a_rel b_rel c_rel d_rel formula_rec_case_closed)
done
lemma (in Formula_Rec) fr_transrec_closed:
"n ∈ nat
==> M(transrec
(n, λx h. Lambda(formula, formula_rec_case(a, b, c, d, h))))"
by (simp add: transrec_closed [OF fr_replace MH_rel2]
nat_into_M formula_rec_lam_closed)
text‹The main two results: \<^term>‹formula_rec› is absolute for \<^term>‹M›.›
theorem (in Formula_Rec) formula_rec_closed:
"p ∈ formula ==> M(formula_rec(a,b,c,d,p))"
by (simp add: formula_rec_eq fr_transrec_closed
transM [OF _ formula_closed])
theorem (in Formula_Rec) formula_rec_abs:
"[| p ∈ formula; M(z)|]
==> is_formula_rec(M,MH,p,z) ⟷ z = formula_rec(a,b,c,d,p)"
by (simp add: is_formula_rec_def formula_rec_eq transM [OF _ formula_closed]
transrec_abs [OF fr_replace MH_rel2] depth_type
fr_transrec_closed formula_rec_lam_closed eq_commute)
end