Theory logics_quantifiers_example

theory logics_quantifiers_example
  imports logics_quantifiers conditions_positive_infinitary
begin

subsection ‹Examples on Quantifiers›

text‹First-order quantification example.›
lemma "(x. A x  (y. B x y))  (x. y. A x  B x y)" by simp
lemma "(x. A x   (y. B x y))  = (x. y. A x    B x y)" by (simp add: impl_def mexists_def setequ_def)

text‹Propositional quantification example.›
lemma "A. (B. (A  ¬B))" by blast
lemma "(A. (B. A   B)) = " unfolding mforall_def mexists_def by (smt (verit) compl_def dimpl_def setequ_def top_def)

text‹Drinker's principle.›
lemma "x. Drunk x  (y. Drunk y) = "
  by (simp add: impl_def mexists_def mforall_def setequ_def top_def)

text‹Example in non-classical logics.›
typedecl w 
type_synonym σ = "(w σ)"

consts 𝒞::"σ  σ"
abbreviation "  𝒞d"
abbreviation "CLOSURE φ  ADDI φ  EXPN φ  NORM φ  IDEM φ"
abbreviation "INTERIOR φ  MULT φ  CNTR φ  DNRM φ  IDEM φ"

definition mforallInt::"(σ  σ)  σ" ("ΠI_") 
  where "ΠIφ  Π[fp ]φ"
definition mexistsInt::"(σ  σ)  σ" ("ΣI_") 
  where "ΣIφ  Σ[fp ]φ"

(*To improve readability, we introduce for them standard binder notation.*)
notation mforallInt (binder "I" [48]49) 
notation mexistsInt (binder "I" [48]49) 

abbreviation intneg ("¬I_") where "¬IA  d- A"
abbreviation parneg ("¬C_") where "¬CA  𝒞d- A"

lemma "(X. (B. (X   B))) = " by (smt (verit, del_insts) compl_def dimpl_def mexists_def mforall_def setequ_def top_def)
lemma "(IX. (IB. (X   ¬IB))) = " nitpick oops ―‹ counterexample ›


subsection ‹Barcan formula and its converse›

text‹The converse Barcan formula follows readily from monotonicity.›
lemma CBarcan1: "MONO φ  π.  φ(x. π x)   (x. φ(π x))" by (smt (verit, ccfv_SIG) MONO_def mforall_def subset_def)
lemma CBarcan2: "MONO φ  π. (x. φ(π x))  φ(x. π x)" by (smt (verit) MONO_def mexists_def subset_def)

text‹However, the Barcan formula requires a stronger assumption (of an infinitary character).›
lemma Barcan1: "iMULTb φ  π. (x. φ(π x))  φ(x. π x)" unfolding iMULT_b_def by (smt (verit) infimum_def mforall_char image_def range_char1 subset_def)
lemma Barcan2: "iADDIa φ  π. φ(x. π x)  (x. φ(π x))" unfolding iADDI_a_def by (smt (verit, ccfv_threshold) mexists_char image_def range_char1 subset_def supremum_def)

text‹Converse Barcan Formula and composition.›
lemma "MONO φ  π.  φ(Π π)  Π(φ  π)" by (metis MONO_iMULTa iMULT_a_def mforall_char mforall_comp mforall_const_char)
lemma "MONO φ  π.  φ(Π[D] π)  Π[D](φ  π)"  by (smt (verit) MONO_iMULTa fun_comp_def iMULT_a_def mforall_const_char mforall_const_def image_def subset_def)
lemma "CNTR φ  iMULT φ  IDEM φ   π.  φ(Π{ψ} π)  Π{ψ}(φ  π)" nitpick oops ―‹ counterexample ›

text‹Barcan Formula and composition.›
lemma "iMULTb φ  π. Π(φ  π)  φ(Π π)" by (metis iMULT_b_def mforall_char mforall_comp mforall_const_char)
lemma "iMULTb φ  π. Π[D](φ  π)  φ(Π[D] π)" by (smt (verit) fun_comp_def iMULT_b_def infimum_def mforall_const_char image_def subset_def)
lemma "iADDI φ  iMULT φ  π. Π{ψ}(φ  π)  φ(Π{ψ} π)" nitpick oops ―‹ counterexample ›

end