Theory Convex
section ‹Convex Sets and Functions›
theory Convex
imports
Affine "HOL-Library.Set_Algebras" "HOL-Library.FuncSet"
begin
subsection ‹Convex Sets›
definition convex :: "'a::real_vector set ⇒ bool"
where "convex s ⟷ (∀x∈s. ∀y∈s. ∀u≥0. ∀v≥0. u + v = 1 ⟶ u *⇩R x + v *⇩R y ∈ s)"
lemma convexI:
assumes "⋀x y u v. x ∈ s ⟹ y ∈ s ⟹ 0 ≤ u ⟹ 0 ≤ v ⟹ u + v = 1 ⟹ u *⇩R x + v *⇩R y ∈ s"
shows "convex s"
by (simp add: assms convex_def)
lemma convexD:
assumes "convex s" and "x ∈ s" and "y ∈ s" and "0 ≤ u" and "0 ≤ v" and "u + v = 1"
shows "u *⇩R x + v *⇩R y ∈ s"
using assms unfolding convex_def by fast
lemma convex_alt: "convex s ⟷ (∀x∈s. ∀y∈s. ∀u. 0 ≤ u ∧ u ≤ 1 ⟶ ((1 - u) *⇩R x + u *⇩R y) ∈ s)"
(is "_ ⟷ ?alt")
by (smt (verit) convexD convexI)
lemma convexD_alt:
assumes "convex s" "a ∈ s" "b ∈ s" "0 ≤ u" "u ≤ 1"
shows "((1 - u) *⇩R a + u *⇩R b) ∈ s"
using assms unfolding convex_alt by auto
lemma mem_convex_alt:
assumes "convex S" "x ∈ S" "y ∈ S" "u ≥ 0" "v ≥ 0" "u + v > 0"
shows "((u/(u+v)) *⇩R x + (v/(u+v)) *⇩R y) ∈ S"
using assms
by (simp add: convex_def zero_le_divide_iff add_divide_distrib [symmetric])
lemma convex_empty[intro,simp]: "convex {}"
unfolding convex_def by simp
lemma convex_singleton[intro,simp]: "convex {a}"
unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric])
lemma convex_UNIV[intro,simp]: "convex UNIV"
unfolding convex_def by auto
lemma convex_Inter: "(⋀s. s∈f ⟹ convex s) ⟹ convex(⋂f)"
unfolding convex_def by auto
lemma convex_Int: "convex s ⟹ convex t ⟹ convex (s ∩ t)"
unfolding convex_def by auto
lemma convex_INT: "(⋀i. i ∈ A ⟹ convex (B i)) ⟹ convex (⋂i∈A. B i)"
unfolding convex_def by auto
lemma convex_Times: "convex s ⟹ convex t ⟹ convex (s × t)"
unfolding convex_def by auto
lemma convex_halfspace_le: "convex {x. inner a x ≤ b}"
unfolding convex_def
by (auto simp: inner_add intro!: convex_bound_le)
lemma convex_halfspace_ge: "convex {x. inner a x ≥ b}"
proof -
have *: "{x. inner a x ≥ b} = {x. inner (-a) x ≤ -b}"
by auto
show ?thesis
unfolding * using convex_halfspace_le[of "-a" "-b"] by auto
qed
lemma convex_halfspace_abs_le: "convex {x. ¦inner a x¦ ≤ b}"
proof -
have *: "{x. ¦inner a x¦ ≤ b} = {x. inner a x ≤ b} ∩ {x. -b ≤ inner a x}"
by auto
show ?thesis
unfolding * by (simp add: convex_Int convex_halfspace_ge convex_halfspace_le)
qed
lemma convex_hyperplane: "convex {x. inner a x = b}"
proof -
have *: "{x. inner a x = b} = {x. inner a x ≤ b} ∩ {x. inner a x ≥ b}"
by auto
show ?thesis using convex_halfspace_le convex_halfspace_ge
by (auto intro!: convex_Int simp: *)
qed
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
unfolding convex_def
by (auto simp: convex_bound_lt inner_add)
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
using convex_halfspace_lt[of "-a" "-b"] by auto
lemma convex_halfspace_Re_ge: "convex {x. Re x ≥ b}"
using convex_halfspace_ge[of b "1::complex"] by simp
lemma convex_halfspace_Re_le: "convex {x. Re x ≤ b}"
using convex_halfspace_le[of "1::complex" b] by simp
lemma convex_halfspace_Im_ge: "convex {x. Im x ≥ b}"
using convex_halfspace_ge[of b 𝗂] by simp
lemma convex_halfspace_Im_le: "convex {x. Im x ≤ b}"
using convex_halfspace_le[of 𝗂 b] by simp
lemma convex_halfspace_Re_gt: "convex {x. Re x > b}"
using convex_halfspace_gt[of b "1::complex"] by simp
lemma convex_halfspace_Re_lt: "convex {x. Re x < b}"
using convex_halfspace_lt[of "1::complex" b] by simp
lemma convex_halfspace_Im_gt: "convex {x. Im x > b}"
using convex_halfspace_gt[of b 𝗂] by simp
lemma convex_halfspace_Im_lt: "convex {x. Im x < b}"
using convex_halfspace_lt[of 𝗂 b] by simp
lemma convex_real_interval [iff]:
fixes a b :: "real"
shows "convex {a..}" and "convex {..b}"
and "convex {a<..}" and "convex {..<b}"
and "convex {a..b}" and "convex {a<..b}"
and "convex {a..<b}" and "convex {a<..<b}"
proof -
have "{a..} = {x. a ≤ inner 1 x}"
by auto
then show 1: "convex {a..}"
by (simp only: convex_halfspace_ge)
have "{..b} = {x. inner 1 x ≤ b}"
by auto
then show 2: "convex {..b}"
by (simp only: convex_halfspace_le)
have "{a<..} = {x. a < inner 1 x}"
by auto
then show 3: "convex {a<..}"
by (simp only: convex_halfspace_gt)
have "{..<b} = {x. inner 1 x < b}"
by auto
then show 4: "convex {..<b}"
by (simp only: convex_halfspace_lt)
have "{a..b} = {a..} ∩ {..b}"
by auto
then show "convex {a..b}"
by (simp only: convex_Int 1 2)
have "{a<..b} = {a<..} ∩ {..b}"
by auto
then show "convex {a<..b}"
by (simp only: convex_Int 3 2)
have "{a..<b} = {a..} ∩ {..<b}"
by auto
then show "convex {a..<b}"
by (simp only: convex_Int 1 4)
have "{a<..<b} = {a<..} ∩ {..<b}"
by auto
then show "convex {a<..<b}"
by (simp only: convex_Int 3 4)
qed
lemma convex_Reals: "convex ℝ"
by (simp add: convex_def scaleR_conv_of_real)
subsection ‹Explicit expressions for convexity in terms of arbitrary sums›
lemma convex_sum:
fixes C :: "'a::real_vector set"
assumes "finite S"
and "convex C"
and a: "(∑ i ∈ S. a i) = 1" "⋀i. i ∈ S ⟹ a i ≥ 0"
and C: "⋀i. i ∈ S ⟹ y i ∈ C"
shows "(∑ j ∈ S. a j *⇩R y j) ∈ C"
using ‹finite S› a C
proof (induction arbitrary: a set: finite)
case empty
then show ?case by simp
next
case (insert i S)
then have "0 ≤ sum a S"
by (simp add: sum_nonneg)
have "a i *⇩R y i + (∑j∈S. a j *⇩R y j) ∈ C"
proof (cases "sum a S = 0")
case True with insert show ?thesis
by (simp add: sum_nonneg_eq_0_iff)
next
case False
with ‹0 ≤ sum a S› have "0 < sum a S"
by simp
then have "(∑j∈S. (a j / sum a S) *⇩R y j) ∈ C"
using insert
by (simp add: insert.IH flip: sum_divide_distrib)
with ‹convex C› insert ‹0 ≤ sum a S›
have "a i *⇩R y i + sum a S *⇩R (∑j∈S. (a j / sum a S) *⇩R y j) ∈ C"
by (simp add: convex_def)
then show ?thesis
by (simp add: scaleR_sum_right False)
qed
then show ?case using ‹finite S› and ‹i ∉ S›
by simp
qed
lemma convex:
"convex S ⟷
(∀(k::nat) u x. (∀i. 1≤i ∧ i≤k ⟶ 0 ≤ u i ∧ x i ∈S) ∧ (sum u {1..k} = 1)
⟶ sum (λi. u i *⇩R x i) {1..k} ∈ S)"
(is "?lhs = ?rhs")
proof
show "?lhs ⟹ ?rhs"
by (metis (full_types) atLeastAtMost_iff convex_sum finite_atLeastAtMost)
assume *: "∀k u x. (∀ i :: nat. 1 ≤ i ∧ i ≤ k ⟶ 0 ≤ u i ∧ x i ∈ S) ∧ sum u {1..k} = 1
⟶ (∑i = 1..k. u i *⇩R (x i :: 'a)) ∈ S"
{
fix μ :: real
fix x y :: 'a
assume xy: "x ∈ S" "y ∈ S"
assume mu: "μ ≥ 0" "μ ≤ 1"
let ?u = "λi. if (i :: nat) = 1 then μ else 1 - μ"
let ?x = "λi. if (i :: nat) = 1 then x else y"
have "{1 :: nat .. 2} ∩ - {x. x = 1} = {2}"
by auto
then have S: "(∑j ∈ {1..2}. ?u j *⇩R ?x j) ∈ S"
using sum.If_cases[of "{(1 :: nat) .. 2}" "λx. x = 1" "λx. μ" "λx. 1 - μ"]
using mu xy "*" by auto
have grarr: "(∑j ∈ {Suc (Suc 0)..2}. ?u j *⇩R ?x j) = (1 - μ) *⇩R y"
using sum.atLeast_Suc_atMost[of "Suc (Suc 0)" 2 "λ j. (1 - μ) *⇩R y"] by auto
with sum.atLeast_Suc_atMost
have "(∑j ∈ {1..2}. ?u j *⇩R ?x j) = μ *⇩R x + (1 - μ) *⇩R y"
by (smt (verit, best) Suc_1 Suc_eq_plus1 add_0 le_add1)
then have "(1 - μ) *⇩R y + μ *⇩R x ∈ S"
using S by (auto simp: add.commute)
}
then show "convex S"
unfolding convex_alt by auto
qed
lemma convex_explicit:
fixes S :: "'a::real_vector set"
shows "convex S ⟷
(∀t u. finite t ∧ t ⊆ S ∧ (∀x∈t. 0 ≤ u x) ∧ sum u t = 1 ⟶ sum (λx. u x *⇩R x) t ∈ S)"
proof safe
fix t
fix u :: "'a ⇒ real"
assume "convex S"
and "finite t"
and "t ⊆ S" "∀x∈t. 0 ≤ u x" "sum u t = 1"
then show "(∑x∈t. u x *⇩R x) ∈ S"
by (simp add: convex_sum subsetD)
next
assume *: "∀t. ∀ u. finite t ∧ t ⊆ S ∧ (∀x∈t. 0 ≤ u x) ∧
sum u t = 1 ⟶ (∑x∈t. u x *⇩R x) ∈ S"
show "convex S"
unfolding convex_alt
proof safe
fix x y
fix μ :: real
assume **: "x ∈ S" "y ∈ S" "0 ≤ μ" "μ ≤ 1"
show "(1 - μ) *⇩R x + μ *⇩R y ∈ S"
proof (cases "x = y")
case False
then show ?thesis
using *[rule_format, of "{x, y}" "λ z. if z = x then 1 - μ else μ"] **
by auto
next
case True
then show ?thesis
using *[rule_format, of "{x, y}" "λ z. 1"] **
by (auto simp: field_simps real_vector.scale_left_diff_distrib)
qed
qed
qed
lemma convex_finite:
assumes "finite S"
shows "convex S ⟷ (∀u. (∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ⟶ sum (λx. u x *⇩R x) S ∈ S)"
(is "?lhs = ?rhs")
proof
{ have if_distrib_arg: "⋀P f g x. (if P then f else g) x = (if P then f x else g x)"
by simp
fix T :: "'a set" and u :: "'a ⇒ real"
assume sum: "∀u. (∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ⟶ (∑x∈S. u x *⇩R x) ∈ S"
assume *: "∀x∈T. 0 ≤ u x" "sum u T = 1"
assume "T ⊆ S"
then have "S ∩ T = T" by auto
with sum[THEN spec[where x="λx. if x∈T then u x else 0"]] *
have "(∑x∈T. u x *⇩R x) ∈ S"
by (auto simp: assms sum.If_cases if_distrib if_distrib_arg) }
moreover assume ?rhs
ultimately show ?lhs
unfolding convex_explicit by auto
qed (auto simp: convex_explicit assms)
subsection ‹Convex Functions on a Set›
definition convex_on :: "'a::real_vector set ⇒ ('a ⇒ real) ⇒ bool"
where "convex_on S f ⟷ convex S ∧
(∀x∈S. ∀y∈S. ∀u≥0. ∀v≥0. u + v = 1 ⟶ f (u *⇩R x + v *⇩R y) ≤ u * f x + v * f y)"
definition concave_on :: "'a::real_vector set ⇒ ('a ⇒ real) ⇒ bool"
where "concave_on S f ≡ convex_on S (λx. - f x)"
lemma convex_on_iff_concave: "convex_on S f = concave_on S (λx. - f x)"
by (simp add: concave_on_def)
lemma concave_on_iff:
"concave_on S f ⟷ convex S ∧
(∀x∈S. ∀y∈S. ∀u≥0. ∀v≥0. u + v = 1 ⟶ f (u *⇩R x + v *⇩R y) ≥ u * f x + v * f y)"
by (auto simp: concave_on_def convex_on_def algebra_simps)
lemma concave_onD:
assumes "concave_on A f"
shows "⋀t x y. t ≥ 0 ⟹ t ≤ 1 ⟹ x ∈ A ⟹ y ∈ A ⟹
f ((1 - t) *⇩R x + t *⇩R y) ≥ (1 - t) * f x + t * f y"
using assms by (auto simp: concave_on_iff)
lemma convex_onI [intro?]:
assumes "⋀t x y. t > 0 ⟹ t < 1 ⟹ x ∈ A ⟹ y ∈ A ⟹
f ((1 - t) *⇩R x + t *⇩R y) ≤ (1 - t) * f x + t * f y"
and "convex A"
shows "convex_on A f"
unfolding convex_on_def
by (smt (verit, del_insts) assms mult_cancel_right1 mult_eq_0_iff scaleR_collapse scaleR_eq_0_iff)
lemma convex_onD:
assumes "convex_on A f"
shows "⋀t x y. t ≥ 0 ⟹ t ≤ 1 ⟹ x ∈ A ⟹ y ∈ A ⟹
f ((1 - t) *⇩R x + t *⇩R y) ≤ (1 - t) * f x + t * f y"
using assms by (auto simp: convex_on_def)
lemma convex_on_linorderI [intro?]:
fixes A :: "('a::{linorder,real_vector}) set"
assumes "⋀t x y. t > 0 ⟹ t < 1 ⟹ x ∈ A ⟹ y ∈ A ⟹ x < y ⟹
f ((1 - t) *⇩R x + t *⇩R y) ≤ (1 - t) * f x + t * f y"
and "convex A"
shows "convex_on A f"
by (smt (verit, best) add.commute assms convex_onI distrib_left linorder_cases mult.commute mult_cancel_left2 scaleR_collapse)
lemma concave_on_linorderI [intro?]:
fixes A :: "('a::{linorder,real_vector}) set"
assumes "⋀t x y. t > 0 ⟹ t < 1 ⟹ x ∈ A ⟹ y ∈ A ⟹ x < y ⟹
f ((1 - t) *⇩R x + t *⇩R y) ≥ (1 - t) * f x + t * f y"
and "convex A"
shows "concave_on A f"
by (smt (verit) assms concave_on_def convex_on_linorderI mult_minus_right)
lemma convex_on_imp_convex: "convex_on A f ⟹ convex A"
by (auto simp: convex_on_def)
lemma concave_on_imp_convex: "concave_on A f ⟹ convex A"
by (simp add: concave_on_def convex_on_imp_convex)
lemma convex_onD_Icc:
assumes "convex_on {x..y} f" "x ≤ (y :: _ :: {real_vector,preorder})"
shows "⋀t. t ≥ 0 ⟹ t ≤ 1 ⟹
f ((1 - t) *⇩R x + t *⇩R y) ≤ (1 - t) * f x + t * f y"
using assms(2) by (intro convex_onD [OF assms(1)]) simp_all
lemma convex_on_subset: "⟦convex_on T f; S ⊆ T; convex S⟧ ⟹ convex_on S f"
by (simp add: convex_on_def subset_iff)
lemma convex_on_add [intro]:
assumes "convex_on S f"
and "convex_on S g"
shows "convex_on S (λx. f x + g x)"
proof -
{
fix x y
assume "x ∈ S" "y ∈ S"
moreover
fix u v :: real
assume "0 ≤ u" "0 ≤ v" "u + v = 1"
ultimately
have "f (u *⇩R x + v *⇩R y) + g (u *⇩R x + v *⇩R y) ≤ (u * f x + v * f y) + (u * g x + v * g y)"
using assms unfolding convex_on_def by (auto simp: add_mono)
then have "f (u *⇩R x + v *⇩R y) + g (u *⇩R x + v *⇩R y) ≤ u * (f x + g x) + v * (f y + g y)"
by (simp add: field_simps)
}
with assms show ?thesis
unfolding convex_on_def by auto
qed
lemma convex_on_ident: "convex_on S (λx. x) ⟷ convex S"
by (simp add: convex_on_def)
lemma concave_on_ident: "concave_on S (λx. x) ⟷ convex S"
by (simp add: concave_on_iff)
lemma convex_on_const: "convex_on S (λx. a) ⟷ convex S"
by (simp add: convex_on_def flip: distrib_right)
lemma concave_on_const: "concave_on S (λx. a) ⟷ convex S"
by (simp add: concave_on_iff flip: distrib_right)
lemma convex_on_diff:
assumes "convex_on S f" and "concave_on S g"
shows "convex_on S (λx. f x - g x)"
using assms concave_on_def convex_on_add by fastforce
lemma concave_on_diff:
assumes "concave_on S f"
and "convex_on S g"
shows "concave_on S (λx. f x - g x)"
using convex_on_diff assms concave_on_def by fastforce
lemma concave_on_add:
assumes "concave_on S f"
and "concave_on S g"
shows "concave_on S (λx. f x + g x)"
using assms convex_on_iff_concave concave_on_diff concave_on_def by fastforce
lemma convex_on_mul:
fixes S::"real set"
assumes "convex_on S f" "convex_on S g"
assumes "mono_on S f" "mono_on S g"
assumes fty: "f ∈ S → {0..}" and gty: "g ∈ S → {0..}"
shows "convex_on S (λx. f x*g x)"
proof (intro convex_on_linorderI)
show "convex S"
using assms convex_on_imp_convex by auto
fix t::real and x y
assume t: "0 < t" "t < 1" and xy: "x ∈ S" "y ∈ S" "x<y"
have *: "t*(1-t) * f x * g y + t*(1-t) * f y * g x ≤ t*(1-t) * f x * g x + t*(1-t) * f y * g y"
using t ‹mono_on S f› ‹mono_on S g› xy
by (smt (verit, ccfv_SIG) left_diff_distrib mono_onD mult_left_less_imp_less zero_le_mult_iff)
have inS: "(1-t)*x + t*y ∈ S"
using t xy ‹convex S› by (simp add: convex_alt)
then have "f ((1-t)*x + t*y) * g ((1-t)*x + t*y) ≤ ((1-t) * f x + t * f y)*g ((1-t)*x + t*y)"
using convex_onD [OF ‹convex_on S f›, of t x y] t xy fty gty
by (intro mult_mono add_nonneg_nonneg) (auto simp: Pi_iff zero_le_mult_iff)
also have "… ≤ ((1-t) * f x + t * f y) * ((1-t)*g x + t*g y)"
using convex_onD [OF ‹convex_on S g›, of t x y] t xy fty gty inS
by (intro mult_mono add_nonneg_nonneg) (auto simp: Pi_iff zero_le_mult_iff)
also have "… ≤ (1-t) * (f x*g x) + t * (f y*g y)"
using * by (simp add: algebra_simps)
finally show "f ((1-t) *⇩R x + t *⇩R y) * g ((1-t) *⇩R x + t *⇩R y) ≤ (1-t)*(f x*g x) + t*(f y*g y)"
by simp
qed
lemma convex_on_cmul [intro]:
fixes c :: real
assumes "0 ≤ c"
and "convex_on S f"
shows "convex_on S (λx. c * f x)"
proof -
have *: "u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)"
for u c fx v fy :: real
by (simp add: field_simps)
show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)]
unfolding convex_on_def and * by auto
qed
lemma convex_on_cdiv [intro]:
fixes c :: real
assumes "0 ≤ c" and "convex_on S f"
shows "convex_on S (λx. f x / c)"
unfolding divide_inverse
using convex_on_cmul [of "inverse c" S f] by (simp add: mult.commute assms)
lemma convex_lower:
assumes "convex_on S f"
and "x ∈ S"
and "y ∈ S"
and "0 ≤ u"
and "0 ≤ v"
and "u + v = 1"
shows "f (u *⇩R x + v *⇩R y) ≤ max (f x) (f y)"
proof -
let ?m = "max (f x) (f y)"
have "u * f x + v * f y ≤ u * max (f x) (f y) + v * max (f x) (f y)"
using assms(4,5) by (auto simp: mult_left_mono add_mono)
also have "… = max (f x) (f y)"
using assms(6) by (simp add: distrib_right [symmetric])
finally show ?thesis
using assms unfolding convex_on_def by fastforce
qed
lemma convex_on_dist [intro]:
fixes S :: "'a::real_normed_vector set"
assumes "convex S"
shows "convex_on S (λx. dist a x)"
unfolding convex_on_def dist_norm
proof (intro conjI strip)
fix x y
assume "x ∈ S" "y ∈ S"
fix u v :: real
assume "0 ≤ u"
assume "0 ≤ v"
assume "u + v = 1"
have "a = u *⇩R a + v *⇩R a"
by (metis ‹u + v = 1› scaleR_left.add scaleR_one)
then have "a - (u *⇩R x + v *⇩R y) = (u *⇩R (a - x)) + (v *⇩R (a - y))"
by (auto simp: algebra_simps)
then show "norm (a - (u *⇩R x + v *⇩R y)) ≤ u * norm (a - x) + v * norm (a - y)"
by (smt (verit, best) ‹0 ≤ u› ‹0 ≤ v› norm_scaleR norm_triangle_ineq)
qed (use assms in auto)
lemma concave_on_mul:
fixes S::"real set"
assumes f: "concave_on S f" and g: "concave_on S g"
assumes "mono_on S f" "antimono_on S g"
assumes fty: "f ∈ S → {0..}" and gty: "g ∈ S → {0..}"
shows "concave_on S (λx. f x * g x)"
proof (intro concave_on_linorderI)
show "convex S"
using concave_on_imp_convex f by blast
fix t::real and x y
assume t: "0 < t" "t < 1" and xy: "x ∈ S" "y ∈ S" "x<y"
have inS: "(1-t)*x + t*y ∈ S"
using t xy ‹convex S› by (simp add: convex_alt)
have "f x * g y + f y * g x ≥ f x * g x + f y * g y"
using ‹mono_on S f› ‹antimono_on S g›
unfolding monotone_on_def by (smt (verit, best) left_diff_distrib mult_left_mono xy)
with t have *: "t*(1-t) * f x * g y + t*(1-t) * f y * g x ≥ t*(1-t) * f x * g x + t*(1-t) * f y * g y"
by (smt (verit, ccfv_SIG) distrib_left mult_left_mono diff_ge_0_iff_ge mult.assoc)
have "(1 - t) * (f x * g x) + t * (f y * g y) ≤ ((1-t) * f x + t * f y) * ((1-t) * g x + t * g y)"
using * by (simp add: algebra_simps)
also have "… ≤ ((1-t) * f x + t * f y)*g ((1-t)*x + t*y)"
using concave_onD [OF ‹concave_on S g›, of t x y] t xy fty gty inS
by (intro mult_mono add_nonneg_nonneg) (auto simp: Pi_iff zero_le_mult_iff)
also have "… ≤ f ((1-t)*x + t*y) * g ((1-t)*x + t*y)"
using concave_onD [OF ‹concave_on S f›, of t x y] t xy fty gty inS
by (intro mult_mono add_nonneg_nonneg) (auto simp: Pi_iff zero_le_mult_iff)
finally show "(1 - t) * (f x * g x) + t * (f y * g y)
≤ f ((1 - t) *⇩R x + t *⇩R y) * g ((1 - t) *⇩R x + t *⇩R y)"
by simp
qed
lemma concave_on_cmul [intro]:
fixes c :: real
assumes "0 ≤ c" and "concave_on S f"
shows "concave_on S (λx. c * f x)"
using assms convex_on_cmul [of c S "λx. - f x"]
by (auto simp: concave_on_def)
lemma concave_on_cdiv [intro]:
fixes c :: real
assumes "0 ≤ c" and "concave_on S f"
shows "concave_on S (λx. f x / c)"
unfolding divide_inverse
using concave_on_cmul [of "inverse c" S f] by (simp add: mult.commute assms)
subsection ‹Arithmetic operations on sets preserve convexity›
lemma convex_linear_image:
assumes "linear f" and "convex S"
shows "convex (f ` S)"
proof -
interpret f: linear f by fact
from ‹convex S› show "convex (f ` S)"
by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric])
qed
lemma convex_linear_vimage:
assumes "linear f" and "convex S"
shows "convex (f -` S)"
proof -
interpret f: linear f by fact
from ‹convex S› show "convex (f -` S)"
by (simp add: convex_def f.add f.scaleR)
qed
lemma convex_scaling:
assumes "convex S"
shows "convex ((λx. c *⇩R x) ` S)"
by (simp add: assms convex_linear_image)
lemma convex_scaled:
assumes "convex S"
shows "convex ((λx. x *⇩R c) ` S)"
by (simp add: assms convex_linear_image)
lemma convex_negations:
assumes "convex S"
shows "convex ((λx. - x) ` S)"
by (simp add: assms convex_linear_image module_hom_uminus)
lemma convex_sums:
assumes "convex S"
and "convex T"
shows "convex (⋃x∈ S. ⋃y ∈ T. {x + y})"
proof -
have "linear (λ(x, y). x + y)"
by (auto intro: linearI simp: scaleR_add_right)
with assms have "convex ((λ(x, y). x + y) ` (S × T))"
by (intro convex_linear_image convex_Times)
also have "((λ(x, y). x + y) ` (S × T)) = (⋃x∈ S. ⋃y ∈ T. {x + y})"
by auto
finally show ?thesis .
qed
lemma convex_differences:
assumes "convex S" "convex T"
shows "convex (⋃x∈ S. ⋃y ∈ T. {x - y})"
proof -
have "{x - y| x y. x ∈ S ∧ y ∈ T} = {x + y |x y. x ∈ S ∧ y ∈ uminus ` T}"
by (auto simp: diff_conv_add_uminus simp del: add_uminus_conv_diff)
then show ?thesis
using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
qed
lemma convex_translation:
"convex ((+) a ` S)" if "convex S"
proof -
have "(⋃ x∈ {a}. ⋃y ∈ S. {x + y}) = (+) a ` S"
by auto
then show ?thesis
using convex_sums [OF convex_singleton [of a] that] by auto
qed
lemma convex_translation_subtract:
"convex ((λb. b - a) ` S)" if "convex S"
using convex_translation [of S "- a"] that by (simp cong: image_cong_simp)
lemma convex_affinity:
assumes "convex S"
shows "convex ((λx. a + c *⇩R x) ` S)"
proof -
have "(λx. a + c *⇩R x) ` S = (+) a ` (*⇩R) c ` S"
by auto
then show ?thesis
using convex_translation[OF convex_scaling[OF assms], of a c] by auto
qed
lemma convex_on_sum:
fixes a :: "'a ⇒ real"
and y :: "'a ⇒ 'b::real_vector"
and f :: "'b ⇒ real"
assumes "finite S" "S ≠ {}"
and "convex_on C f"
and "(∑ i ∈ S. a i) = 1"
and "⋀i. i ∈ S ⟹ a i ≥ 0"
and "⋀i. i ∈ S ⟹ y i ∈ C"
shows "f (∑ i ∈ S. a i *⇩R y i) ≤ (∑ i ∈ S. a i * f (y i))"
using assms
proof (induct S arbitrary: a rule: finite_ne_induct)
case (singleton i)
then show ?case
by auto
next
case (insert i S)
then have yai: "y i ∈ C" "a i ≥ 0"
by auto
with insert have conv: "⋀x y μ. x ∈ C ⟹ y ∈ C ⟹ 0 ≤ μ ⟹ μ ≤ 1 ⟹
f (μ *⇩R x + (1 - μ) *⇩R y) ≤ μ * f x + (1 - μ) * f y"
by (simp add: convex_on_def)
show ?case
proof (cases "a i = 1")
case True
with insert have "(∑ j ∈ S. a j) = 0"
by auto
with insert show ?thesis
by (simp add: sum_nonneg_eq_0_iff)
next
case False
then have ai1: "a i < 1"
using sum_nonneg_leq_bound[of "insert i S" a] insert by force
then have i0: "1 - a i > 0"
by auto
let ?a = "λj. a j / (1 - a i)"
have a_nonneg: "?a j ≥ 0" if "j ∈ S" for j
using i0 insert that by fastforce
have "(∑ j ∈ insert i S. a j) = 1"
using insert by auto
then have "(∑ j ∈ S. a j) = 1 - a i"
using sum.insert insert by fastforce
then have "(∑ j ∈ S. a j) / (1 - a i) = 1"
using i0 by auto
then have a1: "(∑ j ∈ S. ?a j) = 1"
unfolding sum_divide_distrib by simp
have "convex C"
using ‹convex_on C f› by (simp add: convex_on_def)
have asum: "(∑ j ∈ S. ?a j *⇩R y j) ∈ C"
using insert convex_sum [OF ‹finite S› ‹convex C› a1 a_nonneg] by auto
have asum_le: "f (∑ j ∈ S. ?a j *⇩R y j) ≤ (∑ j ∈ S. ?a j * f (y j))"
using a_nonneg a1 insert by blast
have "f (∑ j ∈ insert i S. a j *⇩R y j) = f ((∑ j ∈ S. a j *⇩R y j) + a i *⇩R y i)"
by (simp add: add.commute insert.hyps)
also have "… = f (((1 - a i) * inverse (1 - a i)) *⇩R (∑ j ∈ S. a j *⇩R y j) + a i *⇩R y i)"
using i0 by auto
also have "… = f ((1 - a i) *⇩R (∑ j ∈ S. (a j * inverse (1 - a i)) *⇩R y j) + a i *⇩R y i)"
using scaleR_right.sum[of "inverse (1 - a i)" "λ j. a j *⇩R y j" S, symmetric]
by (auto simp: algebra_simps)
also have "… = f ((1 - a i) *⇩R (∑ j ∈ S. ?a j *⇩R y j) + a i *⇩R y i)"
by (auto simp: divide_inverse)
also have "… ≤ (1 - a i) *⇩R f ((∑ j ∈ S. ?a j *⇩R y j)) + a i * f (y i)"
using ai1 by (smt (verit) asum conv real_scaleR_def yai)
also have "… ≤ (1 - a i) * (∑ j ∈ S. ?a j * f (y j)) + a i * f (y i)"
using asum_le i0 by fastforce
also have "… = (∑ j ∈ S. a j * f (y j)) + a i * f (y i)"
using i0 by (auto simp: sum_distrib_left)
finally show ?thesis
using insert by auto
qed
qed
lemma concave_on_sum:
fixes a :: "'a ⇒ real"
and y :: "'a ⇒ 'b::real_vector"
and f :: "'b ⇒ real"
assumes "finite S" "S ≠ {}"
and "concave_on C f"
and "(∑i ∈ S. a i) = 1"
and "⋀i. i ∈ S ⟹ a i ≥ 0"
and "⋀i. i ∈ S ⟹ y i ∈ C"
shows "f (∑i ∈ S. a i *⇩R y i) ≥ (∑i ∈ S. a i * f (y i))"
proof -
have "(uminus ∘ f) (∑i∈S. a i *⇩R y i) ≤ (∑i∈S. a i * (uminus ∘ f) (y i))"
proof (intro convex_on_sum)
show "convex_on C (uminus ∘ f)"
by (simp add: assms convex_on_iff_concave)
qed (use assms in auto)
then show ?thesis
by (simp add: sum_negf o_def)
qed
lemma convex_on_alt:
fixes C :: "'a::real_vector set"
shows "convex_on C f ⟷ convex C ∧
(∀x ∈ C. ∀y ∈ C. ∀ μ :: real. μ ≥ 0 ∧ μ ≤ 1 ⟶
f (μ *⇩R x + (1 - μ) *⇩R y) ≤ μ * f x + (1 - μ) * f y)"
by (smt (verit) convex_on_def)
lemma convex_on_slope_le:
fixes f :: "real ⇒ real"
assumes f: "convex_on I f"
and I: "x ∈ I" "y ∈ I"
and t: "x < t" "t < y"
shows "(f x - f t) / (x - t) ≤ (f x - f y) / (x - y)"
and "(f x - f y) / (x - y) ≤ (f t - f y) / (t - y)"
proof -
define a where "a ≡ (t - y) / (x - y)"
with t have "0 ≤ a" "0 ≤ 1 - a"
by (auto simp: field_simps)
with f ‹x ∈ I› ‹y ∈ I› have cvx: "f (a * x + (1 - a) * y) ≤ a * f x + (1 - a) * f y"
by (auto simp: convex_on_def)
have "a * x + (1 - a) * y = a * (x - y) + y"
by (simp add: field_simps)
also have "… = t"
unfolding a_def using ‹x < t› ‹t < y› by simp
finally have "f t ≤ a * f x + (1 - a) * f y"
using cvx by simp
also have "… = a * (f x - f y) + f y"
by (simp add: field_simps)
finally have "f t - f y ≤ a * (f x - f y)"
by simp
with t show "(f x - f t) / (x - t) ≤ (f x - f y) / (x - y)"
by (simp add: le_divide_eq divide_le_eq field_simps a_def)
with t show "(f x - f y) / (x - y) ≤ (f t - f y) / (t - y)"
by (simp add: le_divide_eq divide_le_eq field_simps)
qed
lemma pos_convex_function:
fixes f :: "real ⇒ real"
assumes "convex C"
and leq: "⋀x y. x ∈ C ⟹ y ∈ C ⟹ f' x * (y - x) ≤ f y - f x"
shows "convex_on C f"
unfolding convex_on_alt
using assms
proof safe
fix x y μ :: real
let ?x = "μ *⇩R x + (1 - μ) *⇩R y"
assume *: "convex C" "x ∈ C" "y ∈ C" "μ ≥ 0" "μ ≤ 1"
then have "1 - μ ≥ 0" by auto
then have xpos: "?x ∈ C"
using * unfolding convex_alt by fastforce
have geq: "μ * (f x - f ?x) + (1 - μ) * (f y - f ?x) ≥
μ * f' ?x * (x - ?x) + (1 - μ) * f' ?x * (y - ?x)"
using add_mono [OF mult_left_mono [OF leq [OF xpos *(2)] ‹μ ≥ 0›]
mult_left_mono [OF leq [OF xpos *(3)] ‹1 - μ ≥ 0›]]
by auto
then have "μ * f x + (1 - μ) * f y - f ?x ≥ 0"
by (auto simp: field_simps)
then show "f (μ *⇩R x + (1 - μ) *⇩R y) ≤ μ * f x + (1 - μ) * f y"
by auto
qed
lemma atMostAtLeast_subset_convex:
fixes C :: "real set"
assumes "convex C"
and "x ∈ C" "y ∈ C" "x < y"
shows "{x .. y} ⊆ C"
proof safe
fix z assume z: "z ∈ {x .. y}"
have less: "z ∈ C" if *: "x < z" "z < y"
proof -
let ?μ = "(y - z) / (y - x)"
have "0 ≤ ?μ" "?μ ≤ 1"
using assms * by (auto simp: field_simps)
then have comb: "?μ * x + (1 - ?μ) * y ∈ C"
using assms iffD1[OF convex_alt, rule_format, of C y x ?μ]
by (simp add: algebra_simps)
have "?μ * x + (1 - ?μ) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y"
by (auto simp: field_simps)
also have "… = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)"
using assms by (simp only: add_divide_distrib) (auto simp: field_simps)
also have "… = z"
using assms by (auto simp: field_simps)
finally show ?thesis
using comb by auto
qed
show "z ∈ C"
using z less assms by (auto simp: le_less)
qed
lemma f''_imp_f':
fixes f :: "real ⇒ real"
assumes "convex C"
and f': "⋀x. x ∈ C ⟹ DERIV f x :> (f' x)"
and f'': "⋀x. x ∈ C ⟹ DERIV f' x :> (f'' x)"
and pos: "⋀x. x ∈ C ⟹ f'' x ≥ 0"
and x: "x ∈ C"
and y: "y ∈ C"
shows "f' x * (y - x) ≤ f y - f x"
using assms
proof -
have "f y - f x ≥ f' x * (y - x)" "f' y * (x - y) ≤ f x - f y"
if *: "x ∈ C" "y ∈ C" "y > x" for x y :: real
proof -
from * have ge: "y - x > 0" "y - x ≥ 0" and le: "x - y < 0" "x - y ≤ 0"
by auto
then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1"
using subsetD[OF atMostAtLeast_subset_convex[OF ‹convex C› ‹x ∈ C› ‹y ∈ C› ‹x < y›],
THEN f', THEN MVT2[OF ‹x < y›, rule_format, unfolded atLeastAtMost_iff[symmetric]]]
by auto
then have "z1 ∈ C"
using atMostAtLeast_subset_convex ‹convex C› ‹x ∈ C› ‹y ∈ C› ‹x < y›
by fastforce
obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2"
using subsetD[OF atMostAtLeast_subset_convex[OF ‹convex C› ‹x ∈ C› ‹z1 ∈ C› ‹x < z1›],
THEN f'', THEN MVT2[OF ‹x < z1›, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
by auto
obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3"
using subsetD[OF atMostAtLeast_subset_convex[OF ‹convex C› ‹z1 ∈ C› ‹y ∈ C› ‹z1 < y›],
THEN f'', THEN MVT2[OF ‹z1 < y›, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
by auto
from z1 have "f x - f y = (x - y) * f' z1"
by (simp add: field_simps)
then have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3"
using le(1) z3(3) by auto
have "z3 ∈ C"
using z3 * atMostAtLeast_subset_convex ‹convex C› ‹x ∈ C› ‹z1 ∈ C› ‹x < z1›
by fastforce
then have B': "f'' z3 ≥ 0"
using assms by auto
with cool' have "f' y - (f x - f y) / (x - y) ≥ 0"
using z1 by auto
then have res: "f' y * (x - y) ≤ f x - f y"
by (meson diff_ge_0_iff_ge le(1) neg_divide_le_eq)
have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2"
using le(1) z1(3) z2(3) by auto
have "z2 ∈ C"
using z2 z1 * atMostAtLeast_subset_convex ‹convex C› ‹z1 ∈ C› ‹y ∈ C› ‹z1 < y›
by fastforce
with z1 assms have "(z1 - x) * f'' z2 ≥ 0"
by auto
then show "f y - f x ≥ f' x * (y - x)" "f' y * (x - y) ≤ f x - f y"
using that(3) z1(3) res cool by auto
qed
then show ?thesis
using x y by fastforce
qed
lemma f''_ge0_imp_convex:
fixes f :: "real ⇒ real"
assumes "convex C"
and "⋀x. x ∈ C ⟹ DERIV f x :> (f' x)"
and "⋀x. x ∈ C ⟹ DERIV f' x :> (f'' x)"
and "⋀x. x ∈ C ⟹ f'' x ≥ 0"
shows "convex_on C f"
by (metis assms f''_imp_f' pos_convex_function)
lemma f''_le0_imp_concave:
fixes f :: "real ⇒ real"
assumes "convex C"
and "⋀x. x ∈ C ⟹ DERIV f x :> (f' x)"
and "⋀x. x ∈ C ⟹ DERIV f' x :> (f'' x)"
and "⋀x. x ∈ C ⟹ f'' x ≤ 0"
shows "concave_on C f"
unfolding concave_on_def
by (rule assms f''_ge0_imp_convex derivative_eq_intros | simp)+
lemma convex_power_even:
assumes "even n"
shows "convex_on (UNIV::real set) (λx. x^n)"
proof (intro f''_ge0_imp_convex)
show "((λx. x ^ n) has_real_derivative of_nat n * x^(n-1)) (at x)" for x
by (rule derivative_eq_intros | simp)+
show "((λx. of_nat n * x^(n-1)) has_real_derivative of_nat n * of_nat (n-1) * x^(n-2)) (at x)" for x
by (rule derivative_eq_intros | simp add: eval_nat_numeral)+
show "⋀x. 0 ≤ real n * real (n - 1) * x ^ (n - 2)"
using assms by (auto simp: zero_le_mult_iff zero_le_even_power)
qed auto
lemma convex_power_odd:
assumes "odd n"
shows "convex_on {0::real..} (λx. x^n)"
proof (intro f''_ge0_imp_convex)
show "((λx. x ^ n) has_real_derivative of_nat n * x^(n-1)) (at x)" for x
by (rule derivative_eq_intros | simp)+
show "((λx. of_nat n * x^(n-1)) has_real_derivative of_nat n * of_nat (n-1) * x^(n-2)) (at x)" for x
by (rule derivative_eq_intros | simp add: eval_nat_numeral)+
show "⋀x. x ∈ {0::real..} ⟹ 0 ≤ real n * real (n - 1) * x ^ (n - 2)"
using assms by (auto simp: zero_le_mult_iff zero_le_even_power)
qed auto
lemma convex_power2: "convex_on (UNIV::real set) power2"
by (simp add: convex_power_even)
lemma log_concave:
fixes b :: real
assumes "b > 1"
shows "concave_on {0<..} (λ x. log b x)"
using assms
by (intro f''_le0_imp_concave derivative_eq_intros | simp)+
lemma ln_concave: "concave_on {0<..} ln"
unfolding log_ln by (simp add: log_concave)
lemma minus_log_convex:
fixes b :: real
assumes "b > 1"
shows "convex_on {0 <..} (λ x. - log b x)"
using assms concave_on_def log_concave by blast
lemma powr_convex:
assumes "p ≥ 1" shows "convex_on {0<..} (λx. x powr p)"
using assms
by (intro f''_ge0_imp_convex derivative_eq_intros | simp)+
lemma exp_convex: "convex_on UNIV exp"
by (intro f''_ge0_imp_convex derivative_eq_intros | simp)+
text ‹The AM-GM inequality: the arithmetic mean exceeds the geometric mean.›
lemma arith_geom_mean:
fixes x :: "'a ⇒ real"
assumes "finite S" "S ≠ {}"
and x: "⋀i. i ∈ S ⟹ x i ≥ 0"
shows "(∑i ∈ S. x i / card S) ≥ (∏i ∈ S. x i) powr (1 / card S)"
proof (cases "∃i∈S. x i = 0")
case True
then have "(∏i ∈ S. x i) = 0"
by (simp add: ‹finite S›)
moreover have "(∑i ∈ S. x i / card S) ≥ 0"
by (simp add: sum_nonneg x)
ultimately show ?thesis
by simp
next
case False
have "ln (∑i ∈ S. (1 / card S) *⇩R x i) ≥ (∑i ∈ S. (1 / card S) * ln (x i))"
proof (intro concave_on_sum)
show "concave_on {0<..} ln"
by (simp add: ln_concave)
show "⋀i. i∈S ⟹ x i ∈ {0<..}"
using False x by fastforce
qed (use assms False in auto)
moreover have "(∑i ∈ S. (1 / card S) *⇩R x i) > 0"
using False assms by (simp add: card_gt_0_iff less_eq_real_def sum_pos)
ultimately have "(∑i ∈ S. (1 / card S) *⇩R x i) ≥ exp (∑i ∈ S. (1 / card S) * ln (x i))"
using ln_ge_iff by blast
then have "(∑i ∈ S. x i / card S) ≥ exp (∑i ∈ S. ln (x i) / card S)"
by (simp add: divide_simps)
then show ?thesis
using assms False
by (smt (verit, ccfv_SIG) divide_inverse exp_ln exp_powr_real exp_sum inverse_eq_divide prod.cong prod_powr_distrib)
qed
subsection ‹Convexity of real functions›
lemma convex_on_realI:
assumes "connected A"
and "⋀x. x ∈ A ⟹ (f has_real_derivative f' x) (at x)"
and "⋀x y. x ∈ A ⟹ y ∈ A ⟹ x ≤ y ⟹ f' x ≤ f' y"
shows "convex_on A f"
proof (rule convex_on_linorderI)
show "convex A"
using ‹connected A› convex_real_interval interval_cases
by (smt (verit, ccfv_SIG) connectedD_interval convex_UNIV convex_empty)
next
fix t x y :: real
assume t: "t > 0" "t < 1"
assume xy: "x ∈ A" "y ∈ A" "x < y"
define z where "z = (1 - t) * x + t * y"
with ‹connected A› and xy have ivl: "{x..y} ⊆ A"
using connected_contains_Icc by blast
from xy t have xz: "z > x"
by (simp add: z_def algebra_simps)
have "y - z = (1 - t) * (y - x)"
by (simp add: z_def algebra_simps)
also from xy t have "… > 0"
by (intro mult_pos_pos) simp_all
finally have yz: "z < y"
by simp
from assms xz yz ivl t have "∃ξ. ξ > x ∧ ξ < z ∧ f z - f x = (z - x) * f' ξ"
by (intro MVT2) (auto intro!: assms(2))
then obtain ξ where ξ: "ξ > x" "ξ < z" "f' ξ = (f z - f x) / (z - x)"
by auto
from assms xz yz ivl t have "∃η. η > z ∧ η < y ∧ f y - f z = (y - z) * f' η"
by (intro MVT2) (auto intro!: assms(2))
then obtain η where η: "η > z" "η < y" "f' η = (f y - f z) / (y - z)"
by auto
from η(3) have "(f y - f z) / (y - z) = f' η" ..
also from ξ η ivl have "ξ ∈ A" "η ∈ A"
by auto
with ξ η have "f' η ≥ f' ξ"
by (intro assms(3)) auto
also from ξ(3) have "f' ξ = (f z - f x) / (z - x)" .
finally have "(f y - f z) * (z - x) ≥ (f z - f x) * (y - z)"
using xz yz by (simp add: field_simps)
also have "z - x = t * (y - x)"
by (simp add: z_def algebra_simps)
also have "y - z = (1 - t) * (y - x)"
by (simp add: z_def algebra_simps)
finally have "(f y - f z) * t ≥ (f z - f x) * (1 - t)"
using xy by simp
then show "(1 - t) * f x + t * f y ≥ f ((1 - t) *⇩R x + t *⇩R y)"
by (simp add: z_def algebra_simps)
qed
lemma convex_on_inverse:
fixes A :: "real set"
assumes "A ⊆ {0<..}" "convex A"
shows "convex_on A inverse"
proof -
have "convex_on {0::real<..} inverse"
proof (intro convex_on_realI)
fix u v :: real
assume "u ∈ {0<..}" "v ∈ {0<..}" "u ≤ v"
with assms show "-inverse (u^2) ≤ -inverse (v^2)"
by simp
next
show "⋀x. x ∈ {0<..} ⟹ (inverse has_real_derivative - inverse (x⇧2)) (at x)"
by (rule derivative_eq_intros | simp add: power2_eq_square)+
qed auto
then show ?thesis
using assms convex_on_subset by blast
qed
lemma convex_onD_Icc':
assumes "convex_on {x..y} f" "c ∈ {x..y}"
defines "d ≡ y - x"
shows "f c ≤ (f y - f x) / d * (c - x) + f x"
proof (cases x y rule: linorder_cases)
case less
then have d: "d > 0"
by (simp add: d_def)
from assms(2) less have A: "0 ≤ (c - x) / d" "(c - x) / d ≤ 1"
by (simp_all add: d_def field_split_simps)
have "f c = f (x + (c - x) * 1)"
by simp
also from less have "1 = ((y - x) / d)"
by (simp add: d_def)
also from d have "x + (c - x) * … = (1 - (c - x) / d) *⇩R x + ((c - x) / d) *⇩R y"
by (simp add: field_simps)
also have "f … ≤ (1 - (c - x) / d) * f x + (c - x) / d * f y"
using assms less by (intro convex_onD_Icc) simp_all
also from d have "… = (f y - f x) / d * (c - x) + f x"
by (simp add: field_simps)
finally show ?thesis .
qed (use assms in auto)
lemma convex_onD_Icc'':
assumes "convex_on {x..y} f" "c ∈ {x..y}"
defines "d ≡ y - x"
shows "f c ≤ (f x - f y) / d * (y - c) + f y"
proof (cases x y rule: linorder_cases)
case less
then have d: "d > 0"
by (simp add: d_def)
from assms(2) less have A: "0 ≤ (y - c) / d" "(y - c) / d ≤ 1"
by (simp_all add: d_def field_split_simps)
have "f c = f (y - (y - c) * 1)"
by simp
also from less have "1 = ((y - x) / d)"
by (simp add: d_def)
also from d have "y - (y - c) * … = (1 - (1 - (y - c) / d)) *⇩R x + (1 - (y - c) / d) *⇩R y"
by (simp add: field_simps)
also have "f … ≤ (1 - (1 - (y - c) / d)) * f x + (1 - (y - c) / d) * f y"
using assms less by (intro convex_onD_Icc) (simp_all add: field_simps)
also from d have "… = (f x - f y) / d * (y - c) + f y"
by (simp add: field_simps)
finally show ?thesis .
qed (use assms in auto)
lemma concave_onD_Icc:
assumes "concave_on {x..y} f" "x ≤ (y :: _ :: {real_vector,preorder})"
shows "⋀t. t ≥ 0 ⟹ t ≤ 1 ⟹
f ((1 - t) *⇩R x + t *⇩R y) ≥ (1 - t) * f x + t * f y"
using assms(2) by (intro concave_onD [OF assms(1)]) simp_all
lemma concave_onD_Icc':
assumes "concave_on {x..y} f" "c ∈ {x..y}"
defines "d ≡ y - x"
shows "f c ≥ (f y - f x) / d * (c - x) + f x"
proof -
have "- f c ≤ (f x - f y) / d * (c - x) - f x"
using assms convex_onD_Icc' [of x y "λx. - f x" c]
by (simp add: concave_on_def)
then show ?thesis
by (smt (verit, best) divide_minus_left mult_minus_left)
qed
lemma concave_onD_Icc'':
assumes "concave_on {x..y} f" "c ∈ {x..y}"
defines "d ≡ y - x"
shows "f c ≥ (f x - f y) / d * (y - c) + f y"
proof -
have "- f c ≤ (f y - f x) / d * (y - c) - f y"
using assms convex_onD_Icc'' [of x y "λx. - f x" c]
by (simp add: concave_on_def)
then show ?thesis
by (smt (verit, best) divide_minus_left mult_minus_left)
qed
lemma convex_on_le_max:
fixes a::real
assumes "convex_on {x..y} f" and a: "a ∈ {x..y}"
shows "f a ≤ max (f x) (f y)"
proof -
have *: "(f y - f x) * (a - x) ≤ (f y - f x) * (y - x)" if "f x ≤ f y"
using a that by (intro mult_left_mono) auto
have "f a ≤ (f y - f x) / (y - x) * (a - x) + f x"
using assms convex_onD_Icc' by blast
also have "… ≤ max (f x) (f y)"
using a *
by (simp add: divide_le_0_iff mult_le_0_iff zero_le_mult_iff max_def add.commute mult.commute scaling_mono)
finally show ?thesis .
qed
lemma concave_on_ge_min:
fixes a::real
assumes "concave_on {x..y} f" and a: "a ∈ {x..y}"
shows "f a ≥ min (f x) (f y)"
proof -
have *: "(f y - f x) * (a - x) ≥ (f y - f x) * (y - x)" if "f x ≥ f y"
using a that by (intro mult_left_mono_neg) auto
have "min (f x) (f y) ≤ (f y - f x) / (y - x) * (a - x) + f x"
using a * apply (simp add: zero_le_divide_iff mult_le_0_iff zero_le_mult_iff min_def)
by (smt (verit, best) nonzero_eq_divide_eq pos_divide_le_eq)
also have "… ≤ f a"
using assms concave_onD_Icc' by blast
finally show ?thesis .
qed
subsection ‹Some inequalities: Applications of convexity›
lemma Youngs_inequality_0:
fixes a::real
assumes "0 ≤ α" "0 ≤ β" "α+β = 1" "a>0" "b>0"
shows "a powr α * b powr β ≤ α*a + β*b"
proof -
have "α * ln a + β * ln b ≤ ln (α * a + β * b)"
using assms ln_concave by (simp add: concave_on_iff)
moreover have "0 < α * a + β * b"
using assms by (smt (verit) mult_pos_pos split_mult_pos_le)
ultimately show ?thesis
using assms by (simp add: powr_def mult_exp_exp flip: ln_ge_iff)
qed
lemma Youngs_inequality:
fixes p::real
assumes "p>1" "q>1" "1/p + 1/q = 1" "a≥0" "b≥0"
shows "a * b ≤ a powr p / p + b powr q / q"
proof (cases "a=0 ∨ b=0")
case False
then show ?thesis
using Youngs_inequality_0 [of "1/p" "1/q" "a powr p" "b powr q"] assms
by (simp add: powr_powr)
qed (use assms in auto)
lemma Cauchy_Schwarz_ineq_sum:
fixes a :: "'a ⇒ 'b::linordered_field"
shows "(∑i∈I. a i * b i)⇧2 ≤ (∑i∈I. (a i)⇧2) * (∑i∈I. (b i)⇧2)"
proof (cases "(∑i∈I. (b i)⇧2) > 0")
case False
then consider "⋀i. i∈I ⟹ b i = 0" | "infinite I"
by (metis (mono_tags, lifting) sum_pos2 zero_le_power2 zero_less_power2)
thus ?thesis
by fastforce
next
case True
define r where "r ≡ (∑i∈I. a i * b i) / (∑i∈I. (b i)⇧2)"
have "0 ≤ (∑i∈I. (a i - r * b i)⇧2)"
by (simp add: sum_nonneg)
also have "... = (∑i∈I. (a i)⇧2) - 2 * r * (∑i∈I. a i * b i) + r⇧2 * (∑i∈I. (b i)⇧2)"
by (simp add: algebra_simps power2_eq_square sum_distrib_left flip: sum.distrib)
also have "… = (∑i∈I. (a i)⇧2) - ((∑i∈I. a i * b i))⇧2 / (∑i∈I. (b i)⇧2)"
by (simp add: r_def power2_eq_square)
finally have "0 ≤ (∑i∈I. (a i)⇧2) - ((∑i∈I. a i * b i))⇧2 / (∑i∈I. (b i)⇧2)" .
hence "((∑i∈I. a i * b i))⇧2 / (∑i∈I. (b i)⇧2) ≤ (∑i∈I. (a i)⇧2)"
by (simp add: le_diff_eq)
thus "((∑i∈I. a i * b i))⇧2 ≤ (∑i∈I. (a i)⇧2) * (∑i∈I. (b i)⇧2)"
by (simp add: pos_divide_le_eq True)
qed
lemma sum_squared_le_sum_of_squares:
fixes f :: "'a ⇒ real"
assumes "⋀i. i∈I ⟹ f i ≥ 0" "finite I" "I ≠ {}"
shows "(∑i∈I. f i)⇧2 ≤ (∑y∈I. (f y)⇧2) * card I"
proof (cases "finite I ∧ I ≠ {}")
case True
have "(∑i∈I. f i / real (card I))⇧2 ≤ (∑i∈I. (f i)⇧2 / real (card I))"
using assms convex_on_sum [OF _ _ convex_power2, where a = "λx. 1 / real(card I)" and S=I]
by simp
then show ?thesis
using assms
by (simp add: divide_simps power2_eq_square split: if_split_asm flip: sum_divide_distrib)
qed auto
subsection ‹Misc related lemmas›
lemma convex_translation_eq [simp]:
"convex ((+) a ` s) ⟷ convex s"
by (metis convex_translation translation_galois)
lemma convex_translation_subtract_eq [simp]:
"convex ((λb. b - a) ` s) ⟷ convex s"
using convex_translation_eq [of "- a"] by (simp cong: image_cong_simp)
lemma convex_linear_image_eq [simp]:
fixes f :: "'a::real_vector ⇒ 'b::real_vector"
shows "⟦linear f; inj f⟧ ⟹ convex (f ` s) ⟷ convex s"
by (metis (no_types) convex_linear_image convex_linear_vimage inj_vimage_image_eq)
lemma vector_choose_size:
assumes "0 ≤ c"
obtains x :: "'a::{real_normed_vector, perfect_space}" where "norm x = c"
proof -
obtain a::'a where "a ≠ 0"
using UNIV_not_singleton UNIV_eq_I set_zero singletonI by fastforce
then show ?thesis
by (rule_tac x="scaleR (c / norm a) a" in that) (simp add: assms)
qed
lemma vector_choose_dist:
assumes "0 ≤ c"
obtains y :: "'a::{real_normed_vector, perfect_space}" where "dist x y = c"
by (metis add_diff_cancel_left' assms dist_commute dist_norm vector_choose_size)
lemma sum_delta'':
fixes s::"'a::real_vector set"
assumes "finite s"
shows "(∑x∈s. (if y = x then f x else 0) *⇩R x) = (if y∈s then (f y) *⇩R y else 0)"
proof -
have *: "⋀x y. (if y = x then f x else (0::real)) *⇩R x = (if x=y then (f x) *⇩R x else 0)"
by auto
show ?thesis
unfolding * using sum.delta[OF assms, of y "λx. f x *⇩R x"] by auto
qed
subsection ‹Cones›
definition cone :: "'a::real_vector set ⇒ bool"
where "cone s ⟷ (∀x∈s. ∀c≥0. c *⇩R x ∈ s)"
lemma cone_empty[intro, simp]: "cone {}"
unfolding cone_def by auto
lemma cone_univ[intro, simp]: "cone UNIV"
unfolding cone_def by auto
lemma cone_Inter[intro]: "∀s∈f. cone s ⟹ cone (⋂f)"
unfolding cone_def by auto
lemma subspace_imp_cone: "subspace S ⟹ cone S"
by (simp add: cone_def subspace_scale)
subsubsection ‹Conic hull›
lemma cone_cone_hull: "cone (cone hull S)"
unfolding hull_def by auto
lemma cone_hull_eq: "cone hull S = S ⟷ cone S"
by (metis cone_cone_hull hull_same)
lemma mem_cone:
assumes "cone S" "x ∈ S" "c ≥ 0"
shows "c *⇩R x ∈ S"
using assms cone_def[of S] by auto
lemma cone_contains_0:
assumes "cone S"
shows "S ≠ {} ⟷ 0 ∈ S"
using assms mem_cone by fastforce
lemma cone_0: "cone {0}"
unfolding cone_def by auto
lemma cone_Union[intro]: "(∀s∈f. cone s) ⟶ cone (⋃f)"
unfolding cone_def by blast
lemma cone_iff:
assumes "S ≠ {}"
shows "cone S ⟷ 0 ∈ S ∧ (∀c. c > 0 ⟶ ((*⇩R) c) ` S = S)" (is "_ = ?rhs")
proof
assume "cone S"
{
fix c :: real
assume "c > 0"
have "x ∈ ((*⇩R) c) ` S" if "x ∈ S" for x
using ‹cone S› ‹c>0› mem_cone[of S x "1/c"] that
exI[of "(λt. t ∈ S ∧ x = c *⇩R t)" "(1 / c) *⇩R x"]
by auto
then have "((*⇩R) c) ` S = S"
using ‹0 < c› ‹cone S› mem_cone by fastforce
}
then show "0 ∈ S ∧ (∀c. c > 0 ⟶ ((*⇩R) c) ` S = S)"
using ‹cone S› cone_contains_0[of S] assms by auto
next
show "?rhs ⟹ cone S"
by (metis Convex.cone_def imageI order_neq_le_trans scaleR_zero_left)
qed
lemma cone_hull_empty: "cone hull {} = {}"
by (metis cone_empty cone_hull_eq)
lemma cone_hull_empty_iff: "S = {} ⟷ cone hull S = {}"
by (metis cone_hull_empty hull_subset subset_empty)
lemma cone_hull_contains_0: "S ≠ {} ⟷ 0 ∈ cone hull S"
by (metis cone_cone_hull cone_contains_0 cone_hull_empty_iff)
lemma mem_cone_hull:
assumes "x ∈ S" "c ≥ 0"
shows "c *⇩R x ∈ cone hull S"
by (metis assms cone_cone_hull hull_inc mem_cone)
proposition cone_hull_expl: "cone hull S = {c *⇩R x | c x. c ≥ 0 ∧ x ∈ S}"
(is "?lhs = ?rhs")
proof
have "?rhs ∈ Collect cone"
using Convex.cone_def by fastforce
moreover have "S ⊆ ?rhs"
by (smt (verit) mem_Collect_eq scaleR_one subsetI)
ultimately show "?lhs ⊆ ?rhs"
using hull_minimal by blast
qed (use mem_cone_hull in auto)
lemma convex_cone:
"convex S ∧ cone S ⟷ (∀x∈S. ∀y∈S. (x + y) ∈ S) ∧ (∀x∈S. ∀c≥0. (c *⇩R x) ∈ S)"
(is "?lhs = ?rhs")
proof -
{
fix x y
assume "x∈S" "y∈S" and ?lhs
then have "2 *⇩R x ∈S" "2 *⇩R y ∈ S" "convex S"
unfolding cone_def by auto
then have "x + y ∈ S"
using convexD [OF ‹convex S›, of "2*⇩R x" "2*⇩R y"]
by (smt (verit, ccfv_threshold) field_sum_of_halves scaleR_2 scaleR_half_double)
}
then show ?thesis
unfolding convex_def cone_def by blast
qed
subsection ‹Connectedness of convex sets›
lemma convex_connected:
fixes S :: "'a::real_normed_vector set"
assumes "convex S"
shows "connected S"
proof (rule connectedI)
fix A B
assume "open A" "open B" "A ∩ B ∩ S = {}" "S ⊆ A ∪ B"
moreover
assume "A ∩ S ≠ {}" "B ∩ S ≠ {}"
then obtain a b where a: "a ∈ A" "a ∈ S" and b: "b ∈ B" "b ∈ S" by auto
define f where [abs_def]: "f u = u *⇩R a + (1 - u) *⇩R b" for u
then have "continuous_on {0 .. 1} f"
by (auto intro!: continuous_intros)
then have "connected (f ` {0 .. 1})"
by (auto intro!: connected_continuous_image)
note connectedD[OF this, of A B]
moreover have "a ∈ A ∩ f ` {0 .. 1}"
using a by (auto intro!: image_eqI[of _ _ 1] simp: f_def)
moreover have "b ∈ B ∩ f ` {0 .. 1}"
using b by (auto intro!: image_eqI[of _ _ 0] simp: f_def)
moreover have "f ` {0 .. 1} ⊆ S"
using ‹convex S› a b unfolding convex_def f_def by auto
ultimately show False by auto
qed
corollary%unimportant connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)"
by (simp add: convex_connected)
lemma convex_prod:
assumes "⋀i. i ∈ Basis ⟹ convex {x. P i x}"
shows "convex {x. ∀i∈Basis. P i (x∙i)}"
using assms by (auto simp: inner_add_left convex_def)
lemma convex_positive_orthant: "convex {x::'a::euclidean_space. (∀i∈Basis. 0 ≤ x∙i)}"
by (rule convex_prod) (simp flip: atLeast_def)
subsection ‹Convex hull›
lemma convex_convex_hull [iff]: "convex (convex hull s)"
by (metis (mono_tags) convex_Inter hull_def mem_Collect_eq)
lemma convex_hull_subset:
"s ⊆ convex hull t ⟹ convex hull s ⊆ convex hull t"
by (simp add: subset_hull)
lemma convex_hull_eq: "convex hull s = s ⟷ convex s"
by (metis convex_convex_hull hull_same)
subsubsection ‹Convex hull is "preserved" by a linear function›
lemma convex_hull_linear_image:
assumes f: "linear f"
shows "f ` (convex hull S) = convex hull (f ` S)"
proof
show "convex hull (f ` S) ⊆ f ` (convex hull S)"
by (intro hull_minimal image_mono hull_subset convex_linear_image assms convex_convex_hull)
show "f ` (convex hull S) ⊆ convex hull (f ` S)"
by (meson convex_convex_hull convex_linear_vimage f hull_minimal hull_subset image_subset_iff_subset_vimage)
qed
lemma in_convex_hull_linear_image:
assumes "linear f" "x ∈ convex hull S"
shows "f x ∈ convex hull (f ` S)"
using assms convex_hull_linear_image image_eqI by blast
lemma convex_hull_Times:
"convex hull (S × T) = (convex hull S) × (convex hull T)"
proof
show "convex hull (S × T) ⊆ (convex hull S) × (convex hull T)"
by (intro hull_minimal Sigma_mono hull_subset convex_Times convex_convex_hull)
have "(x, y) ∈ convex hull (S × T)" if x: "x ∈ convex hull S" and y: "y ∈ convex hull T" for x y
proof (rule hull_induct [OF x], rule hull_induct [OF y])
fix x y assume "x ∈ S" and "y ∈ T"
then show "(x, y) ∈ convex hull (S × T)"
by (simp add: hull_inc)
next
fix x let ?S = "((λy. (0, y)) -` (λp. (- x, 0) + p) ` (convex hull S × T))"
have "convex ?S"
by (intro convex_linear_vimage convex_translation convex_convex_hull,
simp add: linear_iff)
also have "?S = {y. (x, y) ∈ convex hull (S × T)}"
by (auto simp: image_def Bex_def)
finally show "convex {y. (x, y) ∈ convex hull (S × T)}" .
next
show "convex {x. (x, y) ∈ convex hull S × T}"
proof -
fix y let ?S = "((λx. (x, 0)) -` (λp. (0, - y) + p) ` (convex hull S × T))"
have "convex ?S"
by (intro convex_linear_vimage convex_translation convex_convex_hull,
simp add: linear_iff)
also have "?S = {x. (x, y) ∈ convex hull (S × T)}"
by (auto simp: image_def Bex_def)
finally show "convex {x. (x, y) ∈ convex hull (S × T)}" .
qed
qed
then show "(convex hull S) × (convex hull T) ⊆ convex hull (S × T)"
unfolding subset_eq split_paired_Ball_Sigma by blast
qed
subsubsection ‹Stepping theorems for convex hulls of finite sets›
lemma convex_hull_empty[simp]: "convex hull {} = {}"
by (simp add: hull_same)
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
by (simp add: hull_same)
lemma convex_hull_insert:
fixes S :: "'a::real_vector set"
assumes "S ≠ {}"
shows "convex hull (insert a S) =
{x. ∃u≥0. ∃v≥0. ∃b. (u + v = 1) ∧ b ∈ (convex hull S) ∧ (x = u *⇩R a + v *⇩R b)}"
(is "_ = ?hull")
proof (intro equalityI hull_minimal subsetI)
fix x
assume "x ∈ insert a S"
then show "x ∈ ?hull"
unfolding insert_iff
proof
assume "x = a"
then show ?thesis
by (smt (verit, del_insts) add.right_neutral assms ex_in_conv hull_inc mem_Collect_eq scaleR_one scaleR_zero_left)
next
assume "x ∈ S"
with hull_subset show ?thesis
by force
qed
next
fix x
assume "x ∈ ?hull"
then obtain u v b where obt: "u≥0" "v≥0" "u + v = 1" "b ∈ convex hull S" "x = u *⇩R a + v *⇩R b"
by auto
have "a ∈ convex hull insert a S" "b ∈ convex hull insert a S"
using hull_mono[of S "insert a S" convex] hull_mono[of "{a}" "insert a S" convex] and obt(4)
by auto
then show "x ∈ convex hull insert a S"
unfolding obt(5) using obt(1-3)
by (rule convexD [OF convex_convex_hull])
next
show "convex ?hull"
proof (rule convexI)
fix x y u v
assume as: "(0::real) ≤ u" "0 ≤ v" "u + v = 1" and x: "x ∈ ?hull" and y: "y ∈ ?hull"
from x obtain u1 v1 b1 where
obt1: "u1≥0" "v1≥0" "u1 + v1 = 1" "b1 ∈ convex hull S" and xeq: "x = u1 *⇩R a + v1 *⇩R b1"
by auto
from y obtain u2 v2 b2 where
obt2: "u2≥0" "v2≥0" "u2 + v2 = 1" "b2 ∈ convex hull S" and yeq: "y = u2 *⇩R a + v2 *⇩R b2"
by auto
have *: "⋀(x::'a) s1 s2. x - s1 *⇩R x - s2 *⇩R x = ((1::real) - (s1 + s2)) *⇩R x"
by (auto simp: algebra_simps)
have "∃b ∈ convex hull S. u *⇩R x + v *⇩R y =
(u * u1) *⇩R a + (v * u2) *⇩R a + (b - (u * u1) *⇩R b - (v * u2) *⇩R b)"
proof (cases "u * v1 + v * v2 = 0")
case True
have *: "⋀(x::'a) s1 s2. x - s1 *⇩R x - s2 *⇩R x = ((1::real) - (s1 + s2)) *⇩R x"
by (auto simp: algebra_simps)
have eq0: "u * v1 = 0" "v * v2 = 0"
using True mult_nonneg_nonneg[OF ‹u≥0› ‹v1≥0›] mult_nonneg_nonneg[OF ‹v≥0› ‹v2≥0›]
by arith+
then have "u * u1 + v * u2 = 1"
using as(3) obt1(3) obt2(3) by auto
then show ?thesis
using "*" eq0 as obt1(4) xeq yeq by auto
next
case False
have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)"
by (simp add: as(3))
also have "… = u * v1 + v * v2"
by (smt (verit, ccfv_SIG) distrib_left mult_cancel_left1 obt1(3) obt2(3))
finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" .
let ?b = "((u * v1) / (u * v1 + v * v2)) *⇩R b1 + ((v * v2) / (u * v1 + v * v2)) *⇩R b2"
have zeroes: "0 ≤ u * v1 + v * v2" "0 ≤ u * v1" "0 ≤ u * v1 + v * v2" "0 ≤ v * v2"
using as obt1 obt2 by auto
show ?thesis
proof
show "u *⇩R x + v *⇩R y = (u * u1) *⇩R a + (v * u2) *⇩R a + (?b - (u * u1) *⇩R ?b - (v * u2) *⇩R ?b)"
unfolding xeq yeq * **
using False by (auto simp: scaleR_left_distrib scaleR_right_distrib)
show "?b ∈ convex hull S"
using False mem_convex_alt obt1(4) obt2(4) zeroes(2) zeroes(4) by fastforce
qed
qed
then obtain b where b: "b ∈ convex hull S"
"u *⇩R x + v *⇩R y = (u * u1) *⇩R a + (v * u2) *⇩R a + (b - (u * u1) *⇩R b - (v * u2) *⇩R b)" ..
obtain u1: "u1 ≤ 1" and u2: "u2 ≤ 1"
using obt1 obt2 by auto
have "u1 * u + u2 * v ≤ max u1 u2 * u + max u1 u2 * v"
by (smt (verit, ccfv_SIG) as mult_right_mono)
also have "… ≤ 1"
unfolding distrib_left[symmetric] and as(3) using u1 u2 by auto
finally have le1: "u1 * u + u2 * v ≤ 1" .
show "u *⇩R x + v *⇩R y ∈ ?hull"
proof (intro CollectI exI conjI)
show "0 ≤ u * u1 + v * u2"
by (simp add: as obt1(1) obt2(1))
show "0 ≤ 1 - u * u1 - v * u2"
by (simp add: le1 diff_diff_add mult.commute)
qed (use b in ‹auto simp: algebra_simps›)
qed
qed
lemma convex_hull_insert_alt:
"convex hull (insert a S) =
(if S = {} then {a}
else {(1 - u) *⇩R a + u *⇩R x |x u. 0 ≤ u ∧ u ≤ 1 ∧ x ∈ convex hull S})"
apply (simp add: convex_hull_insert)
using diff_add_cancel diff_ge_0_iff_ge
by (smt (verit, del_insts) Collect_cong)
subsubsection ‹Explicit expression for convex hull›
proposition convex_hull_indexed:
fixes S :: "'a::real_vector set"
shows "convex hull S =
{y. ∃k u x. (∀i∈{1::nat .. k}. 0 ≤ u i ∧ x i ∈ S) ∧
(sum u {1..k} = 1) ∧ (∑i = 1..k. u i *⇩R x i) = y}"
(is "?xyz = ?hull")
proof (rule hull_unique [OF _ convexI])
show "S ⊆ ?hull"
by (clarsimp, rule_tac x=1 in exI, rule_tac x="λx. 1" in exI, auto)
next
fix T
assume "S ⊆ T" "convex T"
then show "?hull ⊆ T"
by (blast intro: convex_sum)
next
fix x y u v
assume uv: "0 ≤ u" "0 ≤ v" "u + v = (1::real)"
assume xy: "x ∈ ?hull" "y ∈ ?hull"
from xy obtain k1 u1 x1 where
x [rule_format]: "∀i∈{1::nat..k1}. 0≤u1 i ∧ x1 i ∈ S"
"sum u1 {Suc 0..k1} = 1" "(∑i = Suc 0..k1. u1 i *⇩R x1 i) = x"
by auto
from xy obtain k2 u2 x2 where
y [rule_format]: "∀i∈{1::nat..k2}. 0≤u2 i ∧ x2 i ∈ S"
"sum u2 {Suc 0..k2} = 1" "(∑i = Suc 0..k2. u2 i *⇩R x2 i) = y"
by auto
have *: "⋀P (x::'a) y s t i. (if P i then s else t) *⇩R (if P i then x else y) = (if P i then s *⇩R x else t *⇩R y)"
"{1..k1 + k2} ∩ {1..k1} = {1..k1}" "{1..k1 + k2} ∩ - {1..k1} = (λi. i + k1) ` {1..k2}"
by auto
have inj: "inj_on (λi. i + k1) {1..k2}"
unfolding inj_on_def by auto
let ?uu = "λi. if i ∈ {1..k1} then u * u1 i else v * u2 (i - k1)"
let ?xx = "λi. if i ∈ {1..k1} then x1 i else x2 (i - k1)"
show "u *⇩R x + v *⇩R y ∈ ?hull"
proof (intro CollectI exI conjI ballI)
show "0 ≤ ?uu i" "?xx i ∈ S" if "i ∈ {1..k1+k2}" for i
using that by (auto simp add: le_diff_conv uv(1) x(1) uv(2) y(1))
show "(∑i = 1..k1 + k2. ?uu i) = 1" "(∑i = 1..k1 + k2. ?uu i *⇩R ?xx i) = u *⇩R x + v *⇩R y"
unfolding * sum.If_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]]
sum.reindex[OF inj] Collect_mem_eq o_def
unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] sum_distrib_left[symmetric]
by (simp_all add: sum_distrib_left[symmetric] x(2,3) y(2,3) uv(3))
qed
qed
lemma convex_hull_finite:
fixes S :: "'a::real_vector set"
assumes "finite S"
shows "convex hull S = {y. ∃u. (∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ∧ sum (λx. u x *⇩R x) S = y}"
(is "?HULL = _")
proof (rule hull_unique [OF _ convexI]; clarify)
fix x
assume "x ∈ S"
then show "∃u. (∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ∧ (∑x∈S. u x *⇩R x) = x"
by (rule_tac x="λy. if x=y then 1 else 0" in exI) (auto simp: sum.delta'[OF assms] sum_delta''[OF assms])
next
fix u v :: real
assume uv: "0 ≤ u" "0 ≤ v" "u + v = 1"
fix ux assume ux [rule_format]: "∀x∈S. 0 ≤ ux x" "sum ux S = (1::real)"
fix uy assume uy [rule_format]: "∀x∈S. 0 ≤ uy x" "sum uy S = (1::real)"
have "0 ≤ u * ux x + v * uy x" if "x∈S" for x
by (simp add: that uv ux(1) uy(1))
moreover
have "(∑x∈S. u * ux x + v * uy x) = 1"
unfolding sum.distrib and sum_distrib_left[symmetric] ux(2) uy(2)
using uv(3) by auto
moreover
have "(∑x∈S. (u * ux x + v * uy x) *⇩R x) = u *⇩R (∑x∈S. ux x *⇩R x) + v *⇩R (∑x∈S. uy x *⇩R x)"
unfolding scaleR_left_distrib sum.distrib scaleR_scaleR[symmetric] scaleR_right.sum [symmetric]
by auto
ultimately
show "∃uc. (∀x∈S. 0 ≤ uc x) ∧ sum uc S = 1 ∧
(∑x∈S. uc x *⇩R x) = u *⇩R (∑x∈S. ux x *⇩R x) + v *⇩R (∑x∈S. uy x *⇩R x)"
by (rule_tac x="λx. u * ux x + v * uy x" in exI, auto)
qed (use assms in ‹auto simp: convex_explicit›)
subsubsection ‹Another formulation›
text "Formalized by Lars Schewe."
lemma convex_hull_explicit:
fixes p :: "'a::real_vector set"
shows "convex hull p =
{y. ∃S u. finite S ∧ S ⊆ p ∧ (∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ∧ sum (λv. u v *⇩R v) S = y}"
(is "?lhs = ?rhs")
proof (intro subset_antisym subsetI)
fix x
assume "x ∈ convex hull p"
then obtain k u y where
obt: "∀i∈{1::nat..k}. 0 ≤ u i ∧ y i ∈ p" "sum u {1..k} = 1" "(∑i = 1..k. u i *⇩R y i) = x"
unfolding convex_hull_indexed by auto
have fin: "finite {1..k}" by auto
{
fix j
assume "j∈{1..k}"
then have "y j ∈ p ∧ 0 ≤ sum u {i. Suc 0 ≤ i ∧ i ≤ k ∧ y i = y j}"
by (metis (mono_tags, lifting) One_nat_def atLeastAtMost_iff mem_Collect_eq obt(1) sum_nonneg)
}
moreover have "(∑v∈y ` {1..k}. sum u {i ∈ {1..k}. y i = v}) = 1"
unfolding sum.image_gen[OF fin, symmetric] using obt(2) by auto
moreover have "(∑v∈y ` {1..k}. sum u {i ∈ {1..k}. y i = v} *⇩R v) = x"
using sum.image_gen[OF fin, of "λi. u i *⇩R y i" y, symmetric]
unfolding scaleR_left.sum using obt(3) by auto
ultimately
have "∃S u. finite S ∧ S ⊆ p ∧ (∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ∧ (∑v∈S. u v *⇩R v) = x"
by (smt (verit, ccfv_SIG) imageE mem_Collect_eq obt(1) subsetI sum.cong sum.infinite sum_nonneg)
then show "x ∈ ?rhs" by auto
next
fix y
assume "y ∈ ?rhs"
then obtain S u where
S: "finite S" "S ⊆ p" "∀x∈S. 0 ≤ u x" "sum u S = 1" "(∑v∈S. u v *⇩R v) = y"
by auto
obtain f where f: "inj_on f {1..card S}" "f ` {1..card S} = S"
using ex_bij_betw_nat_finite_1[OF S(1)] unfolding bij_betw_def by auto
then have "0 ≤ u (f i)" "f i ∈ p" if "i ∈ {1..card S}" for i
using S ‹i ∈ {1..card S}› by blast+
moreover
{
fix y
assume "y∈S"
then obtain i where "i∈{1..card S}" "f i = y"
by (metis f(2) image_iff)
then have "{x. Suc 0 ≤ x ∧ x ≤ card S ∧ f x = y} = {i}"
using f(1) inj_onD by fastforce
then have "(∑x∈{x ∈ {1..card S}. f x = y}. u (f x)) = u y"
"(∑x∈{x ∈ {1..card S}. f x = y}. u (f x) *⇩R f x) = u y *⇩R y"
by (simp_all add: sum_constant_scaleR ‹f i = y›)
}
then have "(∑x = 1..card S. u (f x)) = 1" "(∑i = 1..card S. u (f i) *⇩R f i) = y"
by (metis (mono_tags, lifting) S(4,5) f sum.reindex_cong)+
ultimately
show "y ∈ convex hull p"
unfolding convex_hull_indexed
by (smt (verit, del_insts) mem_Collect_eq sum.cong)
qed
subsubsection ‹A stepping theorem for that expansion›
lemma convex_hull_finite_step:
fixes S :: "'a::real_vector set"
assumes "finite S"
shows
"(∃u. (∀x∈insert a S. 0 ≤ u x) ∧ sum u (insert a S) = w ∧ sum (λx. u x *⇩R x) (insert a S) = y)
⟷ (∃v≥0. ∃u. (∀x∈S. 0 ≤ u x) ∧ sum u S = w - v ∧ sum (λx. u x *⇩R x) S = y - v *⇩R a)"
(is "?lhs = ?rhs")
proof (cases "a ∈ S")
case True
then have *: "insert a S = S" by auto
show ?thesis
proof
assume ?lhs
then show ?rhs
unfolding * by force
next
have fin: "finite (insert a S)" using assms by auto
assume ?rhs
then obtain v u where uv: "v≥0" "∀x∈S. 0 ≤ u x" "sum u S = w - v" "(∑x∈S. u x *⇩R x) = y - v *⇩R a"
by auto
then show ?lhs
using uv True assms
apply (rule_tac x = "λx. (if a = x then v else 0) + u x" in exI)
apply (auto simp: sum_clauses scaleR_left_distrib sum.distrib sum_delta''[OF fin])
done
qed
next
case False
show ?thesis
proof
assume ?lhs
then obtain u where u: "∀x∈insert a S. 0 ≤ u x" "sum u (insert a S) = w" "(∑x∈insert a S. u x *⇩R x) = y"
by auto
then show ?rhs
using u ‹a∉S› by (rule_tac x="u a" in exI) (auto simp: sum_clauses assms)
next
assume ?rhs
then obtain v u where uv: "v≥0" "∀x∈S. 0 ≤ u x" "sum u S = w - v" "(∑x∈S. u x *⇩R x) = y - v *⇩R a"
by auto
moreover
have "(∑x∈S. if a = x then v else u x) = sum u S" "(∑x∈S. (if a = x then v else u x) *⇩R x) = (∑x∈S. u x *⇩R x)"
using False by (auto intro!: sum.cong)
ultimately show ?lhs
using False by (rule_tac x="λx. if a = x then v else u x" in exI) (auto simp: sum_clauses(2)[OF assms])
qed
qed
subsubsection ‹Hence some special cases›
lemma convex_hull_2: "convex hull {a,b} = {u *⇩R a + v *⇩R b | u v. 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1}"
(is "?lhs = ?rhs")
proof -
have **: "finite {b}" by auto
have "⋀x v u. ⟦0 ≤ v; v ≤ 1; (1 - v) *⇩R b = x - v *⇩R a⟧
⟹ ∃u v. x = u *⇩R a + v *⇩R b ∧ 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1"
by (metis add.commute diff_add_cancel diff_ge_0_iff_ge)
moreover
have "⋀u v. ⟦0 ≤ u; 0 ≤ v; u + v = 1⟧
⟹ ∃p≥0. ∃q. 0 ≤ q b ∧ q b = 1 - p ∧ q b *⇩R b = u *⇩R a + v *⇩R b - p *⇩R a"
apply (rule_tac x=u in exI, simp)
apply (rule_tac x="λx. v" in exI, simp)
done
ultimately show ?thesis
using convex_hull_finite_step[OF **, of a 1]
by (auto simp add: convex_hull_finite)
qed
lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *⇩R (b - a) | u. 0 ≤ u ∧ u ≤ 1}"
unfolding convex_hull_2
proof (rule Collect_cong)
have *: "⋀x y ::real. x + y = 1 ⟷ x = 1 - y"
by auto
fix x
show "(∃v u. x = v *⇩R a + u *⇩R b ∧ 0 ≤ v ∧ 0 ≤ u ∧ v + u = 1) ⟷
(∃u. x = a + u *⇩R (b - a) ∧ 0 ≤ u ∧ u ≤ 1)"
apply (simp add: *)
by (rule ex_cong1) (auto simp: algebra_simps)
qed
lemma convex_hull_3:
"convex hull {a,b,c} = { u *⇩R a + v *⇩R b + w *⇩R c | u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1}"
proof -
have fin: "finite {a,b,c}" "finite {b,c}" "finite {c}"
by auto
have *: "⋀x y z ::real. x + y + z = 1 ⟷ x = 1 - y - z"
by (auto simp: field_simps)
show ?thesis
unfolding convex_hull_finite[OF fin(1)] and convex_hull_finite_step[OF fin(2)] and *
unfolding convex_hull_finite_step[OF fin(3)]
apply (rule Collect_cong, simp)
apply auto
apply (rule_tac x=va in exI)
apply (rule_tac x="u c" in exI, simp)
apply (rule_tac x="1 - v - w" in exI, simp)
apply (rule_tac x=v in exI, simp)
apply (rule_tac x="λx. w" in exI, simp)
done
qed
lemma convex_hull_3_alt:
"convex hull {a,b,c} = {a + u *⇩R (b - a) + v *⇩R (c - a) | u v. 0 ≤ u ∧ 0 ≤ v ∧ u + v ≤ 1}"
proof -
have *: "⋀x y z ::real. x + y + z = 1 ⟷ x = 1 - y - z"
by auto
show ?thesis
unfolding convex_hull_3
apply (auto simp: *)
apply (rule_tac x=v in exI)
apply (rule_tac x=w in exI)
apply (simp add: algebra_simps)
apply (rule_tac x=u in exI)
apply (rule_tac x=v in exI)
apply (simp add: algebra_simps)
done
qed
subsection ‹Relations among closure notions and corresponding hulls›
lemma affine_imp_convex: "affine s ⟹ convex s"
unfolding affine_def convex_def by auto
lemma convex_affine_hull [simp]: "convex (affine hull S)"
by (simp add: affine_imp_convex)
lemma subspace_imp_convex: "subspace s ⟹ convex s"
using subspace_imp_affine affine_imp_convex by auto
lemma convex_hull_subset_span: "(convex hull s) ⊆ (span s)"
by (metis hull_minimal span_superset subspace_imp_convex subspace_span)
lemma convex_hull_subset_affine_hull: "(convex hull s) ⊆ (affine hull s)"
by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset)
lemma aff_dim_convex_hull:
fixes S :: "'n::euclidean_space set"
shows "aff_dim (convex hull S) = aff_dim S"
by (smt (verit) aff_dim_affine_hull aff_dim_subset convex_hull_subset_affine_hull hull_subset)
subsection ‹Caratheodory's theorem›
lemma convex_hull_caratheodory_aff_dim:
fixes p :: "('a::euclidean_space) set"
shows "convex hull p =
{y. ∃S u. finite S ∧ S ⊆ p ∧ card S ≤ aff_dim p + 1 ∧
(∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ∧ sum (λv. u v *⇩R v) S = y}"
unfolding convex_hull_explicit set_eq_iff mem_Collect_eq
proof (intro allI iffI)
fix y
let ?P = "λn. ∃S u. finite S ∧ card S = n ∧ S ⊆ p ∧ (∀x∈S. 0 ≤ u x) ∧
sum u S = 1 ∧ (∑v∈S. u v *⇩R v) = y"
assume "∃S u. finite S ∧ S ⊆ p ∧ (∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ∧ (∑v∈S. u v *⇩R v) = y"
then obtain N where "?P N" by auto
then have "∃n≤N. (∀k<n. ¬ ?P k) ∧ ?P n"
by (rule_tac ex_least_nat_le, auto)
then obtain n where "?P n" and smallest: "∀k<n. ¬ ?P k"
by blast
then obtain S u where S: "finite S" "card S = n" "S⊆p"
and u: "∀x∈S. 0 ≤ u x" "sum u S = 1" "(∑v∈S. u v *⇩R v) = y" by auto
have "card S ≤ aff_dim p + 1"
proof (rule ccontr, simp only: not_le)
assume "aff_dim p + 1 < card S"
then have "affine_dependent S"
by (smt (verit) independent_card_le_aff_dim S(3))
then obtain w v where wv: "sum w S = 0" "v∈S" "w v ≠ 0" "(∑v∈S. w v *⇩R v) = 0"
using affine_dependent_explicit_finite[OF S(1)] by auto
define i where "i = (λv. (u v) / (- w v)) ` {v∈S. w v < 0}"
define t where "t = Min i"
have "∃x∈S. w x < 0"
by (smt (verit, best) S(1) sum_pos2 wv)
then have "i ≠ {}" unfolding i_def by auto
then have "t ≥ 0"
using Min_ge_iff[of i 0] and S(1) u[unfolded le_less]
unfolding t_def i_def
by (auto simp: divide_le_0_iff)
have t: "∀v∈S. u v + t * w v ≥ 0"
proof
fix v
assume "v ∈ S"
then have v: "0 ≤ u v"
using u(1) by blast
show "0 ≤ u v + t * w v"
proof (cases "w v < 0")
case False
thus ?thesis using v ‹t≥0› by auto
next
case True
then have "t ≤ u v / (- w v)"
using ‹v∈S› S unfolding t_def i_def by (auto intro: Min_le)
then show ?thesis
unfolding real_0_le_add_iff
using True neg_le_minus_divide_eq by auto
qed
qed
obtain a where "a ∈ S" and "t = (λv. (u v) / (- w v)) a" and "w a < 0"
using Min_in[OF _ ‹i≠{}›] and S(1) unfolding i_def t_def by auto
then have a: "a ∈ S" "u a + t * w a = 0" by auto
have *: "⋀f. sum f (S - {a}) = sum f S - ((f a)::'b::ab_group_add)"
unfolding sum.remove[OF S(1) ‹a∈S›] by auto
have "(∑v∈S. u v + t * w v) = 1"
by (metis add.right_neutral mult_zero_right sum.distrib sum_distrib_left u(2) wv(1))
moreover have "(∑v∈S. u v *⇩R v + (t * w v) *⇩R v) - (u a *⇩R a + (t * w a) *⇩R a) = y"
unfolding sum.distrib u(3) scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] wv(4)
using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]] by simp
ultimately have "?P (n - 1)"
apply (rule_tac x="(S - {a})" in exI)
apply (rule_tac x="λv. u v + t * w v" in exI)
using S t a
apply (auto simp: * scaleR_left_distrib)
done
then show False
using smallest[THEN spec[where x="n - 1"]] by auto
qed
then show "∃S u. finite S ∧ S ⊆ p ∧ card S ≤ aff_dim p + 1 ∧
(∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ∧ (∑v∈S. u v *⇩R v) = y"
using S u by auto
qed auto
lemma caratheodory_aff_dim:
fixes p :: "('a::euclidean_space) set"
shows "convex hull p = {x. ∃S. finite S ∧ S ⊆ p ∧ card S ≤ aff_dim p + 1 ∧ x ∈ convex hull S}"
(is "?lhs = ?rhs")
proof
have "⋀x S u. ⟦finite S; S ⊆ p; int (card S) ≤ aff_dim p + 1; ∀x∈S. 0 ≤ u x; sum u S = 1⟧
⟹ (∑v∈S. u v *⇩R v) ∈ convex hull S"
by (metis (mono_tags, lifting) convex_convex_hull convex_explicit hull_subset)
then show "?lhs ⊆ ?rhs"
by (subst convex_hull_caratheodory_aff_dim, auto)
qed (use hull_mono in auto)
lemma convex_hull_caratheodory:
fixes p :: "('a::euclidean_space) set"
shows "convex hull p =
{y. ∃S u. finite S ∧ S ⊆ p ∧ card S ≤ DIM('a) + 1 ∧
(∀x∈S. 0 ≤ u x) ∧ sum u S = 1 ∧ sum (λv. u v *⇩R v) S = y}"
(is "?lhs = ?rhs")
proof (intro set_eqI iffI)
fix x
assume "x ∈ ?lhs" then show "x ∈ ?rhs"
unfolding convex_hull_caratheodory_aff_dim
using aff_dim_le_DIM [of p] by fastforce
qed (auto simp: convex_hull_explicit)
theorem caratheodory:
"convex hull p =
{x::'a::euclidean_space. ∃S. finite S ∧ S ⊆ p ∧ card S ≤ DIM('a) + 1 ∧ x ∈ convex hull S}"
proof safe
fix x
assume "x ∈ convex hull p"
then obtain S u where "finite S" "S ⊆ p" "card S ≤ DIM('a) + 1"
"∀x∈S. 0 ≤ u x" "sum u S = 1" "(∑v∈S. u v *⇩R v) = x"
unfolding convex_hull_caratheodory by auto
then show "∃S. finite S ∧ S ⊆ p ∧ card S ≤ DIM('a) + 1 ∧ x ∈ convex hull S"
using convex_hull_finite by fastforce
qed (use hull_mono in force)
subsection‹Some Properties of subset of standard basis›
lemma affine_hull_substd_basis:
assumes "d ⊆ Basis"
shows "affine hull (insert 0 d) = {x::'a::euclidean_space. ∀i∈Basis. i ∉ d ⟶ x∙i = 0}"
(is "affine hull (insert 0 ?A) = ?B")
proof -
have *: "⋀A. (+) (0::'a) ` A = A" "⋀A. (+) (- (0::'a)) ` A = A"
by auto
show ?thesis
unfolding affine_hull_insert_span_gen span_substd_basis[OF assms,symmetric] * ..
qed
lemma affine_hull_convex_hull [simp]: "affine hull (convex hull S) = affine hull S"
by (metis Int_absorb1 Int_absorb2 convex_hull_subset_affine_hull hull_hull hull_mono hull_subset)
subsection ‹Moving and scaling convex hulls›
lemma convex_hull_set_plus:
"convex hull (S + T) = convex hull S + convex hull T"
by (simp add: set_plus_image linear_iff scaleR_right_distrib convex_hull_Times
flip: convex_hull_linear_image)
lemma translation_eq_singleton_plus: "(λx. a + x) ` T = {a} + T"
unfolding set_plus_def by auto
lemma convex_hull_translation:
"convex hull ((λx. a + x) ` S) = (λx. a + x) ` (convex hull S)"
by (simp add: convex_hull_set_plus translation_eq_singleton_plus)
lemma convex_hull_scaling:
"convex hull ((λx. c *⇩R x) ` S) = (λx. c *⇩R x) ` (convex hull S)"
by (simp add: convex_hull_linear_image)
lemma convex_hull_affinity:
"convex hull ((λx. a + c *⇩R x) ` S) = (λx. a + c *⇩R x) ` (convex hull S)"
by (metis convex_hull_scaling convex_hull_translation image_image)
subsection ‹Convexity of cone hulls›
lemma convex_cone_hull:
assumes "convex S"
shows "convex (cone hull S)"
proof (rule convexI)
fix x y
assume xy: "x ∈ cone hull S" "y ∈ cone hull S"
then have "S ≠ {}"
using cone_hull_empty_iff[of S] by auto
fix u v :: real
assume uv: "u ≥ 0" "v ≥ 0" "u + v = 1"
then have *: "u *⇩R x ∈ cone hull S" "v *⇩R y ∈ cone hull S"
by (simp_all add: cone_cone_hull mem_cone uv xy)
then obtain cx :: real and xx
and cy :: real and yy where x: "u *⇩R x = cx *⇩R xx" "cx ≥ 0" "xx ∈ S"
and y: "v *⇩R y = cy *⇩R yy" "cy ≥ 0" "yy ∈ S"
using cone_hull_expl[of S] by auto
have "u *⇩R x + v *⇩R y ∈ cone hull S" if "cx + cy ≤ 0"
using "*"(1) nless_le that x(2) y by fastforce
moreover
have "u *⇩R x + v *⇩R y ∈ cone hull S" if "cx + cy > 0"
proof -
have "(cx / (cx + cy)) *⇩R xx + (cy / (cx + cy)) *⇩R yy ∈ S"
using assms mem_convex_alt[of S xx yy cx cy] x y that by auto
then have "cx *⇩R xx + cy *⇩R yy ∈ cone hull S"
using mem_cone_hull[of "(cx/(cx+cy)) *⇩R xx + (cy/(cx+cy)) *⇩R yy" S "cx+cy"] ‹cx+cy>0›
by (auto simp: scaleR_right_distrib)
then show ?thesis
using x y by auto
qed
moreover have "cx + cy ≤ 0 ∨ cx + cy > 0" by auto
ultimately show "u *⇩R x + v *⇩R y ∈ cone hull S" by blast
qed
lemma cone_convex_hull:
assumes "cone S"
shows "cone (convex hull S)"
by (metis (no_types, lifting) affine_hull_convex_hull affine_hull_eq_empty assms cone_iff convex_hull_scaling hull_inc)
section ‹Conic sets and conic hull›
definition conic :: "'a::real_vector set ⇒ bool"
where "conic S ≡ ∀x c. x ∈ S ⟶ 0 ≤ c ⟶ (c *⇩R x) ∈ S"
lemma conicD: "⟦conic S; x ∈ S; 0 ≤ c⟧ ⟹ (c *⇩R x) ∈ S"
by (meson conic_def)
lemma subspace_imp_conic: "subspace S ⟹ conic S"
by (simp add: conic_def subspace_def)
lemma conic_empty [simp]: "conic {}"
using conic_def by blast
lemma conic_UNIV: "conic UNIV"
by (simp add: conic_def)
lemma conic_Inter: "(⋀S. S ∈ ℱ ⟹ conic S) ⟹ conic(⋂ℱ)"
by (simp add: conic_def)
lemma conic_linear_image:
"⟦conic S; linear f⟧ ⟹ conic(f ` S)"
by (smt (verit) conic_def image_iff linear.scaleR)
lemma conic_linear_image_eq:
"⟦linear f; inj f⟧ ⟹ conic (f ` S) ⟷ conic S"
by (smt (verit) conic_def conic_linear_image inj_image_mem_iff linear_cmul)
lemma conic_mul: "⟦conic S; x ∈ S; 0 ≤ c⟧ ⟹ (c *⇩R x) ∈ S"
using conic_def by blast
lemma conic_conic_hull: "conic(conic hull S)"
by (metis (no_types, lifting) conic_Inter hull_def mem_Collect_eq)
lemma conic_hull_eq: "(conic hull S = S) ⟷ conic S"
by (metis conic_conic_hull hull_same)
lemma conic_hull_UNIV [simp]: "conic hull UNIV = UNIV"
by simp
lemma conic_negations: "conic S ⟹ conic (image uminus S)"
by (auto simp: conic_def image_iff)
lemma conic_span [iff]: "conic(span S)"
by (simp add: subspace_imp_conic)
lemma conic_hull_explicit:
"conic hull S = {c *⇩R x| c x. 0 ≤ c ∧ x ∈ S}"
proof (rule hull_unique)
show "S ⊆ {c *⇩R x |c x. 0 ≤ c ∧ x ∈ S}"
by (metis (no_types) cone_hull_expl hull_subset)
show "conic {c *⇩R x |c x. 0 ≤ c ∧ x ∈ S}"
using mult_nonneg_nonneg by (force simp: conic_def)
qed (auto simp: conic_def)
lemma conic_hull_as_image:
"conic hull S = (λz. fst z *⇩R snd z) ` ({0..} × S)"
by (force simp: conic_hull_explicit)
lemma conic_hull_linear_image:
"linear f ⟹ conic hull f ` S = f ` (conic hull S)"
by (force simp: conic_hull_explicit image_iff set_eq_iff linear_scale)
lemma conic_hull_image_scale:
assumes "⋀x. x ∈ S ⟹ 0 < c x"
shows "conic hull (λx. c x *⇩R x) ` S = conic hull S"
proof
show "conic hull (λx. c x *⇩R x) ` S ⊆ conic hull S"
proof (rule hull_minimal)
show "(λx. c x *⇩R x) ` S ⊆ conic hull S"
using assms conic_hull_explicit by fastforce
qed (simp add: conic_conic_hull)
show "conic hull S ⊆ conic hull (λx. c x *⇩R x) ` S"
proof (rule hull_minimal)
show "S ⊆ conic hull (λx. c x *⇩R x) ` S"
proof clarsimp
fix x
assume "x ∈ S"
then have "x = inverse(c x) *⇩R c x *⇩R x"
using assms by fastforce
then show "x ∈ conic hull (λx. c x *⇩R x) ` S"
by (smt (verit, best) ‹x ∈ S› assms conic_conic_hull conic_mul hull_inc image_eqI inverse_nonpositive_iff_nonpositive)
qed
qed (simp add: conic_conic_hull)
qed
lemma convex_conic_hull:
assumes "convex S"
shows "convex (conic hull S)"
proof (clarsimp simp add: conic_hull_explicit convex_alt)
fix c x d y and u :: real
assume §: "(0::real) ≤ c" "x ∈ S" "(0::real) ≤ d" "y ∈ S" "0 ≤ u" "u ≤ 1"
show "∃c'' x''. ((1 - u) * c) *⇩R x + (u * d) *⇩R y = c'' *⇩R x'' ∧ 0 ≤ c'' ∧ x'' ∈ S"
proof (cases "(1 - u) * c = 0")
case True
with ‹0 ≤ d› ‹y ∈ S›‹0 ≤ u›
show ?thesis by force
next
case False
define ξ where "ξ ≡ (1 - u) * c + u * d"
have *: "c * u ≤ c"
by (simp add: "§" mult_left_le)
have "ξ > 0"
using False § by (smt (verit, best) ξ_def split_mult_pos_le)
then have **: "c + d * u = ξ + c * u"
by (simp add: ξ_def mult.commute right_diff_distrib')
show ?thesis
proof (intro exI conjI)
show "0 ≤ ξ"
using ‹0 < ξ› by auto
show "((1 - u) * c) *⇩R x + (u * d) *⇩R y = ξ *⇩R (((1 - u) * c / ξ) *⇩R x + (u * d / ξ) *⇩R y)"
using ‹ξ > 0› by (simp add: algebra_simps diff_divide_distrib)
show "((1 - u) * c / ξ) *⇩R x + (u * d / ξ) *⇩R y ∈ S"
using ‹0 < ξ›
by (intro convexD [OF assms]) (auto simp: § field_split_simps * **)
qed
qed
qed
lemma conic_halfspace_le: "conic {x. a ∙ x ≤ 0}"
by (auto simp: conic_def mult_le_0_iff)
lemma conic_halfspace_ge: "conic {x. a ∙ x ≥ 0}"
by (auto simp: conic_def mult_le_0_iff)
lemma conic_hull_empty [simp]: "conic hull {} = {}"
by (simp add: conic_hull_eq)
lemma conic_contains_0: "conic S ⟹ (0 ∈ S ⟷ S ≠ {})"
by (simp add: Convex.cone_def cone_contains_0 conic_def)
lemma conic_hull_eq_empty: "conic hull S = {} ⟷ (S = {})"
using conic_hull_explicit by fastforce
lemma conic_sums: "⟦conic S; conic T⟧ ⟹ conic (⋃x∈ S. ⋃y ∈ T. {x + y})"
by (simp add: conic_def) (metis scaleR_right_distrib)
lemma conic_Times: "⟦conic S; conic T⟧ ⟹ conic(S × T)"
by (auto simp: conic_def)
lemma conic_Times_eq:
"conic(S × T) ⟷ S = {} ∨ T = {} ∨ conic S ∧ conic T" (is "?lhs = ?rhs")
proof
show "?lhs ⟹ ?rhs"
by (force simp: conic_def)
show "?rhs ⟹ ?lhs"
by (force simp: conic_Times)
qed
lemma conic_hull_0 [simp]: "conic hull {0} = {0}"
by (simp add: conic_hull_eq subspace_imp_conic)
lemma conic_hull_contains_0 [simp]: "0 ∈ conic hull S ⟷ (S ≠ {})"
by (simp add: conic_conic_hull conic_contains_0 conic_hull_eq_empty)
lemma conic_hull_eq_sing:
"conic hull S = {x} ⟷ S = {0} ∧ x = 0"
proof
show "conic hull S = {x} ⟹ S = {0} ∧ x = 0"
by (metis conic_conic_hull conic_contains_0 conic_def conic_hull_eq hull_inc insert_not_empty singleton_iff)
qed simp
lemma conic_hull_Int_affine_hull:
assumes "T ⊆ S" "0 ∉ affine hull S"
shows "(conic hull T) ∩ (affine hull S) = T"
proof -
have TaffS: "T ⊆ affine hull S"
using ‹T ⊆ S› hull_subset by fastforce
moreover
have "conic hull T ∩ affine hull S ⊆ T"
proof (clarsimp simp: conic_hull_explicit)
fix c x
assume "c *⇩R x ∈ affine hull S"
and "0 ≤ c"
and "x ∈ T"
show "c *⇩R x ∈ T"
proof (cases "c=1")
case True
then show ?thesis
by (simp add: ‹x ∈ T›)
next
case False
then have "x /⇩R (1 - c) = x + (c * inverse (1 - c)) *⇩R x"
by (smt (verit, ccfv_SIG) diff_add_cancel mult.commute real_vector_affinity_eq scaleR_collapse scaleR_scaleR)
then have "0 = inverse(1 - c) *⇩R c *⇩R x + (1 - inverse(1 - c)) *⇩R x"
by (simp add: algebra_simps)
then have "0 ∈ affine hull S"
by (smt (verit) ‹c *⇩R x ∈ affine hull S› ‹x ∈ T› affine_affine_hull TaffS in_mono mem_affine)
then show ?thesis
using assms by auto
qed
qed
ultimately show ?thesis
by (auto simp: hull_inc)
qed
section ‹Convex cones and corresponding hulls›
definition convex_cone :: "'a::real_vector set ⇒ bool"
where "convex_cone ≡ λS. S ≠ {} ∧ convex S ∧ conic S"
lemma convex_cone_iff:
"convex_cone S ⟷
0 ∈ S ∧ (∀x ∈ S. ∀y ∈ S. x + y ∈ S) ∧ (∀x ∈ S. ∀c≥0. c *⇩R x ∈ S)"
by (metis cone_def conic_contains_0 conic_def convex_cone convex_cone_def)
lemma convex_cone_add: "⟦convex_cone S; x ∈ S; y ∈ S⟧ ⟹ x+y ∈ S"
by (simp add: convex_cone_iff)
lemma convex_cone_scaleR: "⟦convex_cone S; 0 ≤ c; x ∈ S⟧ ⟹ c *⇩R x ∈ S"
by (simp add: convex_cone_iff)
lemma convex_cone_nonempty: "convex_cone S ⟹ S ≠ {}"
by (simp add: convex_cone_def)
lemma convex_cone_linear_image:
"convex_cone S ∧ linear f ⟹ convex_cone(f ` S)"
by (simp add: conic_linear_image convex_cone_def convex_linear_image)
lemma convex_cone_linear_image_eq:
"⟦linear f; inj f⟧ ⟹ (convex_cone(f ` S) ⟷ convex_cone S)"
by (simp add: conic_linear_image_eq convex_cone_def)
lemma convex_cone_halfspace_ge: "convex_cone {x. a ∙ x ≥ 0}"
by (simp add: convex_cone_iff inner_simps(2))
lemma convex_cone_halfspace_le: "convex_cone {x. a ∙ x ≤ 0}"
by (simp add: convex_cone_iff inner_right_distrib mult_nonneg_nonpos)
lemma convex_cone_contains_0: "convex_cone S ⟹ 0 ∈ S"
using convex_cone_iff by blast
lemma convex_cone_Inter:
"(⋀S. S ∈ f ⟹ convex_cone S) ⟹ convex_cone(⋂ f)"
by (simp add: convex_cone_iff)
lemma convex_cone_convex_cone_hull: "convex_cone(convex_cone hull S)"
by (metis (no_types, lifting) convex_cone_Inter hull_def mem_Collect_eq)
lemma convex_convex_cone_hull: "convex(convex_cone hull S)"
by (meson convex_cone_convex_cone_hull convex_cone_def)
lemma conic_convex_cone_hull: "conic(convex_cone hull S)"
by (metis convex_cone_convex_cone_hull convex_cone_def)
lemma convex_cone_hull_nonempty: "convex_cone hull S ≠ {}"
by (simp add: convex_cone_convex_cone_hull convex_cone_nonempty)
lemma convex_cone_hull_contains_0: "0 ∈ convex_cone hull S"
by (simp add: convex_cone_contains_0 convex_cone_convex_cone_hull)
lemma convex_cone_hull_add:
"⟦x ∈ convex_cone hull S; y ∈ convex_cone hull S⟧ ⟹ x + y ∈ convex_cone hull S"
by (simp add: convex_cone_add convex_cone_convex_cone_hull)
lemma convex_cone_hull_mul:
"⟦x ∈ convex_cone hull S; 0 ≤ c⟧ ⟹ (c *⇩R x) ∈ convex_cone hull S"
by (simp add: conic_convex_cone_hull conic_mul)
thm convex_sums
lemma convex_cone_sums:
"⟦convex_cone S; convex_cone T⟧ ⟹ convex_cone (⋃x∈ S. ⋃y ∈ T. {x + y})"
by (simp add: convex_cone_def conic_sums convex_sums)
lemma convex_cone_Times:
"⟦convex_cone S; convex_cone T⟧ ⟹ convex_cone(S × T)"
by (simp add: conic_Times convex_Times convex_cone_def)
lemma convex_cone_Times_D1: "convex_cone (S × T) ⟹ convex_cone S"
by (metis Times_empty conic_Times_eq convex_cone_def convex_convex_hull convex_hull_Times hull_same times_eq_iff)
lemma convex_cone_Times_eq:
"convex_cone(S × T) ⟷ convex_cone S ∧ convex_cone T"
proof (cases "S={} ∨ T={}")
case True
then show ?thesis
by (auto dest: convex_cone_nonempty)
next
case False
then have "convex_cone (S × T) ⟹ convex_cone T"
by (metis conic_Times_eq convex_cone_def convex_convex_hull convex_hull_Times hull_same times_eq_iff)
then show ?thesis
using convex_cone_Times convex_cone_Times_D1 by blast
qed
lemma convex_cone_hull_Un:
"convex_cone hull(S ∪ T) = (⋃x ∈ convex_cone hull S. ⋃y ∈ convex_cone hull T. {x + y})"
(is "?lhs = ?rhs")
proof
show "?lhs ⊆ ?rhs"
proof (rule hull_minimal)
show "S ∪ T ⊆ (⋃x∈convex_cone hull S. ⋃y∈convex_cone hull T. {x + y})"
apply (clarsimp simp: subset_iff)
by (metis add_0 convex_cone_hull_contains_0 group_cancel.rule0 hull_inc)
show "convex_cone (⋃x∈convex_cone hull S. ⋃y∈convex_cone hull T. {x + y})"
by (simp add: convex_cone_convex_cone_hull convex_cone_sums)
qed
next
show "?rhs ⊆ ?lhs"
by clarify (metis convex_cone_hull_add hull_mono le_sup_iff subsetD subsetI)
qed
lemma convex_cone_singleton [iff]: "convex_cone {0}"
by (simp add: convex_cone_iff)
lemma convex_hull_subset_convex_cone_hull:
"convex hull S ⊆ convex_cone hull S"
by (simp add: convex_convex_cone_hull hull_minimal hull_subset)
lemma conic_hull_subset_convex_cone_hull:
"conic hull S ⊆ convex_cone hull S"
by (simp add: conic_convex_cone_hull hull_minimal hull_subset)
lemma subspace_imp_convex_cone: "subspace S ⟹ convex_cone S"
by (simp add: convex_cone_iff subspace_def)
lemma convex_cone_span: "convex_cone(span S)"
by (simp add: subspace_imp_convex_cone)
lemma convex_cone_negations:
"convex_cone S ⟹ convex_cone (image uminus S)"
by (simp add: convex_cone_linear_image module_hom_uminus)
lemma subspace_convex_cone_symmetric:
"subspace S ⟷ convex_cone S ∧ (∀x ∈ S. -x ∈ S)"
by (smt (verit) convex_cone_iff scaleR_left.minus subspace_def subspace_neg)
lemma convex_cone_hull_separate_nonempty:
assumes "S ≠ {}"
shows "convex_cone hull S = conic hull (convex hull S)" (is "?lhs = ?rhs")
proof
show "?lhs ⊆ ?rhs"
by (metis assms conic_conic_hull convex_cone_def convex_conic_hull convex_convex_hull hull_subset subset_empty subset_hull)
show "?rhs ⊆ ?lhs"
by (simp add: conic_convex_cone_hull convex_hull_subset_convex_cone_hull subset_hull)
qed
lemma convex_cone_hull_empty [simp]: "convex_cone hull {} = {0}"
by (metis convex_cone_hull_contains_0 convex_cone_singleton hull_redundant hull_same)
lemma convex_cone_hull_separate:
"convex_cone hull S = insert 0 (conic hull (convex hull S))"
proof(cases "S={}")
case False
then show ?thesis
using convex_cone_hull_contains_0 convex_cone_hull_separate_nonempty by blast
qed auto
lemma convex_cone_hull_convex_hull_nonempty:
"S ≠ {} ⟹ convex_cone hull S = (⋃x ∈ convex hull S. ⋃c∈{0..}. {c *⇩R x})"
by (force simp: convex_cone_hull_separate_nonempty conic_hull_as_image)
lemma convex_cone_hull_convex_hull:
"convex_cone hull S = insert 0 (⋃x ∈ convex hull S. ⋃c∈{0..}. {c *⇩R x})"
by (force simp: convex_cone_hull_separate conic_hull_as_image)
lemma convex_cone_hull_linear_image:
"linear f ⟹ convex_cone hull (f ` S) = image f (convex_cone hull S)"
by (metis (no_types, lifting) conic_hull_linear_image convex_cone_hull_separate convex_hull_linear_image image_insert linear_0)
subsection ‹Radon's theorem›
text "Formalized by Lars Schewe."
lemma Radon_ex_lemma:
assumes "finite c" "affine_dependent c"
shows "∃u. sum u c = 0 ∧ (∃v∈c. u v ≠ 0) ∧ sum (λv. u v *⇩R v) c = 0"
using affine_dependent_explicit_finite assms by blast
lemma Radon_s_lemma:
assumes "finite S"
and "sum f S = (0::real)"
shows "sum f {x∈S. 0 < f x} = - sum f {x∈S. f x < 0}"
proof -
have "⋀x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x"
by auto
then show ?thesis
using assms by (simp add: sum.inter_filter flip: sum.distrib add_eq_0_iff)
qed
lemma Radon_v_lemma:
assumes "finite S"
and "sum f S = 0"
and "∀x. g x = (0::real) ⟶ f x = (0::'a::euclidean_space)"
shows "(sum f {x∈S. 0 < g x}) = - sum f {x∈S. g x < 0}"
proof -
have "⋀x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x"
using assms by auto
then show ?thesis
using assms by (simp add: sum.inter_filter eq_neg_iff_add_eq_0 flip: sum.distrib add_eq_0_iff)
qed
lemma Radon_partition:
assumes "finite C" "affine_dependent C"
shows "∃M P. M ∩ P = {} ∧ M ∪ P = C ∧ (convex hull M) ∩ (convex hull P) ≠ {}"
proof -
obtain u v where uv: "sum u C = 0" "v∈C" "u v ≠ 0" "(∑v∈C. u v *⇩R v) = 0"
using Radon_ex_lemma[OF assms] by auto
have fin: "finite {x ∈ C. 0 < u x}" "finite {x ∈ C. 0 > u x}"
using assms(1) by auto
define z where "z = inverse (sum u {x∈C. u x > 0}) *⇩R sum (λx. u x *⇩R x) {x∈C. u x > 0}"
have "sum u {x ∈ C. 0 < u x} ≠ 0"
proof (cases "u v ≥ 0")
case False
then have "u v < 0" by auto
then show ?thesis
by (smt (verit) assms(1) fin(1) mem_Collect_eq sum.neutral_const sum_mono_inv uv)
next
case True
with fin uv show "sum u {x ∈ C. 0 < u x} ≠ 0"
by (smt (verit) fin(1) mem_Collect_eq sum_nonneg_eq_0_iff uv)
qed
then have *: "sum u {x∈C. u x > 0} > 0"
unfolding less_le by (metis (no_types, lifting) mem_Collect_eq sum_nonneg)
moreover have "sum u ({x ∈ C. 0 < u x} ∪ {x ∈ C. u x < 0}) = sum u C"
"(∑x∈{x ∈ C. 0 < u x} ∪ {x ∈ C. u x < 0}. u x *⇩R x) = (∑x∈C. u x *⇩R x)"
using assms(1)
by (rule_tac[!] sum.mono_neutral_left, auto)
then have "sum u {x ∈ C. 0 < u x} = - sum u {x ∈ C. 0 > u x}"
"(∑x∈{x ∈ C. 0 < u x}. u x *⇩R x) = - (∑x∈{x ∈ C. 0 > u x}. u x *⇩R x)"
unfolding eq_neg_iff_add_eq_0
using uv(1,4)
by (auto simp: sum.union_inter_neutral[OF fin, symmetric])
moreover have "∀x∈{v ∈ C. u v < 0}. 0 ≤ inverse (sum u {x ∈ C. 0 < u x}) * - u x"
using * by (fastforce intro: mult_nonneg_nonneg)
ultimately have "z ∈ convex hull {v ∈ C. u v ≤ 0}"
unfolding convex_hull_explicit mem_Collect_eq
apply (rule_tac x="{v ∈ C. u v < 0}" in exI)
apply (rule_tac x="λy. inverse (sum u {x∈C. u x > 0}) * - u y" in exI)
using assms(1) unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric]
by (auto simp: z_def sum_negf sum_distrib_left[symmetric])
moreover have "∀x∈{v ∈ C. 0 < u v}. 0 ≤ inverse (sum u {x ∈ C. 0 < u x}) * u x"
using * by (fastforce intro: mult_nonneg_nonneg)
then have "z ∈ convex hull {v ∈ C. u v > 0}"
unfolding convex_hull_explicit mem_Collect_eq
apply (rule_tac x="{v ∈ C. 0 < u v}" in exI)
apply (rule_tac x="λy. inverse (sum u {x∈C. u x > 0}) * u y" in exI)
using assms(1)
unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric]
using * by (auto simp: z_def sum_negf sum_distrib_left[symmetric])
ultimately show ?thesis
apply (rule_tac x="{v∈C. u v ≤ 0}" in exI)
apply (rule_tac x="{v∈C. u v > 0}" in exI, auto)
done
qed
theorem Radon:
assumes "affine_dependent c"
obtains M P where "M ⊆ c" "P ⊆ c" "M ∩ P = {}" "(convex hull M) ∩ (convex hull P) ≠ {}"
by (smt (verit) Radon_partition affine_dependent_explicit affine_dependent_explicit_finite assms le_sup_iff)
subsection ‹Helly's theorem›
lemma Helly_induct:
fixes ℱ :: "'a::euclidean_space set set"
assumes "card ℱ = n"
and "n ≥ DIM('a) + 1"
and "∀S∈ℱ. convex S" "∀T⊆ℱ. card T = DIM('a) + 1 ⟶ ⋂T ≠ {}"
shows "⋂ℱ ≠ {}"
using assms
proof (induction n arbitrary: ℱ)
case 0
then show ?case by auto
next
case (Suc n)
have "finite ℱ"
using ‹card ℱ = Suc n› by (auto intro: card_ge_0_finite)
show "⋂ℱ ≠ {}"
proof (cases "n = DIM('a)")
case True
then show ?thesis
by (simp add: Suc.prems)
next
case False
have "⋂(ℱ - {S}) ≠ {}" if "S ∈ ℱ" for S
proof (rule Suc.IH[rule_format])
show "card (ℱ - {S}) = n"
by (simp add: Suc.prems(1) ‹finite ℱ› that)
show "DIM('a) + 1 ≤ n"
using False Suc.prems(2) by linarith
show "⋀t. ⟦t ⊆ ℱ - {S}; card t = DIM('a) + 1⟧ ⟹ ⋂t ≠ {}"
by (simp add: Suc.prems(4) subset_Diff_insert)
qed (use Suc in auto)
then have "∀S∈ℱ. ∃x. x ∈ ⋂(ℱ - {S})"
by blast
then obtain X where X: "⋀S. S∈ℱ ⟹ X S ∈ ⋂(ℱ - {S})"
by metis
show ?thesis
proof (cases "inj_on X ℱ")
case False
then obtain S T where "S≠T" and st: "S∈ℱ" "T∈ℱ" "X S = X T"
unfolding inj_on_def by auto
then have *: "⋂ℱ = ⋂(ℱ - {S}) ∩ ⋂(ℱ - {T})" by auto
show ?thesis
by (metis "*" X disjoint_iff_not_equal st)
next
case True
then obtain M P where mp: "M ∩ P = {}" "M ∪ P = X ` ℱ" "convex hull M ∩ convex hull P ≠ {}"
using Radon_partition[of "X ` ℱ"] and affine_dependent_biggerset[of "X ` ℱ"]
unfolding card_image[OF True] and ‹card ℱ = Suc n›
using Suc(3) ‹finite ℱ› and False
by auto
have "M ⊆ X ` ℱ" "P ⊆ X ` ℱ"
using mp(2) by auto
then obtain 𝒢 ℋ where gh:"M = X ` 𝒢" "P = X ` ℋ" "𝒢 ⊆ ℱ" "ℋ ⊆ ℱ"
unfolding subset_image_iff by auto
then have "ℱ ∪ (𝒢 ∪ ℋ) = ℱ" by auto
then have ℱ: "ℱ = 𝒢 ∪ ℋ"
using inj_on_Un_image_eq_iff[of X ℱ "𝒢 ∪ ℋ"] and True
unfolding mp(2)[unfolded image_Un[symmetric] gh]
by auto
have *: "𝒢 ∩ ℋ = {}"
using gh local.mp(1) by blast
have "convex hull (X ` ℋ) ⊆ ⋂𝒢" "convex hull (X ` 𝒢) ⊆ ⋂ℋ"
by (rule hull_minimal; use X * ℱ in ‹auto simp: Suc.prems(3) convex_Inter›)+
then show ?thesis
unfolding ℱ using mp(3)[unfolded gh] by blast
qed
qed
qed
theorem Helly:
fixes ℱ :: "'a::euclidean_space set set"
assumes "card ℱ ≥ DIM('a) + 1" "∀s∈ℱ. convex s"
and "⋀t. ⟦t⊆ℱ; card t = DIM('a) + 1⟧ ⟹ ⋂t ≠ {}"
shows "⋂ℱ ≠ {}"
using Helly_induct assms by blast
subsection ‹Epigraphs of convex functions›
definition "epigraph S (f :: _ ⇒ real) = {xy. fst xy ∈ S ∧ f (fst xy) ≤ snd xy}"
lemma mem_epigraph: "(x, y) ∈ epigraph S f ⟷ x ∈ S ∧ f x ≤ y"
unfolding epigraph_def by auto
lemma convex_epigraph: "convex (epigraph S f) ⟷ convex_on S f"
proof safe
assume L: "convex (epigraph S f)"
then show "convex_on S f"
by (fastforce simp: convex_def convex_on_def epigraph_def)
next
assume "convex_on S f"
then show "convex (epigraph S f)"
unfolding convex_def convex_on_def epigraph_def
apply safe
apply (rule_tac [2] y="u * f a + v * f aa" in order_trans)
apply (auto intro!:mult_left_mono add_mono)
done
qed
lemma convex_epigraphI: "convex_on S f ⟹ convex (epigraph S f)"
unfolding convex_epigraph by auto
lemma convex_epigraph_convex: "convex_on S f ⟷ convex(epigraph S f)"
by (simp add: convex_epigraph)
subsubsection ‹Use this to derive general bound property of convex function›
lemma convex_on:
assumes "convex S"
shows "convex_on S f ⟷
(∀k u x. (∀i∈{1..k::nat}. 0 ≤ u i ∧ x i ∈ S) ∧ sum u {1..k} = 1 ⟶
f (sum (λi. u i *⇩R x i) {1..k}) ≤ sum (λi. u i * f(x i)) {1..k})"
(is "?lhs = (∀k u x. ?rhs k u x)")
proof
assume ?lhs
then have §: "convex {xy. fst xy ∈ S ∧ f (fst xy) ≤ snd xy}"
by (metis assms convex_epigraph epigraph_def)
show "∀k u x. ?rhs k u x"
proof (intro allI)
fix k u x
show "?rhs k u x"
using §
unfolding convex mem_Collect_eq fst_sum snd_sum
apply safe
apply (drule_tac x=k in spec)
apply (drule_tac x=u in spec)
apply (drule_tac x="λi. (x i, f (x i))" in spec)
apply simp
done
qed
next
assume "∀k u x. ?rhs k u x"
then show ?lhs
unfolding convex_epigraph_convex convex epigraph_def Ball_def mem_Collect_eq fst_sum snd_sum
using assms[unfolded convex] apply clarsimp
apply (rule_tac y="∑i = 1..k. u i * f (fst (x i))" in order_trans)
by (auto simp add: mult_left_mono intro: sum_mono)
qed
subsection ‹A bound within a convex hull›
lemma convex_on_convex_hull_bound:
assumes "convex_on (convex hull S) f"
and "∀x∈S. f x ≤ b"
shows "∀x∈ convex hull S. f x ≤ b"
proof
fix x
assume "x ∈ convex hull S"
then obtain k u v where
u: "∀i∈{1..k::nat}. 0 ≤ u i ∧ v i ∈ S" "sum u {1..k} = 1" "(∑i = 1..k. u i *⇩R v i) = x"
unfolding convex_hull_indexed mem_Collect_eq by auto
have "(∑i = 1..k. u i * f (v i)) ≤ b"
using sum_mono[of "{1..k}" "λi. u i * f (v i)" "λi. u i * b"]
unfolding sum_distrib_right[symmetric] u(2) mult_1
using assms(2) mult_left_mono u(1) by blast
then show "f x ≤ b"
using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]
using hull_inc u by fastforce
qed
lemma convex_set_plus:
assumes "convex S" and "convex T" shows "convex (S + T)"
by (metis assms convex_hull_eq convex_hull_set_plus)
lemma convex_set_sum:
assumes "⋀i. i ∈ A ⟹ convex (B i)"
shows "convex (∑i∈A. B i)"
using assms
by (induction A rule: infinite_finite_induct) (auto simp: convex_set_plus)
lemma finite_set_sum:
assumes "∀i∈A. finite (B i)" shows "finite (∑i∈A. B i)"
using assms
by (induction A rule: infinite_finite_induct) (auto simp: finite_set_plus)
lemma box_eq_set_sum_Basis:
"{x. ∀i∈Basis. x∙i ∈ B i} = (∑i∈Basis. (λx. x *⇩R i) ` (B i))" (is "?lhs = ?rhs")
proof -
have "⋀x. ∀i∈Basis. x ∙ i ∈ B i ⟹
∃s. x = sum s Basis ∧ (∀i∈Basis. s i ∈ (λx. x *⇩R i) ` B i)"
by (metis (mono_tags, lifting) euclidean_representation image_iff)
moreover
have "sum f Basis ∙ i ∈ B i" if "i ∈ Basis" and f: "∀i∈Basis. f i ∈ (λx. x *⇩R i) ` B i" for i f
proof -
have "(∑x∈Basis - {i}. f x ∙ i) = 0"
proof (intro strip sum.neutral)
show "f x ∙ i = 0" if "x ∈ Basis - {i}" for x
using that f ‹i ∈ Basis› inner_Basis that by fastforce
qed
then have "(∑x∈Basis. f x ∙ i) = f i ∙ i"
by (metis (no_types) ‹i ∈ Basis› add.right_neutral sum.remove [OF finite_Basis])
then have "(∑x∈Basis. f x ∙ i) ∈ B i"
using f that(1) by auto
then show ?thesis
by (simp add: inner_sum_left)
qed
ultimately show ?thesis
by (subst set_sum_alt [OF finite_Basis]) auto
qed
lemma convex_hull_set_sum:
"convex hull (∑i∈A. B i) = (∑i∈A. convex hull (B i))"
by (induction A rule: infinite_finite_induct) (auto simp: convex_hull_set_plus)
end