Theory Stirling_Formula
section ‹Stirling's Formula›
theory Stirling_Formula
imports
"HOL-Analysis.Analysis"
"Landau_Symbols.Landau_More"
"HOL-Real_Asymp.Real_Asymp"
begin
context
begin
text ‹
First, we define the $S_n^*$ from Jameson's article:
›
qualified definition S' :: "nat ⇒ real ⇒ real" where
"S' n x = 1/(2*x) + (∑r=1..<n. 1/(of_nat r+x)) + 1 /(2*(n + x))"
text ‹
Next, the trapezium (also called $T$ in Jameson's article):
›
qualified definition T :: "real ⇒ real" where
"T x = 1/(2*x) + 1/(2*(x+1))"
text ‹
Now we define The difference $\Delta(x)$:
›
qualified definition D :: "real ⇒ real" where
"D x = T x - ln (x + 1) + ln x"
qualified lemma S'_telescope_trapezium:
assumes "n > 0"
shows "S' n x = (∑r<n. T (of_nat r + x))"
proof (cases n)
case (Suc m)
hence m: "Suc m = n" by simp
have "(∑r<n. T (of_nat r + x)) =
(∑r<Suc m. 1 / (2 * real r + 2 * x)) + (∑r<n. 1 / (2 * real (Suc r) + 2 * x))"
unfolding m by (simp add: T_def sum.distrib algebra_simps)
also have "(∑r<Suc m. 1 / (2 * real r + 2 * x)) =
1/(2*x) + (∑r<m. 1 / (2 * real (Suc r) + 2 * x))" (is "_ = ?a + ?S")
by (subst sum.lessThan_Suc_shift) simp
also have "(∑r<n. 1 / (2 * real (Suc r) + 2 * x)) =
?S + 1 / (2*(real m + x + 1))" (is "_ = _ + ?b") by (simp add: Suc)
also have "?a + ?S + (?S + ?b) = 2*?S + ?a + ?b" by (simp add: add_ac)
also have "2 * ?S = (∑r=0..<m. 1 / (real (Suc r) + x))"
unfolding sum_distrib_left by (intro sum.cong) (auto simp add: divide_simps)
also have "(∑r=0..<m. 1 / (real (Suc r) + x)) = (∑r=Suc 0..<Suc m. 1 / (real r + x))"
by (subst sum.atLeast_Suc_lessThan_Suc_shift) simp_all
also have "… = (∑r=1..<n. 1 / (real r + x))" unfolding m by simp
also have "… + ?a + ?b = S' n x" by (simp add: S'_def Suc)
finally show ?thesis ..
qed (insert assms, simp_all)
qualified lemma stirling_trapezium:
assumes x: "(x::real) > 0"
shows "D x ∈ {0 .. 1/(12*x^2) - 1/(12 * (x+1)^2)}"
proof -
define y where "y = 1 / (2*x + 1)"
from x have y: "y > 0" "y < 1" by (simp_all add: divide_simps y_def)
from x have "D x = T x - ln ((x + 1) / x)" by (subst ln_div) (simp_all add: D_def)
also from x have "(x + 1) / x = 1 + 1 / x" by (simp add: field_simps)
finally have D: "D x = T x - ln (1 + 1/x)" .
from y have "(λn. y * y^n) sums (y * (1 / (1 - y)))"
by (intro geometric_sums sums_mult) simp_all
hence "(λn. y ^ Suc n) sums (y / (1 - y))" by simp
also from x have "y / (1 - y) = 1 / (2*x)" by (simp add: y_def divide_simps)
finally have *: "(λn. y ^ Suc n) sums (1 / (2*x))" .
from y have "(λn. (-y) * (-y)^n) sums ((-y) * (1 / (1 - (-y))))"
by (intro geometric_sums sums_mult) simp_all
hence "(λn. (-y) ^ Suc n) sums (-(y / (1 + y)))" by simp
also from x have "y / (1 + y) = 1 / (2*(x+1))" by (simp add: y_def divide_simps)
finally have **: "(λn. (-y) ^ Suc n) sums (-(1 / (2*(x+1))))" .
from sums_diff[OF * **] have sum1: "(λn. y ^ Suc n - (-y) ^ Suc n) sums T x"
by (simp add: T_def)
from y have "abs y < 1" "abs (-y) < 1" by simp_all
from sums_diff[OF this[THEN ln_series']]
have "(λn. y ^ n / real n - (-y) ^ n / real n) sums (ln (1 + y) - ln (1 - y))" by simp
also from y have "ln (1 + y) - ln (1 - y) = ln ((1 + y) / (1 - y))" by (simp add: ln_div)
also from x have "(1 + y) / (1 - y) = 1 + 1/x" by (simp add: divide_simps y_def)
finally have "(λn. y^n / real n - (-y)^n / real n) sums ln (1 + 1/x)" .
hence sum2: "(λn. y^Suc n / real (Suc n) - (-y)^Suc n / real (Suc n)) sums ln (1 + 1/x)"
by (subst sums_Suc_iff) simp
have "ln (1 + 1/x) ≤ T x"
proof (rule sums_le [OF _ sum2 sum1])
fix n :: nat
show "y ^ Suc n / real (Suc n) - (-y) ^ Suc n / real (Suc n) ≤ y^Suc n - (-y) ^ Suc n"
proof (cases "even n")
case True
hence eq: "A - (-y) ^ Suc n / B = A + y ^ Suc n / B" "A - (-y) ^ Suc n = A + y ^ Suc n"
for A B by simp_all
from y show ?thesis unfolding eq
by (intro add_mono) (auto simp: divide_simps)
qed simp_all
qed
hence "D x ≥ 0" by (simp add: D)
define c where "c = (λn. if even n then 2 * (1 - 1 / real (Suc n)) else 0)"
note sums_diff[OF sum1 sum2]
also have "(λn. y ^ Suc n - (-y) ^ Suc n - (y ^ Suc n / real (Suc n) -
(-y) ^ Suc n / real (Suc n))) = (λn. c n * y ^ Suc n)"
by (intro ext) (simp add: c_def algebra_simps)
finally have sum3: "(λn. c n * y ^ Suc n) sums D x" by (simp add: D)
from y have "(λn. y^2 * (of_nat (Suc n) * y^n)) sums (y^2 * (1 / (1 - y)^2))"
by (intro sums_mult geometric_deriv_sums) simp_all
hence "(λn. of_nat (Suc n) * y^(n+2)) sums (y^2 / (1 - y)^2)"
by (simp add: algebra_simps power2_eq_square)
also from x have "y^2 / (1 - y)^2 = 1 / (4*x^2)" by (simp add: y_def divide_simps)
finally have *: "(λn. real (Suc n) * y ^ (Suc (Suc n))) sums (1 / (4 * x⇧2))" by simp
from y have "(λn. y^2 * (of_nat (Suc n) * (-y)^n)) sums (y^2 * (1 / (1 - -y)^2))"
by (intro sums_mult geometric_deriv_sums) simp_all
hence "(λn. of_nat (Suc n) * (-y)^(n+2)) sums (y^2 / (1 + y)^2)"
by (simp add: algebra_simps power2_eq_square)
also from x have "y^2 / (1 + y)^2 = 1 / (2^2*(x+1)^2)"
unfolding power_mult_distrib [symmetric] by (simp add: y_def divide_simps add_ac)
finally have **: "(λn. real (Suc n) * (- y) ^ (Suc (Suc n))) sums (1 / (4 * (x + 1)⇧2))" by simp
define d where "d = (λn. if even n then 2 * real n else 0)"
note sums_diff[OF * **]
also have "(λn. real (Suc n) * y^(Suc (Suc n)) - real (Suc n) * (-y)^(Suc (Suc n))) =
(λn. d (Suc n) * y ^ Suc (Suc n))"
by (intro ext) (simp_all add: d_def)
finally have "(λn. d n * y ^ Suc n) sums (1 / (4 * x⇧2) - 1 / (4 * (x + 1)⇧2))"
by (subst (asm) sums_Suc_iff) (simp add: d_def)
from sums_mult[OF this, of "1/3"] x
have sum4: "(λn. d n / 3 * y ^ Suc n) sums (1 / (12 * x^2) - 1 / (12 * (x + 1)^2))"
by (simp add: field_simps)
have "D x ≤ (1 / (12 * x^2) - 1 / (12 * (x + 1)^2))"
proof (intro sums_le [OF _ sum3 sum4] allI)
fix n :: nat
define c' :: "nat ⇒ real"
where "c' = (λn. if odd n ∨ n = 0 then 0 else if n = 2 then 4/3 else 2)"
show "c n * y ^ Suc n ≤ d n / 3 * y ^ Suc n"
proof (intro mult_right_mono)
have "c n ≤ c' n" by (simp add: c_def c'_def)
also consider "n = 0" | "n = 1" | "n = 2" | "n ≥ 3" by force
hence "c' n ≤ d n / 3" by cases (simp_all add: c'_def d_def)
finally show "c n ≤ d n / 3" .
qed (insert y, simp)
qed
with ‹D x ≥ 0› show ?thesis by simp
qed
text ‹
The following functions correspond to the $p_n(x)$ from the article.
The special case $n = 0$ would not, strictly speaking, be necessary, but
it allows some theorems to work even without the precondition $n \neq 0$:
›
qualified definition p :: "nat ⇒ real ⇒ real" where
"p n x = (if n = 0 then 1/x else (∑r<n. D (real r + x)))"
text ‹
We can write the Digamma function in terms of @{term S'}:
›
qualified lemma S'_LIMSEQ_Digamma:
assumes x: "x ≠ 0"
shows "(λn. ln (real n) - S' n x - 1/(2*x)) ⇢ Digamma x"
proof -
define c where "c = (λn. ln (real n) - (∑r<n. inverse (x + real r)))"
have "eventually (λn. 1 / (2 * (x + real n)) = c n - (ln (real n) - S' n x - 1/(2*x))) at_top"
using eventually_gt_at_top[of "0::nat"]
proof eventually_elim
fix n :: nat
assume n: "n > 0"
have "c n - (ln (real n) - S' n x - 1/(2*x)) =
-(∑r<n. inverse (real r + x)) + (1/x + (∑r=1..<n. inverse (real r + x))) + 1/(2*(real n + x))"
using x by (simp add: S'_def c_def field_simps)
also have "1/x + (∑r=1..<n. inverse (real r + x)) = (∑r<n. inverse (real r + x))"
unfolding lessThan_atLeast0 using n
by (subst (2) sum.atLeast_Suc_lessThan) (simp_all add: field_simps)
finally show "1 / (2 * (x + real n)) = c n - (ln (real n) - S' n x - 1/(2*x))" by simp
qed
moreover have "(λn. 1 / (2 * (x + real n))) ⇢ 0"
by real_asymp
ultimately have "(λn. c n - (ln (real n) - S' n x - 1/(2*x))) ⇢ 0"
by (blast intro: Lim_transform_eventually)
from tendsto_minus[OF this] have "(λn. (ln (real n) - S' n x - 1/(2*x)) - c n) ⇢ 0" by simp
moreover from Digamma_LIMSEQ[OF x] have "c ⇢ Digamma x" by (simp add: c_def)
ultimately show "(λn. ln (real n) - S' n x - 1/(2*x)) ⇢ Digamma x"
by (rule Lim_transform [rotated])
qed
text ‹
Moreover, we can give an expansion of @{term S'} with the @{term p} as variation terms.
›
qualified lemma S'_approx:
"S' n x = ln (real n + x) - ln x + p n x"
proof (cases "n = 0")
case True
thus ?thesis by (simp add: p_def S'_def)
next
case False
hence "S' n x = (∑r<n. T (real r + x))"
by (subst S'_telescope_trapezium) simp_all
also have "… = (∑r<n. ln (real r + x + 1) - ln (real r + x) + D (real r + x))"
by (simp add: D_def)
also have "… = (∑r<n. ln (real (Suc r) + x) - ln (real r + x)) + p n x"
using False by (simp add: sum.distrib add_ac p_def)
also have "(∑r<n. ln (real (Suc r) + x) - ln (real r + x)) = ln (real n + x) - ln x"
by (subst sum_lessThan_telescope) simp_all
finally show ?thesis .
qed
text ‹
We define the limit of the @{term p} (simply called $p(x)$ in Jameson's article):
›
qualified definition P :: "real ⇒ real" where
"P x = (∑n. D (real n + x))"
qualified lemma D_summable:
assumes x: "x > 0"
shows "summable (λn. D (real n + x))"
proof -
have *: "summable (λn. 1 / (12 * (x + real n)⇧2) - 1 / (12 * (x + real (Suc n))⇧2))"
by (rule telescope_summable') real_asymp
show "summable (λn. D (real n + x))"
proof (rule summable_comparison_test[OF _ *], rule exI[of _ 2], safe)
fix n :: nat assume "n ≥ 2"
show "norm (D (real n + x)) ≤ 1 / (12 * (x + real n)^2) - 1 / (12 * (x + real (Suc n))^2)"
using stirling_trapezium[of "real n + x"] x by (auto simp: algebra_simps)
qed
qed
qualified lemma p_LIMSEQ:
assumes x: "x > 0"
shows "(λn. p n x) ⇢ P x"
proof (rule Lim_transform_eventually)
from D_summable[OF x] have "(λn. D (real n + x)) sums P x" unfolding P_def
by (simp add: sums_iff)
then show "(λn. ∑r<n. D (real r + x)) ⇢ P x" by (simp add: sums_def)
moreover from eventually_gt_at_top[of 1]
show "eventually (λn. (∑r<n. D (real r + x)) = p n x) at_top"
by eventually_elim (auto simp: p_def)
qed
text ‹
This gives us an expansion of the Digamma function:
›
lemma Digamma_approx:
assumes x: "(x :: real) > 0"
shows "Digamma x = ln x - 1 / (2 * x) - P x"
proof -
have "eventually (λn. ln (inverse (1 + x / real n)) + ln x - 1/(2*x) - p n x =
ln (real n) - S' n x - 1/(2*x)) at_top"
using eventually_gt_at_top[of "1::nat"]
proof eventually_elim
fix n :: nat assume n: "n > 1"
have "ln (real n) - S' n x = ln ((real n) / (real n + x)) + ln x - p n x"
using assms n unfolding S'_approx by (subst ln_div) (auto simp: algebra_simps)
also from n have "real n / (real n + x) = inverse (1 + x / real n)" by (simp add: field_simps)
finally show "ln (inverse (1 + x / real n)) + ln x - 1/(2*x) - p n x =
ln (real n) - S' n x - 1/(2*x)" by simp
qed
moreover have "(λn. ln (inverse (1 + x / real n)) + ln x - 1/(2*x) - p n x)
⇢ ln (inverse (1 + 0)) + ln x - 1/(2*x) - P x"
by (rule tendsto_intros p_LIMSEQ x real_tendsto_divide_at_top
filterlim_real_sequentially | simp)+
hence "(λn. ln (inverse (1 + x / real n)) + ln x - 1/(2*x) - p n x)
⇢ ln x - 1/(2*x) - P x" by simp
ultimately have "(λn. ln (real n) - S' n x - 1 / (2 * x)) ⇢ ln x - 1/(2*x) - P x"
by (blast intro: Lim_transform_eventually)
moreover from x have "(λn. ln (real n) - S' n x - 1 / (2 * x)) ⇢ Digamma x"
by (intro S'_LIMSEQ_Digamma) simp_all
ultimately show "Digamma x = ln x - 1 / (2 * x) - P x"
by (rule LIMSEQ_unique [rotated])
qed
text ‹
Next, we derive some bounds on @{term "P"}:
›
qualified lemma p_ge_0: "x > 0 ⟹ p n x ≥ 0"
using stirling_trapezium[of "real n + x" for n]
by (auto simp add: p_def intro!: sum_nonneg)
qualified lemma P_ge_0: "x > 0 ⟹ P x ≥ 0"
by (rule tendsto_lowerbound[OF p_LIMSEQ])
(insert p_ge_0[of x], simp_all)
qualified lemma p_upper_bound:
assumes "x > 0" "n > 0"
shows "p n x ≤ 1/(12*x^2)"
proof -
from assms have "p n x = (∑r<n. D (real r + x))"
by (simp add: p_def)
also have "… ≤ (∑r<n. 1/(12*(real r + x)^2) - 1/(12 * (real (Suc r) + x)^2))"
using stirling_trapezium[of "real r + x" for r] assms
by (intro sum_mono) (simp add: add_ac)
also have "… = 1 / (12 * x⇧2) - 1 / (12 * (real n + x)⇧2)"
by (subst sum_lessThan_telescope') simp
also have "… ≤ 1 / (12 * x^2)" by simp
finally show ?thesis .
qed
qualified lemma P_upper_bound:
assumes "x > 0"
shows "P x ≤ 1/(12*x^2)"
proof (rule tendsto_upperbound)
show "eventually (λn. p n x ≤ 1 / (12 * x^2)) at_top"
using eventually_gt_at_top[of 0]
by eventually_elim (use p_upper_bound[of x] assms in auto)
show "(λn. p n x) ⇢ P x"
by (simp add: assms p_LIMSEQ)
qed auto
text ‹
We can now use this approximation of the Digamma function to approximate
@{term ln_Gamma} (since the former is the derivative of the latter).
We therefore define the function $g$ from Jameson's article, which measures
the difference between @{term ln_Gamma} and its approximation:
›
qualified definition g :: "real ⇒ real" where
"g x = ln_Gamma x - (x - 1/2) * ln x + x"
qualified lemma DERIV_g: "x > 0 ⟹ (g has_field_derivative -P x) (at x)"
unfolding g_def [abs_def] using Digamma_approx[of x]
by (auto intro!: derivative_eq_intros simp: field_simps)
qualified lemma isCont_P:
assumes "x > 0"
shows "isCont P x"
proof -
define D' :: "real ⇒ real"
where "D' = (λx. - 1 / (2 * x^2 * (x+1)^2))"
have DERIV_D: "(D has_field_derivative D' x) (at x)" if "x > 0" for x
unfolding D_def [abs_def] D'_def T_def
by (insert that, (rule derivative_eq_intros refl | simp)+)
(simp add: power2_eq_square divide_simps, (simp add: algebra_simps)?)
note this [THEN DERIV_chain2, derivative_intros]
have "(P has_field_derivative (∑n. D' (real n + x))) (at x)"
unfolding P_def [abs_def]
proof (rule has_field_derivative_series')
show "convex {x/2<..}" by simp
next
fix n :: nat and y :: real assume y: "y ∈ {x/2<..}"
with assms have "y > 0" by simp
thus "((λa. D (real n + a)) has_real_derivative D' (real n + y)) (at y within {x/2<..})"
by (auto intro!: derivative_eq_intros)
next
from assms D_summable[of x] show "summable (λn. D (real n + x))" by simp
next
show "uniformly_convergent_on {x/2<..} (λn x. ∑i<n. D' (real i + x))"
proof (rule Weierstrass_m_test')
fix n :: nat and y :: real
assume y: "y ∈ {x/2<..}"
with assms have "y > 0" by auto
have "norm (D' (real n + y)) = (1 / (2 * (y + real n)^2)) * (1 / (y + real (Suc n))^2)"
by (simp add: D'_def add_ac)
also from y assms have "… ≤ (1 / (2 * (x/2)^2)) * (1 / (real (Suc n))^2)"
by (intro mult_mono divide_left_mono power_mono) simp_all
also have "1 / (real (Suc n))^2 = inverse ((real (Suc n))^2)" by (simp add: field_simps)
finally show "norm (D' (real n + y)) ≤ (1 / (2 * (x/2)^2)) * inverse ((real (Suc n))^2)" .
next
show "summable (λn. (1 / (2 * (x/2)^2)) * inverse ((real (Suc n))^2))"
by (subst summable_Suc_iff, intro summable_mult inverse_power_summable) simp_all
qed
qed (insert assms, simp_all add: interior_open)
thus ?thesis by (rule DERIV_isCont)
qed
qualified lemma P_continuous_on [THEN continuous_on_subset]: "continuous_on {0<..} P"
by (intro continuous_at_imp_continuous_on ballI isCont_P) auto
qualified lemma P_integrable:
assumes a: "a > 0"
shows "P integrable_on {a..}"
proof -
define f where "f = (λn x. if x ∈ {a..real n} then P x else 0)"
show "P integrable_on {a..}"
proof (rule dominated_convergence)
fix n :: nat
from a have "P integrable_on {a..real n}"
by (intro integrable_continuous_real P_continuous_on) auto
hence "f n integrable_on {a..real n}"
by (rule integrable_eq) (simp add: f_def)
thus "f n integrable_on {a..}"
by (rule integrable_on_superset) (auto simp: f_def)
next
fix n :: nat
show "norm (f n x) ≤ of_real (1/12) * (1 / x^2)" if "x ∈ {a..}" for x
using a P_ge_0 P_upper_bound by (auto simp: f_def)
next
show "(λx::real. of_real (1/12) * (1 / x^2)) integrable_on {a..}"
using has_integral_inverse_power_to_inf[of 2 a] a
by (intro integrable_on_cmult_left) auto
next
show "(λn. f n x) ⇢ P x" if "x∈{a..}" for x
proof -
have "eventually (λn. real n ≥ x) at_top"
using filterlim_real_sequentially by (simp add: filterlim_at_top)
with that have "eventually (λn. f n x = P x) at_top"
by (auto elim!: eventually_mono simp: f_def)
thus "(λn. f n x) ⇢ P x" by (simp add: tendsto_eventually)
qed
qed
qed
qualified definition c :: real where "c = integral {1..} (λx. -P x) + g 1"
text ‹
We can now give bounds on @{term g}:
›
qualified lemma g_bounds:
assumes x: "x ≥ 1"
shows "g x ∈ {c..c + 1/(12*x)}"
proof -
from assms have int_nonneg: "integral {x..} P ≥ 0"
by (intro Henstock_Kurzweil_Integration.integral_nonneg P_integrable)
(auto simp: P_ge_0)
have int_upper_bound: "integral {x..} P ≤ 1/(12*x)"
proof (rule has_integral_le)
from x show "(P has_integral integral {x..} P) {x..}"
by (intro integrable_integral P_integrable) simp_all
from x has_integral_mult_right[OF has_integral_inverse_power_to_inf[of 2 x], of "1/12"]
show "((λx. 1/(12*x^2)) has_integral (1/(12*x))) {x..}" by (simp add: field_simps)
qed (insert P_upper_bound x, simp_all)
note DERIV_g [THEN DERIV_chain2, derivative_intros]
from assms have int1: "((λx. -P x) has_integral (g x - g 1)) {1..x}"
by (intro fundamental_theorem_of_calculus)
(auto simp: has_real_derivative_iff_has_vector_derivative [symmetric]
intro!: derivative_eq_intros)
from x have int2: "((λx. -P x) has_integral integral {x..} (λx. -P x)) {x..}"
by (intro integrable_integral integrable_neg P_integrable) simp_all
from has_integral_Un[OF int1 int2] x
have "((λx. - P x) has_integral g x - g 1 - integral {x..} P) ({1..x} ∪ {x..})"
by (simp add: max_def)
also from x have "{1..x} ∪ {x..} = {1..}" by auto
finally have "((λx. -P x) has_integral g x - g 1 - integral {x..} P) {1..}" .
moreover have "((λx. -P x) has_integral integral {1..} (λx. -P x)) {1..}"
by (intro integrable_integral integrable_neg P_integrable) simp_all
ultimately have "g x - g 1 - integral {x..} P = integral {1..} (λx. -P x)"
by (simp add: has_integral_unique)
hence "g x = c + integral {x..} P" by (simp add: c_def algebra_simps)
with int_upper_bound int_nonneg show "g x ∈ {c..c + 1/(12*x)}" by simp
qed
text ‹
Finally, we have bounds on @{term ln_Gamma}, @{term Gamma}, and @{term fact}.
›
qualified lemma ln_Gamma_bounds_aux:
"x ≥ 1 ⟹ ln_Gamma x ≥ c + (x - 1/2) * ln x - x"
"x ≥ 1 ⟹ ln_Gamma x ≤ c + (x - 1/2) * ln x - x + 1/(12*x)"
using g_bounds[of x] by (simp_all add: g_def)
qualified lemma Gamma_bounds_aux:
assumes x: "x ≥ 1"
shows "Gamma x ≥ exp c * x powr (x - 1/2) / exp x"
"Gamma x ≤ exp c * x powr (x - 1/2) / exp x * exp (1/(12*x))"
proof -
have "exp (ln_Gamma x) ≥ exp (c + (x - 1/2) * ln x - x)"
by (subst exp_le_cancel_iff, rule ln_Gamma_bounds_aux) (simp add: x)
with x show "Gamma x ≥ exp c * x powr (x - 1/2) / exp x"
by (simp add: Gamma_real_pos_exp exp_add exp_diff powr_def del: exp_le_cancel_iff)
next
have "exp (ln_Gamma x) ≤ exp (c + (x - 1/2) * ln x - x + 1/(12*x))"
by (subst exp_le_cancel_iff, rule ln_Gamma_bounds_aux) (simp add: x)
with x show "Gamma x ≤ exp c * x powr (x - 1/2) / exp x * exp (1/(12*x))"
by (simp add: Gamma_real_pos_exp exp_add exp_diff powr_def del: exp_le_cancel_iff)
qed
qualified lemma Gamma_asymp_equiv_aux:
"Gamma ∼[at_top] (λx. exp c * x powr (x - 1/2) / exp x)"
proof (rule asymp_equiv_sandwich)
include asymp_equiv_notation
show "eventually (λx. exp c * x powr (x - 1/2) / exp x ≤ Gamma x) at_top"
"eventually (λx. exp c * x powr (x - 1/2) / exp x * exp (1/(12*x)) ≥ Gamma x) at_top"
using eventually_ge_at_top[of "1::real"]
by (eventually_elim; use Gamma_bounds_aux in force)+
have "((λx::real. exp (1 / (12 * x))) ⤏ exp 0) at_top"
by real_asymp
hence "(λx. exp (1 / (12 * x))) ∼ (λx. 1 :: real)"
by (intro asymp_equivI') simp_all
hence "(λx. exp c * x powr (x - 1 / 2) / exp x * 1) ∼
(λx. exp c * x powr (x - 1 / 2) / exp x * exp (1 / (12 * x)))"
by (intro asymp_equiv_mult asymp_equiv_refl) (simp add: asymp_equiv_sym)
thus "(λx. exp c * x powr (x - 1 / 2) / exp x) ∼
(λx. exp c * x powr (x - 1 / 2) / exp x * exp (1 / (12 * x)))" by simp
qed simp_all
qualified lemma exp_1_powr_real [simp]: "exp (1::real) powr x = exp x"
by (simp add: powr_def)
qualified lemma fact_asymp_equiv_aux:
"fact ∼[at_top] (λx. exp c * sqrt (real x) * (real x / exp 1) powr real x)"
proof -
include asymp_equiv_notation
have "fact ∼ (λn. Gamma (real (Suc n)))" by (simp add: Gamma_fact)
also have "eventually (λn. Gamma (real (Suc n)) = real n * Gamma (real n)) at_top"
using eventually_gt_at_top[of "0::nat"]
by eventually_elim (insert Gamma_plus1[of "real n" for n],
auto simp: add_ac of_nat_in_nonpos_Ints_iff)
also have "(λn. Gamma (real n)) ∼ (λn. exp c * real n powr (real n - 1/2) / exp (real n))"
by (rule asymp_equiv_compose'[OF Gamma_asymp_equiv_aux] filterlim_real_sequentially)+
also have "eventually (λn. real n * (exp c * real n powr (real n - 1 / 2) / exp (real n)) =
exp c * sqrt (real n) * (real n / exp 1) powr real n) at_top"
using eventually_gt_at_top[of "0::nat"]
proof eventually_elim
fix n :: nat assume n: "n > 0"
thus "real n * (exp c * real n powr (real n - 1 / 2) / exp (real n)) =
exp c * sqrt (real n) * (real n / exp 1) powr real n"
by (subst powr_diff) (simp_all add: powr_divide powr_half_sqrt field_simps)
qed
finally show ?thesis by - (simp_all add: asymp_equiv_mult)
qed
text ‹
We cal also bound @{term Digamma} above and below.
›
lemma Digamma_plus_1_gt_ln:
assumes x: "x > (0 :: real)"
shows "Digamma (x + 1) > ln x"
proof -
have "0 < (17 :: real)"
by simp
also have "17 ≤ 12 * x ^ 2 + 28 * x + 17"
using x by auto
finally have "0 < (12 * x ^ 2 + 28 * x + 17) / (12 * (x + 1) ^ 2 * (1 + 2 * x))"
using x by (intro divide_pos_pos mult_pos_pos zero_less_power) auto
also have "… = 2 / (2 * x + 1) - 1 / (2 * (x + 1)) - 1 / (12 * (x + 1) ^ 2)"
using x by (simp add: divide_simps) (auto simp: field_simps power2_eq_square add_eq_0_iff)
also have "2 / (2 * x + 1) ≤ ln (x + 1) - ln x"
using ln_inverse_approx_ge[of x "x + 1"] x by simp
also have "… - 1 / (2 * (x + 1)) - 1 / (12 * (x + 1) ^ 2) ≤
ln (x + 1) - ln x - 1 / (2 * (x + 1)) - P (x + 1)"
using P_upper_bound[of "x + 1"] x by (intro diff_mono) auto
also have "… = Digamma (x + 1) - ln x"
by (subst Digamma_approx) (use x in auto)
finally show "Digamma (x + 1) > ln x"
by simp
qed
lemma Digamma_less_ln:
assumes x: "x > (0 :: real)"
shows "Digamma x < ln x"
proof -
have "Digamma x - ln x = - (1 / (2 * x)) - P x"
by (subst Digamma_approx) (use x in auto)
also have "… < 0 - P x"
using x by (intro diff_strict_right_mono) auto
also have "… ≤ 0"
using P_ge_0[of x] x by simp
finally show "Digamma x < ln x"
by simp
qed
text ‹
We still need to determine the constant term @{term c}, which we do using Wallis'
product formula: $$\prod_{n=1}^\infty \frac{4n^2}{4n^2-1} = \frac{\pi}{2}$$
›
qualified lemma powr_mult_2: "(x::real) > 0 ⟹ x powr (y * 2) = (x^2) powr y"
by (subst mult.commute, subst powr_powr [symmetric]) (simp add: powr_numeral)
qualified lemma exp_mult_2: "exp (y * 2 :: real) = exp y * exp y"
by (subst exp_add [symmetric]) simp
qualified lemma exp_c: "exp c = sqrt (2*pi)"
proof -
include asymp_equiv_notation
define p where "p = (λn. ∏k=1..n. (4*real k^2) / (4*real k^2 - 1))"
have p_0 [simp]: "p 0 = 1" by (simp add: p_def)
have p_Suc: "p (Suc n) = p n * (4 * real (Suc n)^2) / (4 * real (Suc n)^2 - 1)"
for n unfolding p_def by (subst prod.nat_ivl_Suc') simp_all
have p: "p = (λn. 16 ^ n * fact n ^ 4 / (fact (2 * n))⇧2 / (2 * real n + 1))"
proof
fix n :: nat
have "p n = (∏k=1..n. (2*real k)^2 / (2*real k - 1) / (2 * real k + 1))"
unfolding p_def by (intro prod.cong refl) (simp add: field_simps power2_eq_square)
also have "… = (∏k=1..n. (2*real k)^2 / (2*real k - 1)) / (∏k=1..n. (2 * real (Suc k) - 1))"
by (simp add: prod_dividef prod.distrib add_ac)
also have "(∏k=1..n. (2 * real (Suc k) - 1)) = (∏k=Suc 1..Suc n. (2 * real k - 1))"
by (subst prod.atLeast_Suc_atMost_Suc_shift) simp_all
also have "… = (∏k=1..n. (2 * real k - 1)) * (2 * real n + 1)"
by (induction n) (simp_all add: prod.nat_ivl_Suc')
also have "(∏k = 1..n. (2 * real k)⇧2 / (2 * real k - 1)) / … =
(∏k = 1..n. (2 * real k)^2 / (2 * real k - 1)^2) / (2 * real n + 1)"
unfolding power2_eq_square by (simp add: prod.distrib prod_dividef)
also have "(∏k = 1..n. (2 * real k)^2 / (2 * real k - 1)^2) =
(∏k = 1..n. (2 * real k)^4 / ((2*real k)*(2 * real k - 1))^2)"
by (rule prod.cong) (simp_all add: power2_eq_square eval_nat_numeral)
also have "… = 16^n * fact n^4 / (∏k=1..n. (2*real k) * (2*real k - 1))^2"
by (simp add: prod.distrib prod_dividef fact_prod
prod_power_distrib [symmetric] prod_constant)
also have "(∏k=1..n. (2*real k) * (2*real k - 1)) = fact (2*n)"
by (induction n) (simp_all add: algebra_simps prod.nat_ivl_Suc')
finally show "p n = 16 ^ n * fact n ^ 4 / (fact (2 * n))⇧2 / (2 * real n + 1)" .
qed
have "p ∼ (λn. 16 ^ n * fact n ^ 4 / (fact (2 * n))⇧2 / (2 * real n + 1))"
by (simp add: p)
also have "… ∼ (λn. 16^n * (exp c * sqrt (real n) * (real n / exp 1) powr real n)^4 /
(exp c * sqrt (real (2*n)) * (real (2*n) / exp 1) powr real (2*n))^2 /
(2 * real n + 1))" (is "_ ∼ ?f")
by (intro asymp_equiv_mult asymp_equiv_divide asymp_equiv_refl mult_nat_left_at_top
fact_asymp_equiv_aux asymp_equiv_power asymp_equiv_compose'[OF fact_asymp_equiv_aux])
simp_all
also have "eventually (λn. … n = exp c ^ 2 / (4 + 2/n)) at_top"
using eventually_gt_at_top[of "0::nat"]
proof eventually_elim
fix n :: nat assume n: "n > 0"
have [simp]: "16^n = 4^n * (4^n :: real)" by (simp add: power_mult_distrib [symmetric])
from n have "?f n = exp c ^ 2 * (n / (2*(2*n+1)))"
by (simp add: power_mult_distrib divide_simps powr_mult real_sqrt_power_even)
(simp add: field_simps power2_eq_square eval_nat_numeral powr_mult_2
exp_mult_2 powr_realpow)
also from n have "… = exp c ^ 2 / (4 + 2/n)" by (simp add: field_simps)
finally show "?f n = …" .
qed
also have "(λx. 4 + 2 / real x) ∼ (λx. 4)"
by (subst asymp_equiv_add_right) auto
finally have "p ⇢ exp c ^ 2 / 4"
by (rule asymp_equivD_const) (simp_all add: asymp_equiv_divide)
moreover have "p ⇢ pi / 2" unfolding p_def by (rule wallis)
ultimately have "exp c ^ 2 / 4 = pi / 2" by (rule LIMSEQ_unique)
hence "2 * pi = exp c ^ 2" by simp
also have "sqrt (exp c ^ 2) = exp c" by simp
finally show "exp c = sqrt (2 * pi)" ..
qed
qualified lemma c: "c = ln (2*pi) / 2"
proof -
note exp_c [symmetric]
also have "ln (exp c) = c" by simp
finally show ?thesis by (simp add: ln_sqrt)
qed
text ‹
This gives us the final bounds:
›
theorem Gamma_bounds:
assumes "x ≥ 1"
shows "Gamma x ≥ sqrt (2*pi/x) * (x / exp 1) powr x" (is ?th1)
"Gamma x ≤ sqrt (2*pi/x) * (x / exp 1) powr x * exp (1 / (12 * x))" (is ?th2)
proof -
from assms have "exp c * x powr (x - 1/2) / exp x = sqrt (2*pi/x) * (x / exp 1) powr x"
by (subst powr_diff)
(simp add: exp_c real_sqrt_divide powr_divide powr_half_sqrt field_simps)
with Gamma_bounds_aux[OF assms] show ?th1 ?th2 by simp_all
qed
theorem ln_Gamma_bounds:
assumes "x ≥ 1"
shows "ln_Gamma x ≥ ln (2*pi/x) / 2 + x * ln x - x" (is ?th1)
"ln_Gamma x ≤ ln (2*pi/x) / 2 + x * ln x - x + 1/(12*x)" (is ?th2)
proof -
from ln_Gamma_bounds_aux[OF assms] assms show ?th1 ?th2
by (simp_all add: c field_simps ln_div)
from assms have "exp c * x powr (x - 1/2) / exp x = sqrt (2*pi/x) * (x / exp 1) powr x"
by (subst powr_diff)
(simp add: exp_c real_sqrt_divide powr_divide powr_half_sqrt field_simps)
qed
theorem fact_bounds:
assumes "n > 0"
shows "(fact n :: real) ≥ sqrt (2*pi*n) * (n / exp 1) ^ n" (is ?th1)
"(fact n :: real) ≤ sqrt (2*pi*n) * (n / exp 1) ^ n * exp (1 / (12 * n))" (is ?th2)
proof -
from assms have n: "real n ≥ 1" by simp
from assms Gamma_plus1[of "real n"]
have "real n * Gamma (real n) = Gamma (real (Suc n))"
by (simp add: of_nat_in_nonpos_Ints_iff add_ac)
also have "Gamma (real (Suc n)) = fact n" by (subst Gamma_fact [symmetric]) simp
finally have *: "fact n = real n * Gamma (real n)" by simp
have "2*pi/n = 2*pi*n / n^2" by (simp add: power2_eq_square)
also have "sqrt … = sqrt (2*pi*n) / n" by (subst real_sqrt_divide) simp_all
also have "real n * … = sqrt (2*pi*n)" by simp
finally have **: "real n * sqrt (2*pi/real n) = sqrt (2*pi*real n)" .
note *
also note Gamma_bounds(2)[OF n]
also have "real n * (sqrt (2 * pi / real n) * (real n / exp 1) powr real n *
exp (1 / (12 * real n))) =
(real n * sqrt (2*pi/n)) * (n / exp 1) powr n * exp (1 / (12 * n))"
by (simp add: algebra_simps)
also from n have "(real n / exp 1) powr real n = (real n / exp 1) ^ n"
by (subst powr_realpow) simp_all
also note **
finally show ?th2 by - (insert assms, simp_all)
have "sqrt (2*pi*n) * (n / exp 1) powr n = n * (sqrt (2*pi/n) * (n / exp 1) powr n)"
by (subst ** [symmetric]) (simp add: field_simps)
also from assms have "… ≤ real n * Gamma (real n)"
by (intro mult_left_mono Gamma_bounds(1)) simp_all
also from n have "(real n / exp 1) powr real n = (real n / exp 1) ^ n"
by (subst powr_realpow) simp_all
also note * [symmetric]
finally show ?th1 .
qed
theorem ln_fact_bounds:
assumes "n > 0"
shows "ln (fact n :: real) ≥ ln (2*pi*n)/2 + n * ln n - n" (is ?th1)
"ln (fact n :: real) ≤ ln (2*pi*n)/2 + n * ln n - n + 1/(12*real n)" (is ?th2)
proof -
have "ln (fact n :: real) ≥ ln (sqrt (2*pi*real n)*(real n/exp 1)^n)"
using fact_bounds(1)[OF assms] assms by (subst ln_le_cancel_iff) auto
also from assms have "ln (sqrt (2*pi*real n)*(real n/exp 1)^n) = ln (2*pi*n)/2 + n * ln n - n"
by (simp add: ln_mult ln_div ln_realpow ln_sqrt field_simps)
finally show ?th1 .
next
have "ln (fact n :: real) ≤ ln (sqrt (2*pi*real n) * (real n/exp 1)^n * exp (1/(12*real n)))"
using fact_bounds(2)[OF assms] assms by (subst ln_le_cancel_iff) auto
also from assms have "… = ln (2*pi*n)/2 + n * ln n - n + 1/(12*real n)"
by (simp add: ln_mult ln_div ln_realpow ln_sqrt field_simps)
finally show ?th2 .
qed
theorem Gamma_asymp_equiv:
"Gamma ∼[at_top] (λx. sqrt (2*pi/x) * (x / exp 1) powr x :: real)"
proof -
note Gamma_asymp_equiv_aux
also have "eventually (λx. exp c * x powr (x - 1/2) / exp x =
sqrt (2*pi/x) * (x / exp 1) powr x) at_top"
using eventually_gt_at_top[of "0::real"]
proof eventually_elim
fix x :: real assume x: "x > 0"
thus "exp c * x powr (x - 1/2) / exp x = sqrt (2*pi/x) * (x / exp 1) powr x"
by (subst powr_diff)
(simp add: exp_c powr_half_sqrt powr_divide field_simps real_sqrt_divide)
qed
finally show ?thesis .
qed
theorem fact_asymp_equiv:
"fact ∼[at_top] (λn. sqrt (2*pi*n) * (n / exp 1) ^ n :: real)"
proof -
note fact_asymp_equiv_aux
also have "eventually (λn. exp c * sqrt (real n) = sqrt (2 * pi * real n)) at_top"
using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: exp_c real_sqrt_mult)
also have "eventually (λn. (n / exp 1) powr n = (n / exp 1) ^ n) at_top"
using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: powr_realpow)
finally show ?thesis .
qed
corollary stirling_tendsto_sqrt_pi:
"(λn. fact n / (sqrt (2 * n) * (n / exp 1) ^ n)) ⇢ sqrt pi"
proof -
have *: "(λn. fact n / (sqrt (2 * pi * n) * (n / exp 1) ^ n)) ⇢ 1"
using fact_asymp_equiv by (simp add: asymp_equiv_def)
have "(λn. sqrt pi * fact n / (sqrt (2 * pi * real n) * (real n / exp 1) ^ n))
= (λn. fact n / (sqrt (real (2 * n)) * (real n / exp 1) ^ n))"
by (force simp add: divide_simps powr_realpow real_sqrt_mult)
with tendsto_mult_left[OF *, of "sqrt pi"] show ?thesis by simp
qed
end
end