Theory Gamma_Asymptotics
section ‹Complete asymptotics of the logarithmic Gamma function›
theory Gamma_Asymptotics
imports
"HOL-Complex_Analysis.Complex_Analysis"
Bernoulli.Bernoulli_FPS
Bernoulli.Periodic_Bernpoly
Stirling_Formula
begin
subsection ‹Auxiliary Facts›
lemma stirling_limit_aux1:
"((λy. Ln (1 + z * of_real y) / of_real y) ⤏ z) (at_right 0)" for z :: complex
proof (cases "z = 0")
case True
then show ?thesis by simp
next
case False
have "((λy. ln (1 + z * of_real y)) has_vector_derivative 1 * z) (at 0)"
by (rule has_vector_derivative_real_field) (auto intro!: derivative_eq_intros)
then have "(λy. (Ln (1 + z * of_real y) - of_real y * z) / of_real ¦y¦) ─0→ 0"
by (auto simp add: has_vector_derivative_def has_derivative_def netlimit_at
scaleR_conv_of_real field_simps)
then have "((λy. (Ln (1 + z * of_real y) - of_real y * z) / of_real ¦y¦) ⤏ 0) (at_right 0)"
by (rule filterlim_mono[OF _ _ at_le]) simp_all
also have "?this ⟷ ((λy. Ln (1 + z * of_real y) / (of_real y) - z) ⤏ 0) (at_right 0)"
using eventually_at_right_less[of "0::real"]
by (intro filterlim_cong refl) (auto elim!: eventually_mono simp: field_simps)
finally show ?thesis by (simp only: LIM_zero_iff)
qed
lemma stirling_limit_aux2:
"((λy. y * Ln (1 + z / of_real y)) ⤏ z) at_top" for z :: complex
using stirling_limit_aux1[of z] by (subst filterlim_at_top_to_right) (simp add: field_simps)
lemma Union_atLeastAtMost:
assumes "N > 0"
shows "(⋃n∈{0..<N}. {real n..real (n + 1)}) = {0..real N}"
proof (intro equalityI subsetI)
fix x assume x: "x ∈ {0..real N}"
thus "x ∈ (⋃n∈{0..<N}. {real n..real (n + 1)})"
proof (cases "x = real N")
case True
with assms show ?thesis by (auto intro!: bexI[of _ "N - 1"])
next
case False
with x have x: "x ≥ 0" "x < real N" by simp_all
hence "x ≥ real (nat ⌊x⌋)" "x ≤ real (nat ⌊x⌋ + 1)" by linarith+
moreover from x have "nat ⌊x⌋ < N" by linarith
ultimately have "∃n∈{0..<N}. x ∈ {real n..real (n + 1)}"
by (intro bexI[of _ "nat ⌊x⌋"]) simp_all
thus ?thesis by blast
qed
qed auto
subsection ‹Cones in the complex plane›
definition complex_cone :: "real ⇒ real ⇒ complex set" where
"complex_cone a b = {z. ∃y∈{a..b}. z = rcis (norm z) y}"
abbreviation complex_cone' :: "real ⇒ complex set" where
"complex_cone' a ≡ complex_cone (-a) a"
lemma zero_in_complex_cone [simp, intro]: "a ≤ b ⟹ 0 ∈ complex_cone a b"
by (auto simp: complex_cone_def)
lemma complex_coneE:
assumes "z ∈ complex_cone a b"
obtains r α where "r ≥ 0" "α ∈ {a..b}" "z = rcis r α"
proof -
from assms obtain y where "y ∈ {a..b}" "z = rcis (norm z) y"
unfolding complex_cone_def by auto
thus ?thesis using that[of "norm z" y] by auto
qed
lemma arg_cis [simp]:
assumes "x ∈ {-pi<..pi}"
shows "Arg (cis x) = x"
using assms by (intro cis_Arg_unique) auto
lemma arg_mult_of_real_left [simp]:
assumes "r > 0"
shows "Arg (of_real r * z) = Arg z"
proof (cases "z = 0")
case False
thus ?thesis
using Arg_bounded[of z] assms
by (intro cis_Arg_unique) (auto simp: sgn_mult sgn_of_real cis_Arg)
qed auto
lemma arg_mult_of_real_right [simp]:
assumes "r > 0"
shows "Arg (z * of_real r) = Arg z"
by (subst mult.commute, subst arg_mult_of_real_left) (simp_all add: assms)
lemma arg_rcis [simp]:
assumes "x ∈ {-pi<..pi}" "r > 0"
shows "Arg (rcis r x) = x"
using assms by (simp add: rcis_def)
lemma rcis_in_complex_cone [intro]:
assumes "α ∈ {a..b}" "r ≥ 0"
shows "rcis r α ∈ complex_cone a b"
using assms by (auto simp: complex_cone_def)
lemma arg_imp_in_complex_cone:
assumes "Arg z ∈ {a..b}"
shows "z ∈ complex_cone a b"
proof -
have "z = rcis (norm z) (Arg z)"
by (simp add: rcis_cmod_Arg)
also have "… ∈ complex_cone a b"
using assms by auto
finally show ?thesis .
qed
lemma complex_cone_altdef:
assumes "-pi < a" "a ≤ b" "b ≤ pi"
shows "complex_cone a b = insert 0 {z. Arg z ∈ {a..b}}"
proof (intro equalityI subsetI)
fix z assume "z ∈ complex_cone a b"
then obtain r α where *: "r ≥ 0" "α ∈ {a..b}" "z = rcis r α"
by (auto elim: complex_coneE)
have "Arg z ∈ {a..b}" if [simp]: "z ≠ 0"
proof -
have "r > 0" using that * by (subst (asm) *) auto
hence "α ∈ {a..b}"
using *(1,2) assms by (auto simp: *(1))
moreover from assms *(2) have "α ∈ {-pi<..pi}"
by auto
ultimately show ?thesis using *(3) ‹r > 0›
by (subst *) auto
qed
thus "z ∈ insert 0 {z. Arg z ∈ {a..b}}"
by auto
qed (use assms in ‹auto intro: arg_imp_in_complex_cone›)
lemma nonneg_of_real_in_complex_cone [simp, intro]:
assumes "x ≥ 0" "a ≤ 0" "0 ≤ b"
shows "of_real x ∈ complex_cone a b"
proof -
from assms have "rcis x 0 ∈ complex_cone a b"
by (intro rcis_in_complex_cone) auto
thus ?thesis by simp
qed
lemma one_in_complex_cone [simp, intro]: "a ≤ 0 ⟹ 0 ≤ b ⟹ 1 ∈ complex_cone a b"
using nonneg_of_real_in_complex_cone[of 1] by (simp del: nonneg_of_real_in_complex_cone)
lemma of_nat_in_complex_cone [simp, intro]: "a ≤ 0 ⟹ 0 ≤ b ⟹ of_nat n ∈ complex_cone a b"
using nonneg_of_real_in_complex_cone[of "real n"] by (simp del: nonneg_of_real_in_complex_cone)
subsection ‹Another integral representation of the Beta function›
lemma complex_cone_inter_nonpos_Reals:
assumes "-pi < a" "a ≤ b" "b < pi"
shows "complex_cone a b ∩ ℝ⇩≤⇩0 = {0}"
proof (safe elim!: nonpos_Reals_cases)
fix x :: real
assume "complex_of_real x ∈ complex_cone a b" "x ≤ 0"
hence "¬(x < 0)"
using assms by (intro notI) (auto simp: complex_cone_altdef)
with ‹x ≤ 0› show "complex_of_real x = 0" by auto
qed (use assms in auto)
theorem
assumes a: "a > 0" and b: "b > (0 :: real)"
shows has_integral_Beta_real':
"((λu. u powr (b - 1) / (1 + u) powr (a + b)) has_integral Beta a b) {0<..}"
and Beta_conv_nn_integral:
"Beta a b = (∫⇧+u. ennreal (indicator {0<..} u * u powr (b - 1) / (1 + u) powr (a + b)) ∂lborel)"
proof -
define I where
"I = (∫⇧+u. ennreal (indicator {0<..} u * u powr (b - 1) / (1 + u) powr (a + b)) ∂lborel)"
have "Gamma (a + b) > 0" "Beta a b > 0"
using assms by (simp_all add: add_pos_pos Beta_def)
from a b have "ennreal (Gamma a * Gamma b) =
(∫⇧+ t. ennreal (indicator {0..} t * t powr (a - 1) / exp t) ∂lborel) *
(∫⇧+ t. ennreal (indicator {0..} t * t powr (b - 1) / exp t) ∂lborel)"
by (subst ennreal_mult') (simp_all add: Gamma_conv_nn_integral_real)
also have "… = (∫⇧+t. ∫⇧+u. ennreal (indicator {0..} t * t powr (a - 1) / exp t) *
ennreal (indicator {0..} u * u powr (b - 1) / exp u) ∂lborel ∂lborel)"
by (simp add: nn_integral_cmult nn_integral_multc)
also have "… = (∫⇧+t. indicator {0<..} t * (∫⇧+u. indicator {0..} u * t powr (a - 1) * u powr (b - 1)
/ exp (t + u) ∂lborel) ∂lborel)"
by (intro nn_integral_cong_AE AE_I[of _ _ "{0}"])
(auto simp: indicator_def divide_ennreal ennreal_mult' [symmetric] exp_add mult_ac)
also have "… = (∫⇧+t. indicator {0<..} t * (∫⇧+u. indicator {0..} u * t powr (a - 1) * u powr (b - 1)
/ exp (t + u)
∂(density (distr lborel borel ((*) t)) (λx. ennreal ¦t¦))) ∂lborel)"
by (intro nn_integral_cong mult_indicator_cong, subst lborel_distr_mult' [symmetric]) auto
also have "… = (∫⇧+(t::real). indicator {0<..} t * (∫⇧+u.
indicator {0..} (u * t) * t powr a *
(u * t) powr (b - 1) / exp (t + t * u) ∂lborel) ∂lborel)"
by (intro nn_integral_cong mult_indicator_cong)
(auto simp: nn_integral_density nn_integral_distr algebra_simps powr_diff
simp flip: ennreal_mult)
also have "… = (∫⇧+(t::real). ∫⇧+u. indicator ({0<..}×{0..}) (t, u) *
t powr a * (u * t) powr (b - 1) / exp (t * (u + 1)) ∂lborel ∂lborel)"
by (subst nn_integral_cmult [symmetric], simp, intro nn_integral_cong)
(auto simp: indicator_def zero_le_mult_iff algebra_simps)
also have "… = (∫⇧+(t::real). ∫⇧+u. indicator ({0<..}×{0..}) (t, u) *
t powr (a + b - 1) * u powr (b - 1) / exp (t * (u + 1)) ∂lborel ∂lborel)"
by (intro nn_integral_cong) (auto simp: powr_add powr_diff indicator_def powr_mult field_simps)
also have "… = (∫⇧+(u::real). ∫⇧+t. indicator ({0<..}×{0..}) (t, u) *
t powr (a + b - 1) * u powr (b - 1) / exp (t * (u + 1)) ∂lborel ∂lborel)"
by (rule lborel_pair.Fubini') auto
also have "… = (∫⇧+(u::real). indicator {0..} u * (∫⇧+t. indicator {0<..} t *
t powr (a + b - 1) * u powr (b - 1) / exp (t * (u + 1)) ∂lborel) ∂lborel)"
by (intro nn_integral_cong mult_indicator_cong) (auto simp: indicator_def)
also have "… = (∫⇧+(u::real). indicator {0<..} u * (∫⇧+t. indicator {0<..} t *
t powr (a + b - 1) * u powr (b - 1) / exp (t * (u + 1)) ∂lborel) ∂lborel)"
by (intro nn_integral_cong_AE AE_I[of _ _ "{0}"]) (auto simp: indicator_def)
also have "… = (∫⇧+(u::real). indicator {0<..} u * (∫⇧+t. indicator {0<..} t *
t powr (a + b - 1) * u powr (b - 1) / exp (t * (u + 1))
∂(density (distr lborel borel ((*) (1/(1+u)))) (λx. ennreal ¦1/(1+u)¦))) ∂lborel)"
by (intro nn_integral_cong mult_indicator_cong, subst lborel_distr_mult' [symmetric]) auto
also have "… = (∫⇧+(u::real). indicator {0<..} u *
(∫⇧+t. ennreal (1 / (u + 1)) * ennreal (indicator {0<..} (t / (u + 1)) *
(t / (1+u)) powr (a + b - 1) * u powr (b - 1) / exp t)
∂lborel) ∂lborel)"
by (intro nn_integral_cong mult_indicator_cong)
(auto simp: nn_integral_distr nn_integral_density add_ac)
also have "… = (∫⇧+u. ∫⇧+t. indicator ({0<..}×{0<..}) (u, t) *
1/(u+1) * (t / (u+1)) powr (a + b - 1) * u powr (b - 1) / exp t
∂lborel ∂lborel)"
by (subst nn_integral_cmult [symmetric], simp, intro nn_integral_cong)
(auto simp: indicator_def field_simps divide_ennreal simp flip: ennreal_mult ennreal_mult')
also have "… = (∫⇧+u. ∫⇧+t. ennreal (indicator {0<..} u * u powr (b - 1) / (1 + u) powr (a + b)) *
ennreal (indicator {0<..} t * t powr (a + b - 1) / exp t)
∂lborel ∂lborel)"
by (intro nn_integral_cong)
(auto simp: indicator_def powr_add powr_diff powr_divide powr_minus divide_simps add_ac
simp flip: ennreal_mult)
also have "… = I * (∫⇧+t. indicator {0<..} t * t powr (a + b - 1) / exp t ∂lborel)"
by (simp add: nn_integral_cmult nn_integral_multc I_def)
also have "(∫⇧+t. indicator {0<..} t * t powr (a + b - 1) / exp t ∂lborel) =
ennreal (Gamma (a + b))"
using assms
by (subst Gamma_conv_nn_integral_real)
(auto intro!: nn_integral_cong_AE[OF AE_I[of _ _ "{0}"]]
simp: indicator_def split: if_splits split_of_bool_asm)
finally have "ennreal (Gamma a * Gamma b) = I * ennreal (Gamma (a + b))" .
hence "ennreal (Gamma a * Gamma b) / ennreal (Gamma (a + b)) =
I * ennreal (Gamma (a + b)) / ennreal (Gamma (a + b))" by simp
also have "… = I"
using ‹Gamma (a + b) > 0› by (intro ennreal_mult_divide_eq) auto
also have "ennreal (Gamma a * Gamma b) / ennreal (Gamma (a + b)) =
ennreal (Gamma a * Gamma b / Gamma (a + b))"
using assms by (intro divide_ennreal) auto
also have "… = ennreal (Beta a b)"
by (simp add: Beta_def)
finally show *: "ennreal (Beta a b) = I" .
define f where "f = (λu. u powr (b - 1) / (1 + u) powr (a + b))"
have "((λu. indicator {0<..} u * f u) has_integral Beta a b) UNIV"
using * ‹Beta a b > 0›
by (subst has_integral_iff_nn_integral_lebesgue)
(auto simp: f_def measurable_completion nn_integral_completion I_def mult_ac)
also have "(λu. indicator {0<..} u * f u) = (λu. if u ∈ {0<..} then f u else 0)"
by (auto simp: fun_eq_iff)
also have "(… has_integral Beta a b) UNIV ⟷ (f has_integral Beta a b) {0<..}"
by (rule has_integral_restrict_UNIV)
finally show … by (simp add: f_def)
qed
lemma has_integral_Beta2:
fixes a :: real
assumes "a < -1/2"
shows "((λx. (1 + x ^ 2) powr a) has_integral Beta (- a - 1 / 2) (1 / 2) / 2) {0<..}"
proof -
define f where "f = (λu. u powr (-1/2) / (1 + u) powr (-a))"
define C where "C = Beta (-a-1/2) (1/2)"
have I: "(f has_integral C) {0<..}"
using has_integral_Beta_real'[of "-a-1/2" "1/2"] assms
by (simp_all add: diff_divide_distrib f_def C_def)
define g where "g = (λx. x ^ 2 :: real)"
have bij: "bij_betw g {0<..} {0<..}"
by (intro bij_betwI[of _ _ _ sqrt]) (auto simp: g_def)
have "(f absolutely_integrable_on g ` {0<..} ∧ integral (g ` {0<..}) f = C)"
using I bij by (simp add: bij_betw_def has_integral_iff absolutely_integrable_on_def f_def)
also have "?this ⟷ ((λx. ¦2 * x¦ *⇩R f (g x)) absolutely_integrable_on {0<..} ∧
integral {0<..} (λx. ¦2 * x¦ *⇩R f (g x)) = C)"
using bij by (intro has_absolute_integral_change_of_variables_1' [symmetric])
(auto intro!: derivative_eq_intros simp: g_def bij_betw_def)
finally have "((λx. ¦2 * x¦ * f (g x)) has_integral C) {0<..}"
by (simp add: absolutely_integrable_on_def f_def has_integral_iff)
also have "?this ⟷ ((λx::real. 2 * (1 + x⇧2) powr a) has_integral C) {0<..}"
by (intro has_integral_cong) (auto simp: f_def g_def powr_def exp_minus ln_realpow field_simps)
finally have "((λx::real. 1/2 * (2 * (1 + x⇧2) powr a)) has_integral 1/2 * C) {0<..}"
by (intro has_integral_mult_right)
thus ?thesis by (simp add: C_def)
qed
lemma has_integral_Beta3:
fixes a b :: real
assumes "a < -1/2" and "b > 0"
shows "((λx. (b + x ^ 2) powr a) has_integral
Beta (-a - 1/2) (1/2) / 2 * b powr (a + 1/2)) {0<..}"
proof -
define C where "C = Beta (- a - 1 / 2) (1 / 2) / 2"
have int: "nn_integral lborel (λx. indicator {0<..} x * (1 + x ^ 2) powr a) = C"
using nn_integral_has_integral_lebesgue[OF _ has_integral_Beta2[OF assms(1)]]
by (auto simp: C_def)
have "nn_integral lborel (λx. indicator {0<..} x * (b + x ^ 2) powr a) =
(∫⇧+x. ennreal (indicat_real {0<..} (x * sqrt b) * (b + (x * sqrt b)⇧2) powr a * sqrt b) ∂lborel)"
using assms
by (subst lborel_distr_mult'[of "sqrt b"])
(auto simp: nn_integral_density nn_integral_distr mult_ac simp flip: ennreal_mult)
also have "… = (∫⇧+x. ennreal (indicat_real {0<..} x * (b * (1 + x ^ 2)) powr a * sqrt b) ∂lborel)"
using assms
by (intro nn_integral_cong) (auto simp: indicator_def field_simps zero_less_mult_iff)
also have "… = (∫⇧+x. ennreal (indicat_real {0<..} x * b powr (a + 1/2) * (1 + x ^ 2) powr a) ∂lborel)"
using assms
by (intro nn_integral_cong) (auto simp: indicator_def powr_add powr_half_sqrt powr_mult)
also have "… = b powr (a + 1/2) * (∫⇧+x. ennreal (indicat_real {0<..} x * (1 + x ^ 2) powr a) ∂lborel)"
using assms by (subst nn_integral_cmult [symmetric]) (simp_all add: mult_ac flip: ennreal_mult)
also have "(∫⇧+x. ennreal (indicat_real {0<..} x * (1 + x ^ 2) powr a) ∂lborel) = C"
using int by simp
also have "ennreal (b powr (a + 1/2)) * ennreal C = ennreal (C * b powr (a + 1/2))"
using assms by (subst ennreal_mult) (auto simp: C_def mult_ac Beta_def)
finally have *: "(∫⇧+ x. ennreal (indicat_real {0<..} x * (b + x⇧2) powr a) ∂lborel) = …" .
hence "((λx. indicator {0<..} x * (b + x^2) powr a) has_integral C * b powr (a + 1/2)) UNIV"
using assms
by (subst has_integral_iff_nn_integral_lebesgue)
(auto simp: C_def measurable_completion nn_integral_completion Beta_def)
also have "(λx. indicator {0<..} x * (b + x^2) powr a) =
(λx. if x ∈ {0<..} then (b + x^2) powr a else 0)"
by (auto simp: fun_eq_iff)
finally show ?thesis
by (subst (asm) has_integral_restrict_UNIV) (auto simp: C_def)
qed
subsection ‹Asymptotics of the real $\log\Gamma$ function and its derivatives›
text ‹
This is the error term that occurs in the expansion of @{term ln_Gamma}. It can be shown to
be of order $O(s^{-n})$.
›
definition stirling_integral :: "nat ⇒ 'a :: {real_normed_div_algebra, banach} ⇒ 'a" where
"stirling_integral n s =
lim (λN. integral {0..N} (λx. of_real (pbernpoly n x) / (of_real x + s) ^ n))"
context
fixes s :: complex assumes s: "s ∉ ℝ⇩≤⇩0"
fixes approx :: "nat ⇒ complex"
defines "approx ≡ (λN.
(∑n = 1..<N. s / of_nat n - ln (1 + s / of_nat n)) - (euler_mascheroni * s + ln s) -
(ln_Gamma (of_nat N) - ln (2 * pi / of_nat N) / 2 - of_nat N * ln (of_nat N) + of_nat N) -
s * (harm (N - 1) - ln (of_nat (N - 1)) - euler_mascheroni) +
s * (ln (of_nat N + s) - ln (of_nat (N - 1))) -
(1/2) * (ln (of_nat N + s) - ln (of_nat N)) +
of_nat N * (ln (of_nat N + s) - ln (of_nat N)) -
(s - 1/2) * ln s - ln (2 * pi) / 2)"
begin
qualified lemma
assumes N: "N > 0"
shows integrable_pbernpoly_1:
"(λx. of_real (-pbernpoly 1 x) / (of_real x + s)) integrable_on {0..real N}"
and integral_pbernpoly_1_aux:
"integral {0..real N} (λx. -of_real (pbernpoly 1 x) / (of_real x + s)) = approx N"
and has_integral_pbernpoly_1:
"((λx. pbernpoly 1 x /(x + s)) has_integral
(∑m<N. (of_nat m + 1 / 2 + s) * (ln (of_nat m + s) -
ln (of_nat m + 1 + s)) + 1)) {0..real N}"
proof -
let ?A = "(λn. {of_nat n..of_nat (n+1)}) ` {0..<N}"
have has_integral:
"((λx. -pbernpoly 1 x / (x + s)) has_integral
(of_nat n + 1/2 + s) * (ln (of_nat (n + 1) + s) - ln (of_nat n + s)) - 1)
{of_nat n..of_nat (n + 1)}" for n
proof (rule has_integral_spike)
have "((λx. (of_nat n + 1/2 + s) * (1 / (of_real x + s)) - 1) has_integral
(of_nat n + 1/2 + s) * (ln (of_real (real (n + 1)) + s) - ln (of_real (real n) + s)) - 1)
{of_nat n..of_nat (n + 1)}"
using s has_integral_const_real[of 1 "of_nat n" "of_nat (n + 1)"]
by (intro has_integral_diff has_integral_mult_right fundamental_theorem_of_calculus)
(auto intro!: derivative_eq_intros has_vector_derivative_real_field
simp: has_real_derivative_iff_has_vector_derivative [symmetric] field_simps
complex_nonpos_Reals_iff)
thus "((λx. (of_nat n + 1/2 + s) * (1 / (of_real x + s)) - 1) has_integral
(of_nat n + 1/2 + s) * (ln (of_nat (n + 1) + s) - ln (of_nat n + s)) - 1)
{of_nat n..of_nat (n + 1)}" by simp
show "-pbernpoly 1 x / (x + s) = (of_nat n + 1/2 + s) * (1 / (x + s)) - 1"
if "x ∈ {of_nat n..of_nat (n + 1)} - {of_nat (n + 1)}" for x
proof -
have x: "x ≥ real n" "x < real (n + 1)" using that by simp_all
hence "floor x = int n" by linarith
moreover from s x have "complex_of_real x ≠ -s"
by (auto simp add: complex_eq_iff complex_nonpos_Reals_iff simp del: of_nat_Suc)
ultimately show "-pbernpoly 1 x / (x + s) = (of_nat n + 1/2 + s) * (1 / (x + s)) - 1"
by (auto simp: pbernpoly_def bernpoly_def frac_def divide_simps add_eq_0_iff2)
qed
qed simp_all
hence *: "⋀I. I∈?A ⟹ ((λx. -pbernpoly 1 x / (x + s)) has_integral
(Inf I + 1/2 + s) * (ln (Inf I + 1 + s) - ln (Inf I + s)) - 1) I"
by (auto simp: add_ac)
have "((λx. - pbernpoly 1 x / (x + s)) has_integral
(∑I∈?A. (Inf I + 1 / 2 + s) * (ln (Inf I + 1 + s) - ln (Inf I + s)) - 1))
(⋃n∈{0..<N}. {real n..real (n + 1)})" (is "(_ has_integral ?i) _")
apply (intro has_integral_Union * finite_imageI)
apply (force intro!: negligible_atLeastAtMostI pairwiseI)+
done
hence has_integral: "((λx. - pbernpoly 1 x / (x + s)) has_integral ?i) {0..real N}"
by (subst has_integral_spike_set_eq)
(use Union_atLeastAtMost assms in ‹auto simp: intro!: empty_imp_negligible›)
hence "(λx. - pbernpoly 1 x / (x + s)) integrable_on {0..real N}"
and integral: "integral {0..real N} (λx. - pbernpoly 1 x / (x + s)) = ?i"
by (simp_all add: has_integral_iff)
show "(λx. - pbernpoly 1 x / (x + s)) integrable_on {0..real N}" by fact
note has_integral_neg[OF has_integral]
also have "-?i = (∑x<N. (of_nat x + 1 / 2 + s) * (ln (of_nat x + s) - ln (of_nat x + 1 + s)) + 1)"
by (subst sum.reindex)
(simp_all add: inj_on_def atLeast0LessThan algebra_simps sum_negf [symmetric])
finally show has_integral:
"((λx. of_real (pbernpoly 1 x) / (of_real x + s)) has_integral …) {0..real N}" by simp
note integral
also have "?i = (∑n<N. (of_nat n + 1 / 2 + s) *
(ln (of_nat n + 1 + s) - ln (of_nat n + s))) - N" (is "_ = ?S - _")
by (subst sum.reindex) (simp_all add: inj_on_def sum_subtractf atLeast0LessThan)
also have "?S = (∑n<N. of_nat n * (ln (of_nat n + 1 + s) - ln (of_nat n + s))) +
(s + 1 / 2) * (∑n<N. ln (of_nat (Suc n) + s) - ln (of_nat n + s))"
(is "_ = ?S1 + _ * ?S2") by (simp add: algebra_simps sum.distrib sum_subtractf sum_distrib_left)
also have "?S2 = ln (of_nat N + s) - ln s" by (subst sum_lessThan_telescope) simp
also have "?S1 = (∑n=1..<N. of_nat n * (ln (of_nat n + 1 + s) - ln (of_nat n + s)))"
by (intro sum.mono_neutral_right) auto
also have "… = (∑n=1..<N. of_nat n * ln (of_nat n + 1 + s)) - (∑n=1..<N. of_nat n * ln (of_nat n + s))"
by (simp add: algebra_simps sum_subtractf)
also have "(∑n=1..<N. of_nat n * ln (of_nat n + 1 + s)) =
(∑n=1..<N. (of_nat n - 1) * ln (of_nat n + s)) + (N - 1) * ln (of_nat N + s)"
by (induction N) (simp_all add: add_ac of_nat_diff)
also have "… - (∑n = 1..<N. of_nat n * ln (of_nat n + s)) =
-(∑n=1..<N. ln (of_nat n + s)) + (N - 1) * ln (of_nat N + s)"
by (induction N) (simp_all add: algebra_simps)
also from s have neq: "s + of_nat x ≠ 0" for x
by (auto simp: complex_nonpos_Reals_iff complex_eq_iff)
hence "(∑n=1..<N. ln (of_nat n + s)) = (∑n=1..<N. ln (of_nat n) + ln (1 + s/n))"
by (intro sum.cong refl, subst Ln_times_of_nat [symmetric]) (auto simp: divide_simps add_ac)
also have "… = ln (fact (N - 1)) + (∑n=1..<N. ln (1 + s/n))"
by (induction N) (simp_all add: Ln_times_of_nat fact_reduce add_ac)
also have "(∑n=1..<N. ln (1 + s/n)) = -(∑n=1..<N. s / n - ln (1 + s/n)) + s * (∑n=1..<N. 1 / of_nat n)"
by (simp add: sum_distrib_left sum_subtractf)
also from N have "ln (fact (N - 1)) = ln_Gamma (of_nat N :: complex)"
by (simp add: ln_Gamma_complex_conv_fact)
also have "{1..<N} = {1..N - 1}" by auto
hence "(∑n = 1..<N. 1 / of_nat n) = (harm (N - 1) :: complex)"
by (simp add: harm_def divide_simps)
also have "- (ln_Gamma (of_nat N) + (- (∑n = 1..<N. s / of_nat n - ln (1 + s / of_nat n)) +
s * harm (N - 1))) + of_nat (N - 1) * ln (of_nat N + s) +
(s + 1 / 2) * (ln (of_nat N + s) - ln s) - of_nat N = approx N"
using N by (simp add: field_simps of_nat_diff ln_div approx_def Ln_of_nat
ln_Gamma_complex_of_real [symmetric])
finally show "integral {0..of_nat N} (λx. -of_real (pbernpoly 1 x) / (of_real x + s)) = …"
by simp
qed
lemma integrable_ln_Gamma_aux:
shows "(λx. of_real (pbernpoly n x) / (of_real x + s) ^ n) integrable_on {0..real N}"
proof (cases "n = 1")
case True
with s show ?thesis using integrable_neg[OF integrable_pbernpoly_1[of N]]
by (cases "N = 0") (simp_all add: integrable_negligible)
next
case False
from s have "of_real x + s ≠ 0" if "x ≥ 0" for x using that
by (auto simp: complex_eq_iff add_eq_0_iff2 complex_nonpos_Reals_iff)
with False s show ?thesis
by (auto intro!: integrable_continuous_real continuous_intros)
qed
text ‹
This following proof is based on ``Rudiments of the theory of the gamma function''
by Bruce Berndt~\<^cite>‹"berndt"›.
›
lemma tendsto_of_real_0_I:
"(f ⤏ 0) G ⟹ ((λx. (of_real (f x))) ⤏ (0 ::'a::real_normed_div_algebra)) G"
using tendsto_of_real_iff by force
qualified lemma integral_pbernpoly_1:
"(λN. integral {0..real N} (λx. pbernpoly 1 x / (x + s)))
⇢ -ln_Gamma s - s + (s - 1 / 2) * ln s + ln (2 * pi) / 2"
proof -
have neq: "s + of_real x ≠ 0" if "x ≥ 0" for x :: real
using that s by (auto simp: complex_eq_iff complex_nonpos_Reals_iff)
have "(approx ⤏ ln_Gamma s - 0 - 0 + 0 - 0 + s - (s - 1/2) * ln s - ln (2 * pi) / 2) at_top"
unfolding approx_def
proof (intro tendsto_add tendsto_diff)
from s have s': "s ∉ ℤ⇩≤⇩0" by (auto simp: complex_nonpos_Reals_iff elim!: nonpos_Ints_cases)
have "(λn. ∑i=1..<n. s / of_nat i - ln (1 + s / of_nat i)) ⇢
ln_Gamma s + euler_mascheroni * s + ln s" (is "?f ⇢ _")
using ln_Gamma_series'_aux[OF s'] unfolding sums_def
by (subst filterlim_sequentially_Suc [symmetric], subst (asm) sum.atLeast1_atMost_eq [symmetric])
(simp add: atLeastLessThanSuc_atLeastAtMost)
thus "((λn. ?f n - (euler_mascheroni * s + ln s)) ⤏ ln_Gamma s) at_top"
by (auto intro: tendsto_eq_intros)
next
show "(λx. complex_of_real (ln_Gamma (real x) - ln (2 * pi / real x) / 2 -
real x * ln (real x) + real x)) ⇢ 0"
proof (intro tendsto_of_real_0_I
filterlim_compose[OF tendsto_sandwich filterlim_real_sequentially])
show "eventually (λx::real. ln_Gamma x - ln (2 * pi / x) / 2 - x * ln x + x ≥ 0) at_top"
using eventually_ge_at_top[of "1::real"]
by eventually_elim (insert ln_Gamma_bounds(1), simp add: algebra_simps)
show "eventually (λx::real. ln_Gamma x - ln (2 * pi / x) / 2 - x * ln x + x ≤
1 / 12 * inverse x) at_top"
using eventually_ge_at_top[of "1::real"]
by eventually_elim (insert ln_Gamma_bounds(2), simp add: field_simps)
show "((λx::real. 1 / 12 * inverse x) ⤏ 0) at_top"
by real_asymp
qed simp_all
next
have "(λx. s * of_real (harm (x - 1) - ln (real (x - 1)) - euler_mascheroni)) ⇢
s * of_real (euler_mascheroni - euler_mascheroni)"
by (subst filterlim_sequentially_Suc [symmetric], intro tendsto_intros)
(insert euler_mascheroni_LIMSEQ, simp_all)
also have "?this ⟷ (λx. s * (harm (x - 1) - ln (of_nat (x - 1)) - euler_mascheroni)) ⇢ 0"
by (intro filterlim_cong refl eventually_mono[OF eventually_gt_at_top[of "1::nat"]])
(auto simp: Ln_of_nat of_real_harm)
finally show "(λx. s * (harm (x - 1) - ln (of_nat (x - 1)) - euler_mascheroni)) ⇢ 0" .
next
have "((λx. ln (1 + (s + 1) / of_real x)) ⤏ ln (1 + 0)) at_top" (is ?P)
by (intro tendsto_intros tendsto_divide_0[OF tendsto_const])
(simp_all add: filterlim_ident filterlim_at_infinity_conv_norm_at_top filterlim_abs_real)
also have "ln (of_real (x + 1) + s) - ln (complex_of_real x) = ln (1 + (s + 1) / of_real x)"
if "x > 1" for x using that s
using Ln_divide_of_real[of x "of_real (x + 1) + s", symmetric] neq[of "x+1"]
by (simp add: field_simps Ln_of_real)
hence "?P ⟷ ((λx. ln (of_real (x + 1) + s) - ln (of_real x)) ⤏ 0) at_top"
by (intro filterlim_cong refl)
(auto intro: eventually_mono[OF eventually_gt_at_top[of "1::real"]])
finally have "((λn. ln (of_real (real n + 1) + s) - ln (of_real (real n))) ⤏ 0) at_top"
by (rule filterlim_compose[OF _ filterlim_real_sequentially])
hence "((λn. ln (of_nat n + s) - ln (of_nat (n - 1))) ⤏ 0) at_top"
by (subst filterlim_sequentially_Suc [symmetric]) (simp add: add_ac)
thus "(λx. s * (ln (of_nat x + s) - ln (of_nat (x - 1)))) ⇢ 0"
by (rule tendsto_mult_right_zero)
next
have "((λx. ln (1 + s / of_real x)) ⤏ ln (1 + 0)) at_top" (is ?P)
by (intro tendsto_intros tendsto_divide_0[OF tendsto_const])
(simp_all add: filterlim_ident filterlim_at_infinity_conv_norm_at_top filterlim_abs_real)
also have "ln (of_real x + s) - ln (of_real x) = ln (1 + s / of_real x)" if "x > 0" for x
using Ln_divide_of_real[of x "of_real x + s"] neq[of x] that
by (auto simp: field_simps Ln_of_real)
hence "?P ⟷ ((λx. ln (of_real x + s) - ln (of_real x)) ⤏ 0) at_top"
using s by (intro filterlim_cong refl)
(auto intro: eventually_mono [OF eventually_gt_at_top[of "1::real"]])
finally have "(λx. (1/2) * (ln (of_real (real x) + s) - ln (of_real (real x)))) ⇢ 0"
by (rule tendsto_mult_right_zero[OF filterlim_compose[OF _ filterlim_real_sequentially]])
thus "(λx. (1/2) * (ln (of_nat x + s) - ln (of_nat x))) ⇢ 0" by simp
next
have "((λx. x * (ln (1 + s / of_real x))) ⤏ s) at_top" (is ?P)
by (rule stirling_limit_aux2)
also have "ln (1 + s / of_real x) = ln (of_real x + s) - ln (of_real x)" if "x > 1" for x
using that s Ln_divide_of_real [of x "of_real x + s", symmetric] neq[of x]
by (auto simp: Ln_of_real field_simps)
hence "?P ⟷ ((λx. of_real x * (ln (of_real x + s) - ln (of_real x))) ⤏ s) at_top"
by (intro filterlim_cong refl)
(auto intro: eventually_mono[OF eventually_gt_at_top[of "1::real"]])
finally have "(λn. of_real (real n) * (ln (of_real (real n) + s) - ln (of_real (real n)))) ⇢ s"
by (rule filterlim_compose[OF _ filterlim_real_sequentially])
thus "(λn. of_nat n * (ln (of_nat n + s) - ln (of_nat n))) ⇢ s" by simp
qed simp_all
also have "?this ⟷ ((λN. integral {0..real N} (λx. -pbernpoly 1 x / (x + s))) ⤏
ln_Gamma s + s - (s - 1/2) * ln s - ln (2 * pi) / 2) at_top"
using integral_pbernpoly_1_aux
by (intro filterlim_cong refl)
(auto intro: eventually_mono[OF eventually_gt_at_top[of "0::nat"]])
also have "(λN. integral {0..real N} (λx. -pbernpoly 1 x / (x + s))) =
(λN. -integral {0..real N} (λx. pbernpoly 1 x / (x + s)))"
by (simp add: fun_eq_iff)
finally show ?thesis by (simp add: tendsto_minus_cancel_left [symmetric] algebra_simps)
qed
qualified lemma pbernpoly_integral_conv_pbernpoly_integral_Suc:
assumes "n ≥ 1"
shows "integral {0..real N} (λx. pbernpoly n x / (x + s) ^ n) =
of_real (pbernpoly (Suc n) (real N)) / (of_nat (Suc n) * (s + of_nat N) ^ n) -
of_real (bernoulli (Suc n)) / (of_nat (Suc n) * s ^ n) + of_nat n / of_nat (Suc n) *
integral {0..real N} (λx. of_real (pbernpoly (Suc n) x) / (of_real x + s) ^ Suc n)"
proof -
note [derivative_intros] = has_field_derivative_pbernpoly_Suc'
define I where "I = -of_real (pbernpoly (Suc n) (of_nat N)) / (of_nat (Suc n) * (of_nat N + s) ^ n) +
of_real (bernoulli (Suc n) / real (Suc n)) / s ^ n +
integral {0..real N} (λx. of_real (pbernpoly n x) / (of_real x + s) ^ n)"
have "((λx. (-of_nat n * inverse (of_real x + s) ^ Suc n) *
(of_real (pbernpoly (Suc n) x) / (of_nat (Suc n))))
has_integral -I) {0..real N}"
proof (rule integration_by_parts_interior_strong[OF bounded_bilinear_mult])
fix x :: real assume x: "x ∈ {0<..<real N} - real ` {0..N}"
have "x ∉ ℤ"
proof
assume "x ∈ ℤ"
then obtain n where "x = of_int n" by (auto elim!: Ints_cases)
with x have x': "x = of_nat (nat n)" by simp
from x show False by (auto simp: x')
qed
hence "((λx. of_real (pbernpoly (Suc n) x / of_nat (Suc n))) has_vector_derivative
complex_of_real (pbernpoly n x)) (at x)"
by (intro has_vector_derivative_of_real) (auto intro!: derivative_eq_intros)
thus "((λx. of_real (pbernpoly (Suc n) x) / of_nat (Suc n)) has_vector_derivative
complex_of_real (pbernpoly n x)) (at x)" by simp
from x s have "complex_of_real x + s ≠ 0"
by (auto simp: complex_eq_iff complex_nonpos_Reals_iff)
thus "((λx. inverse (of_real x + s) ^ n) has_vector_derivative
- of_nat n * inverse (of_real x + s) ^ Suc n) (at x)" using x s assms
by (auto intro!: derivative_eq_intros has_vector_derivative_real_field simp: divide_simps power_add [symmetric]
simp del: power_Suc)
next
have "complex_of_real x + s ≠ 0" if "x ≥ 0" for x
using that s by (auto simp: complex_eq_iff complex_nonpos_Reals_iff)
thus "continuous_on {0..real N} (λx. inverse (of_real x + s) ^ n)"
"continuous_on {0..real N} (λx. complex_of_real (pbernpoly (Suc n) x) / of_nat (Suc n))"
using assms s by (auto intro!: continuous_intros simp del: of_nat_Suc)
next
have "((λx. inverse (of_real x + s) ^ n * of_real (pbernpoly n x)) has_integral
pbernpoly (Suc n) (of_nat N) / (of_nat (Suc n) * (of_nat N + s) ^ n) -
of_real (bernoulli (Suc n) / real (Suc n)) / s ^ n - -I) {0..real N}"
using integrable_ln_Gamma_aux[of n N] assms
by (auto simp: I_def has_integral_integral divide_simps)
thus "((λx. inverse (of_real x + s) ^ n * of_real (pbernpoly n x)) has_integral
inverse (of_real (real N) + s) ^ n * (of_real (pbernpoly (Suc n) (real N)) /
of_nat (Suc n)) -
inverse (of_real 0 + s) ^ n * (of_real (pbernpoly (Suc n) 0) / of_nat (Suc n)) - - I)
{0..real N}" by (simp_all add: field_simps)
qed simp_all
also have "(λx. - of_nat n * inverse (of_real x + s) ^ Suc n * (of_real (pbernpoly (Suc n) x) /
of_nat (Suc n))) =
(λx. - (of_nat n / of_nat (Suc n) * of_real (pbernpoly (Suc n) x) /
(of_real x + s) ^ Suc n))"
by (simp add: divide_simps fun_eq_iff)
finally have "((λx. - (of_nat n / of_nat (Suc n) * of_real (pbernpoly (Suc n) x) /
(of_real x + s) ^ Suc n)) has_integral - I) {0..real N}" .
from has_integral_neg[OF this] show ?thesis
by (auto simp add: I_def has_integral_iff algebra_simps integral_mult_right [symmetric]
simp del: power_Suc of_nat_Suc )
qed
lemma pbernpoly_over_power_tendsto_0:
assumes "n > 0"
shows "(λx. of_real (pbernpoly (Suc n) (real x)) / (of_nat (Suc n) * (s + of_nat x) ^ n)) ⇢ 0"
proof -
from s have neq: "s + of_nat n ≠ 0" for n
by (auto simp: complex_eq_iff complex_nonpos_Reals_iff)
obtain c where c: "⋀x. norm (pbernpoly (Suc n) x) ≤ c"
using bounded_pbernpoly by auto
have "eventually (λx. real x + Re s > 0) at_top"
by real_asymp
hence "eventually (λx. norm (of_real (pbernpoly (Suc n) (real x)) /
(of_nat (Suc n) * (s + of_nat x) ^ n)) ≤
(c / real (Suc n)) / (real x + Re s) ^ n) at_top"
using eventually_gt_at_top[of "0::nat"]
proof eventually_elim
case (elim x)
have "norm (of_real (pbernpoly (Suc n) (real x)) /
(of_nat (Suc n) * (s + of_nat x) ^ n)) ≤
(c / real (Suc n)) / norm (s + of_nat x) ^ n" (is "_ ≤ ?rhs") using c[of x]
by (auto simp: norm_divide norm_mult norm_power neq field_simps simp del: of_nat_Suc)
also have "(real x + Re s) ≤ cmod (s + of_nat x)"
using complex_Re_le_cmod[of "s + of_nat x"] s by (auto simp add: complex_nonpos_Reals_iff)
hence "?rhs ≤ (c / real (Suc n)) / (real x + Re s) ^ n" using s elim c[of 0] neq[of x]
by (intro divide_left_mono power_mono mult_pos_pos divide_nonneg_pos zero_less_power) auto
finally show ?case .
qed
moreover have "(λx. (c / real (Suc n)) / (real x + Re s) ^ n) ⇢ 0"
using ‹n > 0› by real_asymp
ultimately show ?thesis by (rule Lim_null_comparison)
qed
lemma convergent_stirling_integral:
assumes "n > 0"
shows "convergent (λN. integral {0..real N}
(λx. of_real (pbernpoly n x) / (of_real x + s) ^ n))" (is "convergent (?f n)")
proof -
have "convergent (?f (Suc n))" for n
proof (induction n)
case 0
thus ?case using integral_pbernpoly_1 by (auto intro!: convergentI)
next
case (Suc n)
have "convergent (λN. ?f (Suc n) N -
of_real (pbernpoly (Suc (Suc n)) (real N)) /
(of_nat (Suc (Suc n)) * (s + of_nat N) ^ Suc n) +
of_real (bernoulli (Suc (Suc n)) / (real (Suc (Suc n)))) / s ^ Suc n)"
(is "convergent ?g")
by (intro convergent_add convergent_diff Suc
convergent_const convergentI[OF pbernpoly_over_power_tendsto_0]) simp_all
also have "?g = (λN. of_nat (Suc n) / of_nat (Suc (Suc n)) * ?f (Suc (Suc n)) N)" using s
by (subst pbernpoly_integral_conv_pbernpoly_integral_Suc)
(auto simp: fun_eq_iff field_simps simp del: of_nat_Suc power_Suc)
also have "convergent … ⟷ convergent (?f (Suc (Suc n)))"
by (intro convergent_mult_const_iff) (simp_all del: of_nat_Suc)
finally show ?case .
qed
from this[of "n - 1"] assms show ?thesis by simp
qed
lemma stirling_integral_conv_stirling_integral_Suc:
assumes "n > 0"
shows "stirling_integral n s =
of_nat n / of_nat (Suc n) * stirling_integral (Suc n) s -
of_real (bernoulli (Suc n)) / (of_nat (Suc n) * s ^ n)"
proof -
have "(λN. of_real (pbernpoly (Suc n) (real N)) / (of_nat (Suc n) * (s + of_nat N) ^ n) -
of_real (bernoulli (Suc n)) / (real (Suc n) * s ^ n) +
integral {0..real N} (λx. of_nat n / of_nat (Suc n) *
(of_real (pbernpoly (Suc n) x) / (of_real x + s) ^ Suc n)))
⇢ 0 - of_real (bernoulli (Suc n)) / (of_nat (Suc n) * s ^ n) +
of_nat n / of_nat (Suc n) * stirling_integral (Suc n) s" (is "?f ⇢ _")
unfolding stirling_integral_def integral_mult_right
using convergent_stirling_integral[of "Suc n"] assms s
by (intro tendsto_intros pbernpoly_over_power_tendsto_0)
(auto simp: convergent_LIMSEQ_iff simp del: of_nat_Suc)
also have "?this ⟷ (λN. integral {0..real N}
(λx. of_real (pbernpoly n x) / (of_real x + s) ^ n)) ⇢
of_nat n / of_nat (Suc n) * stirling_integral (Suc n) s -
of_real (bernoulli (Suc n)) / (of_nat (Suc n) * s ^ n)"
using eventually_gt_at_top[of "0::nat"] pbernpoly_integral_conv_pbernpoly_integral_Suc[of n]
assms unfolding integral_mult_right
by (intro filterlim_cong refl) (auto elim!: eventually_mono simp del: power_Suc)
finally show ?thesis unfolding stirling_integral_def[of n] by (rule limI)
qed
lemma stirling_integral_1_unfold:
assumes "m > 0"
shows "stirling_integral 1 s = stirling_integral m s / of_nat m -
(∑k=1..<m. of_real (bernoulli (Suc k)) / (of_nat k * of_nat (Suc k) * s ^ k))"
proof -
have "stirling_integral 1 s = stirling_integral (Suc m) s / of_nat (Suc m) -
(∑k=1..<Suc m. of_real (bernoulli (Suc k)) / (of_nat k * of_nat (Suc k) * s ^ k))" for m
proof (induction m)
case (Suc m)
let ?C = "(∑k = 1..<Suc m. of_real (bernoulli (Suc k)) / (of_nat k * of_nat (Suc k) * s ^ k))"
note Suc.IH
also have "stirling_integral (Suc m) s / of_nat (Suc m) =
stirling_integral (Suc (Suc m)) s / of_nat (Suc (Suc m)) -
of_real (bernoulli (Suc (Suc m))) /
(of_nat (Suc m) * of_nat (Suc (Suc m)) * s ^ Suc m)"
(is "_ = ?A - ?B") by (subst stirling_integral_conv_stirling_integral_Suc)
(simp_all del: of_nat_Suc power_Suc add: divide_simps)
also have "?A - ?B - ?C = ?A - (?B + ?C)" by (rule diff_diff_eq)
also have "?B + ?C = (∑k = 1..<Suc (Suc m). of_real (bernoulli (Suc k)) /
(of_nat k * of_nat (Suc k) * s ^ k))"
using s by (simp add: divide_simps)
finally show ?case .
qed simp_all
note this[of "m - 1"]
also from assms have "Suc (m - 1) = m" by simp
finally show ?thesis .
qed
lemma ln_Gamma_stirling_complex:
assumes "m > 0"
shows "ln_Gamma s = (s - 1 / 2) * ln s - s + ln (2 * pi) / 2 +
(∑k=1..<m. of_real (bernoulli (Suc k)) / (of_nat k * of_nat (Suc k) * s ^ k)) -
stirling_integral m s / of_nat m"
proof -
have "ln_Gamma s = (s - 1 / 2) * ln s - s + ln (2 * pi) / 2 - stirling_integral 1 s"
using limI[OF integral_pbernpoly_1] by (simp add: stirling_integral_def algebra_simps)
also have "stirling_integral 1 s = stirling_integral m s / of_nat m -
(∑k = 1..<m. of_real (bernoulli (Suc k)) / (of_nat k * of_nat (Suc k) * s ^ k))"
using assms by (rule stirling_integral_1_unfold)
finally show ?thesis by simp
qed
lemma LIMSEQ_stirling_integral:
"n > 0 ⟹ (λx. integral {0..real x} (λx. of_real (pbernpoly n x) / (of_real x + s) ^ n))
⇢ stirling_integral n s" unfolding stirling_integral_def
using convergent_stirling_integral[of n] by (simp only: convergent_LIMSEQ_iff)
end
lemmas has_integral_of_real = has_integral_linear[OF _ bounded_linear_of_real, unfolded o_def]
lemmas integral_of_real = integral_linear[OF _ bounded_linear_of_real, unfolded o_def]
lemma integrable_ln_Gamma_aux_real:
assumes "0 < s"
shows "(λx. pbernpoly n x / (x + s) ^ n) integrable_on {0..real N}"
proof -
have "(λx. complex_of_real (pbernpoly n x / (x + s) ^ n)) integrable_on {0..real N}"
using integrable_ln_Gamma_aux[of "of_real s" n N] assms by simp
from integrable_linear[OF this bounded_linear_Re] show ?thesis
by (simp only: o_def Re_complex_of_real)
qed
lemma
assumes "x > 0" "n > 0"
shows stirling_integral_complex_of_real:
"stirling_integral n (complex_of_real x) = of_real (stirling_integral n x)"
and LIMSEQ_stirling_integral_real:
"(λN. integral {0..real N} (λt. pbernpoly n t / (t + x) ^ n))
⇢ stirling_integral n x"
and stirling_integral_real_convergent:
"convergent (λN. integral {0..real N} (λt. pbernpoly n t / (t + x) ^ n))"
proof -
have "(λN. integral {0..real N} (λt. of_real (pbernpoly n t / (t + x) ^ n)))
⇢ stirling_integral n (complex_of_real x)"
using LIMSEQ_stirling_integral[of "complex_of_real x" n] assms by simp
hence "(λN. of_real (integral {0..real N} (λt. pbernpoly n t / (t + x) ^ n)))
⇢ stirling_integral n (complex_of_real x)"
using integrable_ln_Gamma_aux_real[OF assms(1), of n]
by (subst (asm) integral_of_real) simp
from tendsto_Re[OF this]
have "(λN. integral {0..real N} (λt. pbernpoly n t / (t + x) ^ n))
⇢ Re (stirling_integral n (complex_of_real x))" by simp
thus "convergent (λN. integral {0..real N} (λt. pbernpoly n t / (t + x) ^ n))"
by (rule convergentI)
thus "(λN. integral {0..real N} (λt. pbernpoly n t / (t + x) ^ n))
⇢ stirling_integral n x" unfolding stirling_integral_def
by (simp add: convergent_LIMSEQ_iff)
from tendsto_of_real[OF this, where 'a = complex]
integrable_ln_Gamma_aux_real[OF assms(1), of n]
have "(λxa. integral {0..real xa}
(λxa. complex_of_real (pbernpoly n xa) / (complex_of_real xa + x) ^ n))
⇢ complex_of_real (stirling_integral n x)"
by (subst (asm) integral_of_real [symmetric]) simp_all
from LIMSEQ_unique[OF this LIMSEQ_stirling_integral[of "complex_of_real x" n]] assms
show "stirling_integral n (complex_of_real x) = of_real (stirling_integral n x)" by simp
qed
lemma ln_Gamma_stirling_real:
assumes "x > (0 :: real)" "m > (0::nat)"
shows "ln_Gamma x = (x - 1 / 2) * ln x - x + ln (2 * pi) / 2 +
(∑k = 1..<m. bernoulli (Suc k) / (of_nat k * of_nat (Suc k) * x ^ k)) -
stirling_integral m x / of_nat m"
proof -
from assms have "complex_of_real (ln_Gamma x) = ln_Gamma (complex_of_real x)"
by (simp add: ln_Gamma_complex_of_real)
also have "ln_Gamma (complex_of_real x) = complex_of_real (
(x - 1 / 2) * ln x - x + ln (2 * pi) / 2 +
(∑k = 1..<m. bernoulli (Suc k) / (of_nat k * of_nat (Suc k) * x ^ k)) -
stirling_integral m x / of_nat m)" using assms
by (subst ln_Gamma_stirling_complex[of _ m])
(simp_all add: Ln_of_real stirling_integral_complex_of_real)
finally show ?thesis by (subst (asm) of_real_eq_iff)
qed
lemma stirling_integral_bound_aux:
assumes n: "n > (1::nat)"
obtains c where "⋀s. Re s > 0 ⟹ norm (stirling_integral n s) ≤ c / Re s ^ (n - 1)"
proof -
obtain c where c: "norm (pbernpoly n x) ≤ c" for x by (rule bounded_pbernpoly[of n]) blast
have c': "pbernpoly n x ≤ c" for x using c[of x] by (simp add: abs_real_def split: if_splits)
from c[of 0] have c_nonneg: "c ≥ 0" by simp
have "norm (stirling_integral n s) ≤ c / (real n - 1) / Re s ^ (n - 1)" if s: "Re s > 0" for s
proof (rule Lim_norm_ubound[OF _ LIMSEQ_stirling_integral])
have pos: "x + norm s > 0" if "x ≥ 0" for x using s that by (intro add_nonneg_pos) auto
have nz: "of_real x + s ≠ 0" if "x ≥ 0" for x using s that by (auto simp: complex_eq_iff)
let ?bound = "λN. c / (Re s ^ (n - 1) * (real n - 1)) -
c / ((real N + Re s) ^ (n - 1) * (real n - 1))"
show "eventually (λN. norm (integral {0..real N}
(λx. of_real (pbernpoly n x) / (of_real x + s) ^ n)) ≤
c / (real n - 1) / Re s ^ (n - 1)) at_top"
using eventually_gt_at_top[of "0::nat"]
proof eventually_elim
case (elim N)
let ?F = "λx. -c / ((x + Re s) ^ (n - 1) * (real n - 1))"
from n s have "((λx. c / (x + Re s) ^ n) has_integral (?F (real N) - ?F 0)) {0..real N}"
by (intro fundamental_theorem_of_calculus)
(auto intro!: derivative_eq_intros simp: divide_simps power_diff add_eq_0_iff2
has_real_derivative_iff_has_vector_derivative [symmetric])
also have "?F (real N) - ?F 0 = ?bound N" by simp
finally have *: "((λx. c / (x + Re s) ^ n) has_integral ?bound N) {0..real N}" .
have "norm (integral {0..real N} (λx. of_real (pbernpoly n x) / (of_real x + s) ^ n)) ≤
integral {0..real N} (λx. c / (x + Re s) ^ n)"
proof (intro integral_norm_bound_integral integrable_ln_Gamma_aux s ballI)
fix x assume x: "x ∈ {0..real N}"
have "norm (of_real (pbernpoly n x) / (of_real x + s) ^ n) ≤ c / norm (of_real x + s) ^ n"
unfolding norm_divide norm_power using c by (intro divide_right_mono) simp_all
also have "… ≤ c / (x + Re s) ^ n"
using x c c_nonneg s nz[of x] complex_Re_le_cmod[of "of_real x + s"]
by (intro divide_left_mono power_mono mult_pos_pos zero_less_power add_nonneg_pos) auto
finally show "norm (of_real (pbernpoly n x) / (of_real x + s) ^ n) ≤ …" .
qed (insert n s * pos nz c, auto simp: complex_nonpos_Reals_iff)
also have "… = ?bound N" using * by (simp add: has_integral_iff)
also have "… ≤ c / (Re s ^ (n - 1) * (real n - 1))" using c_nonneg elim s n by simp
also have "… = c / (real n - 1) / (Re s ^ (n - 1))" by simp
finally show "norm (integral {0..real N} (λx. of_real (pbernpoly n x) /
(of_real x + s) ^ n)) ≤ c / (real n - 1) / Re s ^ (n - 1)" .
qed
qed (insert s n, simp_all add: complex_nonpos_Reals_iff)
thus ?thesis by (rule that)
qed
lemma stirling_integral_bound_aux_integral1:
fixes a b c :: real and n :: nat
assumes "a ≥ 0" "b > 0" "c ≥ 0" "n > 1" "l < a - b" "r > a + b"
shows "((λx. c / max b ¦x - a¦ ^ n) has_integral
2*c*(n / (n - 1))/b^(n-1) - c/(n-1) * (1/(a-l)^(n-1) + 1/(r-a)^(n-1))) {l..r}"
proof -
define x1 x2 where "x1 = a - b" and "x2 = a + b"
define F1 where "F1 = (λx::real. c / (a - x) ^ (n - 1) / (n - 1))"
define F3 where "F3 = (λx::real. -c / (x - a) ^ (n - 1) / (n - 1))"
have deriv: "(F1 has_vector_derivative (c / (a - x) ^ n)) (at x within A)"
"(F3 has_vector_derivative (c / (x - a) ^ n)) (at x within A)"
if "x ≠ a" for x :: real and A
unfolding F1_def F3_def using assms that
by (auto intro!: derivative_eq_intros simp: divide_simps power_diff add_eq_0_iff2
simp flip: has_real_derivative_iff_has_vector_derivative)
from assms have "((λx. c / (a - x) ^ n) has_integral (F1 x1 - F1 l)) {l..x1}"
by (intro fundamental_theorem_of_calculus deriv) (auto simp: x1_def max_def split: if_splits)
also have "?this ⟷ ((λx. c / max b ¦x - a¦ ^ n) has_integral (F1 x1 - F1 l)) {l..x1}"
using assms
by (intro has_integral_spike_finite_eq[of "{l}"]) (auto simp: x1_def max_def split: if_splits)
finally have I1: "((λx. c / max b ¦x - a¦ ^ n) has_integral (F1 x1 - F1 l)) {l..x1}" .
have "((λx. c / b ^ n) has_integral (x2 - x1) * c / b ^ n) {x1..x2}"
using has_integral_const_real[of "c / b ^ n" x1 x2] assms by (simp add: x1_def x2_def)
also have "?this ⟷ ((λx. c / max b ¦x - a¦ ^ n) has_integral ((x2 - x1) * c / b ^ n)) {x1..x2}"
by (intro has_integral_spike_finite_eq[of "{x1, x2}"])
(auto simp: x1_def x2_def split: if_splits)
finally have I2: "((λx. c / max b ¦x - a¦ ^ n) has_integral ((x2 - x1) * c / b ^ n)) {x1..x2}" .
from assms have I3: "((λx. c / (x - a) ^ n) has_integral (F3 r - F3 x2)) {x2..r}"
by (intro fundamental_theorem_of_calculus deriv) (auto simp: x2_def min_def split: if_splits)
also have "?this ⟷ ((λx. c / max b ¦x - a¦ ^ n) has_integral (F3 r - F3 x2)) {x2..r}"
using assms
by (intro has_integral_spike_finite_eq[of "{r}"]) (auto simp: x2_def min_def split: if_splits)
finally have I3: "((λx. c / max b ¦x - a¦ ^ n) has_integral (F3 r - F3 x2)) {x2..r}" .
have "((λx. c / max b ¦x - a¦ ^ n) has_integral (F1 x1 - F1 l) + ((x2 - x1) * c / b ^ n) + (F3 r - F3 x2)) {l..r}"
using assms
by (intro has_integral_combine[OF _ _ has_integral_combine[OF _ _ I1 I2] I3])
(auto simp: x1_def x2_def)
also have "(F1 x1 - F1 l) + ((x2 - x1) * c / b ^ n) + (F3 r - F3 x2) =
F1 x1 - F1 l + F3 r - F3 x2 + (x2 - x1) * c / b ^ n"
by (simp add: algebra_simps)
also have "x2 - x1 = 2 * b"
using assms by (simp add: x2_def x1_def min_def max_def)
also have "2 * b * c / b ^ n = 2 * c / b ^ (n - 1)"
using assms by (simp add: power_diff field_simps)
also have "F1 x1 - F1 l + F3 r - F3 x2 =
c/(n-1) * (2/b^(n-1) - 1/(a-l)^(n-1) - 1/(r-a)^(n-1))"
using assms by (simp add: x1_def x2_def F1_def F3_def field_simps)
also have "… + 2 * c / b ^ (n - 1) =
2*c*(1 + 1/(n-1))/b^(n-1) - c/(n-1) * (1/(a-l)^(n-1) + 1/(r-a)^(n-1))"
using assms by (simp add: field_simps)
also have "1 + 1 / (n - 1) = n / (n - 1)"
using assms by (simp add: field_simps)
finally show ?thesis .
qed
lemma stirling_integral_bound_aux_integral2:
fixes a b c :: real and n :: nat
assumes "a ≥ 0" "b > 0" "c ≥ 0" "n > 1"
obtains I where "((λx. c / max b ¦x - a¦ ^ n) has_integral I) {l..r}"
"I ≤ 2 * c * (n / (n - 1)) / b ^ (n-1)"
proof -
define l' where "l' = min l (a - b - 1)"
define r' where "r' = max r (a + b + 1)"
define A where "A = 2 * c * (n / (n - 1)) / b ^ (n - 1)"
define B where "B = c / real (n - 1) * (1 / (a - l') ^ (n - 1) + 1 / (r' - a) ^ (n - 1))"
have has_int: "((λx. c / max b ¦x - a¦ ^ n) has_integral (A - B)) {l'..r'}"
using assms unfolding A_def B_def
by (intro stirling_integral_bound_aux_integral1) (auto simp: l'_def r'_def)
have "(λx. c / max b ¦x - a¦ ^ n) integrable_on {l..r}"
by (rule integrable_on_subinterval[OF has_integral_integrable[OF has_int]])
(auto simp: l'_def r'_def)
then obtain I where has_int': "((λx. c / max b ¦x - a¦ ^ n) has_integral I) {l..r}"
by (auto simp: integrable_on_def)
from assms have "I ≤ A - B"
by (intro has_integral_subset_le[OF _ has_int' has_int]) (auto simp: l'_def r'_def)
also have "… ≤ A"
using assms by (simp add: B_def l'_def r'_def)
finally show ?thesis using that[of I] has_int' unfolding A_def by blast
qed
lemma stirling_integral_bound_aux':
assumes n: "n > (1::nat)" and α: "α ∈ {0<..<pi}"
obtains c where "⋀s::complex. s ∈ complex_cone' α - {0} ⟹
norm (stirling_integral n s) ≤ c / norm s ^ (n - 1)"
proof -
obtain c where c: "norm (pbernpoly n x) ≤ c" for x by (rule bounded_pbernpoly[of n]) blast
have c': "pbernpoly n x ≤ c" for x using c[of x] by (simp add: abs_real_def split: if_splits)
from c[of 0] have c_nonneg: "c ≥ 0" by simp
define D where "D = c * Beta (- (real_of_int (- int n) / 2) - 1 / 2) (1 / 2) / 2"
define C where "C = max D (2*c*(n/(n-1))/sin α^(n-1))"
have *: "norm (stirling_integral n s) ≤ C / norm s ^ (n - 1)"
if s: "s ∈ complex_cone' α - {0}" for s :: complex
proof (rule Lim_norm_ubound[OF _ LIMSEQ_stirling_integral])
from s α have Arg: "¦Arg s¦ ≤ α" by (auto simp: complex_cone_altdef)
have s': "s ∉ ℝ⇩≤⇩0"
using complex_cone_inter_nonpos_Reals[of "-α" α] α s by auto
from s have [simp]: "s ≠ 0" by auto
show "eventually (λN. norm (integral {0..real N}
(λx. of_real (pbernpoly n x) / (of_real x + s) ^ n)) ≤
C / norm s ^ (n - 1)) at_top"
using eventually_gt_at_top[of "0::nat"]
proof eventually_elim
case (elim N)
show ?case
proof (cases "Re s > 0")
case True
have int: "((λx. c * (x^2 + norm s^2) powr (-n / 2)) has_integral
D * (norm s ^ 2) powr (-n / 2 + 1 / 2)) {0<..}"
using has_integral_mult_left[OF has_integral_Beta3[of "-n/2" "norm s ^ 2"], of c] assms True
unfolding D_def by (simp add: algebra_simps)
hence int': "((λx. c * (x^2 + norm s^2) powr (-n / 2)) has_integral
D * (norm s ^ 2) powr (-n / 2 + 1 / 2)) {0..}"
by (subst has_integral_interior [symmetric]) simp_all
hence integrable: "(λx. c * (x^2 + norm s^2) powr (-n / 2)) integrable_on {0..}"
by (simp add: has_integral_iff)
have "norm (integral {0..real N} (λx. of_real (pbernpoly n x) / (of_real x + s) ^ n)) ≤
integral {0..real N} (λx. c * (x^2 + norm s^2) powr (-n / 2))"
proof (intro integral_norm_bound_integral s ballI integrable_ln_Gamma_aux)
have [simp]: "{0<..} - {0::real..} = {}" "{0..} - {0<..} = {0::real}"
by auto
have "(λx. c * (x⇧2 + (cmod s)⇧2) powr (real_of_int (- int n) / 2)) integrable_on {0<..}"
using int by (simp add: has_integral_iff)
also have "?this ⟷ (λx. c * (x⇧2 + (cmod s)⇧2) powr (real_of_int (- int n) / 2)) integrable_on {0..}"
by (intro integrable_spike_set_eq) auto
finally show "(λx. c * (x⇧2 + (cmod s)⇧2) powr (real_of_int (- int n) / 2)) integrable_on
{0..real N}" by (rule integrable_on_subinterval) auto
next
fix x assume x: "x ∈ {0..real N}"
have nz: "complex_of_real x + s ≠ 0"
using True x by (auto simp: complex_eq_iff)
have "norm (of_real (pbernpoly n x) / (of_real x + s) ^ n) ≤ c / norm (of_real x + s) ^ n"
unfolding norm_divide norm_power using c by (intro divide_right_mono) simp_all
also have "… ≤ c / sqrt (x ^ 2 + norm s ^ 2) ^ n"
proof (intro divide_left_mono mult_pos_pos zero_less_power power_mono)
show "sqrt (x⇧2 + (cmod s)⇧2) ≤ cmod (complex_of_real x + s)"
using x True by (simp add: cmod_def algebra_simps power2_eq_square)
qed (use x True c_nonneg assms nz in ‹auto simp: add_nonneg_pos›)
also have "sqrt (x ^ 2 + norm s ^ 2) ^ n = (x ^ 2 + norm s ^ 2) powr (1/2 * n)"
by (subst powr_powr [symmetric], subst powr_realpow)
(auto simp: powr_half_sqrt add_nonneg_pos)
also have "c / … = c * (x^2 + norm s^2) powr (-n / 2)"
by (simp add: powr_minus field_simps)
finally show "norm (complex_of_real (pbernpoly n x) / (complex_of_real x + s) ^ n) ≤ …" .
qed fact+
also have "… ≤ integral {0..} (λx. c * (x^2 + norm s^2) powr (-n / 2))"
using c_nonneg
by (intro integral_subset_le integrable integrable_on_subinterval[OF integrable]) auto
also have "… = D * (norm s ^ 2) powr (-n / 2 + 1 / 2)"
using int' by (simp add: has_integral_iff)
also have "(norm s ^ 2) powr (-n / 2 + 1 / 2) = norm s powr (2 * (-n / 2 + 1 / 2))"
by (subst powr_powr [symmetric]) auto
also have "… = norm s powr (-real (n - 1))"
using assms by (simp add: of_nat_diff)
also have "D * … = D / norm s ^ (n - 1)"
by (auto simp: powr_minus powr_realpow field_simps)
also have "… ≤ C / norm s ^ (n - 1)"
by (intro divide_right_mono) (auto simp: C_def)
finally show "norm (integral {0..real N} (λx. of_real (pbernpoly n x) / (of_real x + s) ^ n)) ≤ …" .
next
case False
have "cos ¦Arg s¦ = cos (Arg s)"
by (simp add: abs_if)
also have "cos (Arg s) = Re (rcis (norm s) (Arg s)) / norm s"
by (subst Re_rcis) auto
also have "… = Re s / norm s"
by (subst rcis_cmod_Arg) auto
also have "… ≤ cos (pi / 2)"
using False by (auto simp: field_simps)
finally have "¦Arg s¦ ≥ pi / 2"
using Arg α by (subst (asm) cos_mono_le_eq) auto
have "sin α * norm s = sin (pi - α) * norm s"
by simp
also have "… ≤ sin (pi - ¦Arg s¦) * norm s"
using α Arg ‹¦Arg s¦ ≥ pi / 2›
by (intro mult_right_mono sin_monotone_2pi_le) auto
also have "sin ¦Arg s¦ ≥ 0"
using Arg_bounded[of s] by (intro sin_ge_zero) auto
hence "sin (pi - ¦Arg s¦) = ¦sin ¦Arg s¦¦"
by simp
also have "… = ¦sin (Arg s)¦"
by (simp add: abs_if)
also have "… * norm s = ¦Im (rcis (norm s) (Arg s))¦"
by (simp add: abs_mult)
also have "… = ¦Im s¦"
by (subst rcis_cmod_Arg) auto
finally have abs_Im_ge: "¦Im s¦ ≥ sin α * norm s" .
have [simp]: "Im s ≠ 0" "s ≠ 0"
using s ‹s ∉ ℝ⇩≤⇩0› False
by (auto simp: cmod_def zero_le_mult_iff complex_nonpos_Reals_iff)
have "sin α > 0"
using assms by (intro sin_gt_zero) auto
obtain I where I: "((λx. c / max ¦Im s¦ ¦x + Re s¦ ^ n) has_integral I) {0..real N}"
"I ≤ 2*c*(n/(n-1)) / ¦Im s¦ ^ (n - 1)"
using s c_nonneg assms False
stirling_integral_bound_aux_integral2[of "-Re s" "¦Im s¦" c n 0 "real N"] by auto
have "norm (integral {0..real N} (λx. of_real (pbernpoly n x) / (of_real x + s) ^ n)) ≤
integral {0..real N} (λx. c / max ¦Im s¦ ¦x + Re s¦ ^ n)"
proof (intro integral_norm_bound_integral integrable_ln_Gamma_aux s ballI)
show "(λx. c / max ¦Im s¦ ¦x + Re s¦ ^ n) integrable_on {0..real N}"
using I(1) by (simp add: has_integral_iff)
next
fix x assume x: "x ∈ {0..real N}"
have nz: "complex_of_real x + s ≠ 0"
by (auto simp: complex_eq_iff)
have "norm (complex_of_real (pbernpoly n x) / (complex_of_real x + s) ^ n) ≤
c / norm (complex_of_real x + s) ^ n"
unfolding norm_divide norm_power using c[of x] by (intro divide_right_mono) simp_all
also have "… ≤ c / max ¦Im s¦ ¦x + Re s¦ ^ n"
using c_nonneg nz abs_Re_le_cmod[of "of_real x + s"] abs_Im_le_cmod[of "of_real x + s"]
by (intro divide_left_mono power_mono mult_pos_pos zero_less_power)
(auto simp: less_max_iff_disj)
finally show "norm (complex_of_real (pbernpoly n x) / (complex_of_real x + s) ^ n) ≤ …" .
qed (auto simp: complex_nonpos_Reals_iff)
also have "… ≤ 2*c*(n/(n-1)) / ¦Im s¦ ^ (n - 1)"
using I by (simp add: has_integral_iff)
also have "… ≤ 2*c*(n/(n-1)) / (sin α * norm s) ^ (n - 1)"
using ‹sin α > 0› s c_nonneg abs_Im_ge
by (intro divide_left_mono mult_pos_pos zero_less_power power_mono mult_nonneg_nonneg) auto
also have "… = 2*c*(n/(n-1))/sin α^(n-1) / norm s ^ (n - 1)"
by (simp add: field_simps)
also have "… ≤ C / norm s ^ (n - 1)"
by (intro divide_right_mono) (auto simp: C_def)
finally show ?thesis .
qed
qed
qed (use that assms complex_cone_inter_nonpos_Reals[of "-α" α] α in auto)
thus ?thesis by (rule that)
qed
lemma stirling_integral_bound:
assumes "n > 0"
obtains c where
"⋀s. Re s > 0 ⟹ norm (stirling_integral n s) ≤ c / Re s ^ n"
proof -
let ?f = "λs. of_nat n / of_nat (Suc n) * stirling_integral (Suc n) s -
of_real (bernoulli (Suc n)) / (of_nat (Suc n) * s ^ n)"
from stirling_integral_bound_aux[of "Suc n"] assms obtain c where
c: "⋀s. Re s > 0 ⟹ norm (stirling_integral (Suc n) s) ≤ c / Re s ^ n" by auto
define c1 where "c1 = real n / real (Suc n) * c"
define c2 where "c2 = ¦bernoulli (Suc n)¦ / real (Suc n)"
have c2_nonneg: "c2 ≥ 0" by (simp add: c2_def)
show ?thesis
proof (rule that)
fix s :: complex assume s: "Re s > 0"
hence s': "s ∉ ℝ⇩≤⇩0" by (auto simp: complex_nonpos_Reals_iff)
have "stirling_integral n s = ?f s" using s' assms
by (rule stirling_integral_conv_stirling_integral_Suc)
also have "norm … ≤ norm (of_nat n / of_nat (Suc n) * stirling_integral (Suc n) s) +
norm (of_real (bernoulli (Suc n)) / (of_nat (Suc n) * s ^ n))"
by (rule norm_triangle_ineq4)
also have "… = real n / real (Suc n) * norm (stirling_integral (Suc n) s) +
c2 / norm s ^ n" (is "_ = ?A + ?B")
by (simp add: norm_divide norm_mult norm_power c2_def field_simps del: of_nat_Suc)
also have "?A ≤ real n / real (Suc n) * (c / Re s ^ n)"
by (intro mult_left_mono c s) simp_all
also have "… = c1 / Re s ^ n" by (simp add: c1_def)
also have "c2 / norm s ^ n ≤ c2 / Re s ^ n" using s c2_nonneg
by (intro divide_left_mono power_mono complex_Re_le_cmod mult_pos_pos zero_less_power) auto
also have "c1 / Re s ^ n + c2 / Re s ^ n = (c1 + c2) / Re s ^ n"
using s by (simp add: field_simps)
finally show "norm (stirling_integral n s) ≤ (c1 + c2) / Re s ^ n" by - simp_all
qed
qed
lemma stirling_integral_bound':
assumes "n > 0" and "α ∈ {0<..<pi}"
obtains c where
"⋀s::complex. s ∈ complex_cone' α - {0} ⟹ norm (stirling_integral n s) ≤ c / norm s ^ n"
proof -
let ?f = "λs. of_nat n / of_nat (Suc n) * stirling_integral (Suc n) s -
of_real (bernoulli (Suc n)) / (of_nat (Suc n) * s ^ n)"
from stirling_integral_bound_aux'[of "Suc n"] assms obtain c where
c: "⋀s::complex. s ∈ complex_cone' α - {0} ⟹
norm (stirling_integral (Suc n) s) ≤ c / norm s ^ n" by auto
define c1 where "c1 = real n / real (Suc n) * c"
define c2 where "c2 = ¦bernoulli (Suc n)¦ / real (Suc n)"
have c2_nonneg: "c2 ≥ 0" by (simp add: c2_def)
show ?thesis
proof (rule that)
fix s :: complex assume s: "s ∈ complex_cone' α - {0}"
have s': "s ∉ ℝ⇩≤⇩0"
using complex_cone_inter_nonpos_Reals[of "-α" α] assms s by auto
have "stirling_integral n s = ?f s" using s' assms
by (intro stirling_integral_conv_stirling_integral_Suc) auto
also have "norm … ≤ norm (of_nat n / of_nat (Suc n) * stirling_integral (Suc n) s) +
norm (of_real (bernoulli (Suc n)) / (of_nat (Suc n) * s ^ n))"
by (rule norm_triangle_ineq4)
also have "… = real n / real (Suc n) * norm (stirling_integral (Suc n) s) +
c2 / norm s ^ n" (is "_ = ?A + ?B")
by (simp add: norm_divide norm_mult norm_power c2_def field_simps del: of_nat_Suc)
also have "?A ≤ real n / real (Suc n) * (c / norm s ^ n)"
by (intro mult_left_mono c s) simp_all
also have "… = c1 / norm s ^ n" by (simp add: c1_def)
also have "c1 / norm s ^ n + c2 / norm s ^ n = (c1 + c2) / norm s ^ n"
using s by (simp add: divide_simps)
finally show "norm (stirling_integral n s) ≤ (c1 + c2) / norm s ^ n" by - simp_all
qed
qed
lemma stirling_integral_holomorphic [holomorphic_intros]:
assumes m: "m > 0" and "A ∩ ℝ⇩≤⇩0 = {}"
shows "stirling_integral m holomorphic_on A"
proof -
from assms have [simp]: "z ∉ ℝ⇩≤⇩0" if "z ∈ A" for z
using that by auto
let ?f = "λs::complex. of_nat m * ((s - 1 / 2) * Ln s - s + of_real (ln (2 * pi) / 2) +
(∑k=1..<m. of_real (bernoulli (Suc k)) / (of_nat k * of_nat (Suc k) * s ^ k)) -
ln_Gamma s)"
have "?f holomorphic_on A" using assms
by (auto intro!: holomorphic_intros simp del: of_nat_Suc elim!: nonpos_Reals_cases)
also have "?this ⟷ stirling_integral m holomorphic_on A"
using assms by (intro holomorphic_cong refl)
(simp_all add: field_simps ln_Gamma_stirling_complex)
finally show "stirling_integral m holomorphic_on A" .
qed
lemma stirling_integral_continuous_on_complex [continuous_intros]:
assumes m: "m > 0" and "A ∩ ℝ⇩≤⇩0 = {}"
shows "continuous_on A (stirling_integral m :: _ ⇒ complex)"
by (intro holomorphic_on_imp_continuous_on stirling_integral_holomorphic assms)
lemma has_field_derivative_stirling_integral_complex:
fixes x :: complex
assumes "x ∉ ℝ⇩≤⇩0" "n > 0"
shows "(stirling_integral n has_field_derivative deriv (stirling_integral n) x) (at x)"
using assms
by (intro holomorphic_derivI[OF stirling_integral_holomorphic, of n "-ℝ⇩≤⇩0"]) auto
lemma
assumes n: "n > 0" and "x > 0"
shows deriv_stirling_integral_complex_of_real:
"(deriv ^^ j) (stirling_integral n) (complex_of_real x) =
complex_of_real ((deriv ^^ j) (stirling_integral n) x)" (is "?lhs x = ?rhs x")
and differentiable_stirling_integral_real:
"(deriv ^^ j) (stirling_integral n) field_differentiable at x" (is ?thesis2)
proof -
let ?A = "{s. Re s > 0}"
let ?f = "λj x. (deriv ^^ j) (stirling_integral n) (complex_of_real x)"
let ?f' = "λj x. complex_of_real ((deriv ^^ j) (stirling_integral n) x)"
have [simp]: "open ?A" by (simp add: open_halfspace_Re_gt)
have "?lhs x = ?rhs x ∧ (deriv ^^ j) (stirling_integral n) field_differentiable at x"
if "x > 0" for x using that
proof (induction j arbitrary: x)
case 0
have "((λx. Re (stirling_integral n (of_real x))) has_field_derivative
Re (deriv (λx. stirling_integral n x) (of_real x))) (at x)" using 0 n
by (auto intro!: derivative_intros has_vector_derivative_real_field
field_differentiable_derivI holomorphic_on_imp_differentiable_at[of _ ?A]
stirling_integral_holomorphic simp: complex_nonpos_Reals_iff)
also have "?this ⟷ (stirling_integral n has_field_derivative
Re (deriv (λx. stirling_integral n x) (of_real x))) (at x)"
using eventually_nhds_in_open[of "{0<..}" x] 0 n
by (intro has_field_derivative_cong_ev refl)
(auto elim!: eventually_mono simp: stirling_integral_complex_of_real)
finally have "stirling_integral n field_differentiable at x"
by (auto simp: field_differentiable_def)
with 0 n show ?case by (auto simp: stirling_integral_complex_of_real)
next
case (Suc j x)
note IH = conjunct1[OF Suc.IH] conjunct2[OF Suc.IH]
have *: "(deriv ^^ Suc j) (stirling_integral n) (complex_of_real x) =
of_real ((deriv ^^ Suc j) (stirling_integral n) x)" if x: "x > 0" for x
proof -
have "deriv ((deriv ^^ j) (stirling_integral n)) (complex_of_real x) =
vector_derivative (λx. (deriv ^^ j) (stirling_integral n) (of_real x)) (at x)"
using n x
by (intro vector_derivative_of_real_right [symmetric]
holomorphic_on_imp_differentiable_at[of _ ?A] holomorphic_higher_deriv
stirling_integral_holomorphic) (auto simp: complex_nonpos_Reals_iff)
also have "… = vector_derivative (λx. of_real ((deriv ^^ j) (stirling_integral n) x)) (at x)"
using eventually_nhds_in_open[of "{0<..}" x] x
by (intro vector_derivative_cong_eq) (auto elim!: eventually_mono simp: IH(1))
also have "… = of_real (deriv ((deriv ^^ j) (stirling_integral n)) x)"
by (intro vector_derivative_of_real_left holomorphic_on_imp_differentiable_at[of _ ?A]
field_differentiable_imp_differentiable IH(2) x)
finally show ?thesis by simp
qed
have "((λx. Re ((deriv ^^ Suc j) (stirling_integral n) (of_real x))) has_field_derivative
Re (deriv ((deriv ^^ Suc j) (stirling_integral n)) (of_real x))) (at x)"
using Suc.prems n
by (intro derivative_intros has_vector_derivative_real_field field_differentiable_derivI
holomorphic_on_imp_differentiable_at[of _ ?A] stirling_integral_holomorphic
holomorphic_higher_deriv) (auto simp: complex_nonpos_Reals_iff)
also have "?this ⟷ ((deriv ^^ Suc j) (stirling_integral n) has_field_derivative
Re (deriv ((deriv ^^ Suc j) (stirling_integral n)) (of_real x))) (at x)"
using eventually_nhds_in_open[of "{0<..}" x] Suc.prems *
by (intro has_field_derivative_cong_ev refl) (auto elim!: eventually_mono)
finally have "(deriv ^^ Suc j) (stirling_integral n) field_differentiable at x"
by (auto simp: field_differentiable_def)
with *[OF Suc.prems] show ?case by blast
qed
from this[OF assms(2)] show "?lhs x = ?rhs x" ?thesis2 by blast+
qed
text ‹
Unfortunately, asymptotic power series cannot, in general, be differentiated. However, since
@{term ln_Gamma} is holomorphic on the entire positive real half-space, we can differentiate
its asymptotic expansion after all.
To do this, we use an ad-hoc version of the more general approach outlined in Erdelyi's
``Asymptotic Expansions'' for holomorphic functions: We bound the value of the $j$-th derivative
of the remainder term at some value $x$ by applying Cauchy's integral formula along a circle
centred at $x$ with radius $\frac{1}{2} x$.
›
lemma deriv_stirling_integral_real_bound:
assumes m: "m > 0"
shows "(deriv ^^ j) (stirling_integral m) ∈ O(λx::real. 1 / x ^ (m + j))"
proof -
obtain c where c: "⋀s. 0 < Re s ⟹ cmod (stirling_integral m s) ≤ c / Re s ^ m"
using stirling_integral_bound[OF m] by auto
have "0 ≤ cmod (stirling_integral m 1)" by simp
also have "… ≤ c" using c[of 1] by simp
finally have c_nonneg: "c ≥ 0" .
define B where "B = c * 2 ^ (m + Suc j)"
define B' where "B' = B * fact j / 2"
have "eventually (λx::real. norm ((deriv ^^ j) (stirling_integral m) x) ≤
B' * norm (1 / x ^ (m+ j))) at_top"
using eventually_gt_at_top[of "0::real"]
proof eventually_elim
case (elim x)
have "s ∉ ℝ⇩≤⇩0" if "s ∈ cball (of_real x) (x/2)" for s :: complex
proof -
have "x - Re s ≤ norm (of_real x - s)" using complex_Re_le_cmod[of "of_real x - s"] by simp
also from that have "… ≤ x/2" by (simp add: dist_complex_def)
finally show ?thesis using elim by (auto simp: complex_nonpos_Reals_iff)
qed
hence "((λu. stirling_integral m u / (u - of_real x) ^ Suc j) has_contour_integral
complex_of_real (2 * pi) * 𝗂 / fact j *
(deriv ^^ j) (stirling_integral m) (of_real x)) (circlepath (of_real x) (x/2))"
using m elim
by (intro Cauchy_has_contour_integral_higher_derivative_circlepath
stirling_integral_continuous_on_complex stirling_integral_holomorphic) auto
hence "norm (of_real (2 * pi) * 𝗂 / fact j * (deriv ^^ j) (stirling_integral m) (of_real x)) ≤
B / x ^ (m + Suc j) * (2 * pi * (x / 2))"
proof (rule has_contour_integral_bound_circlepath)
fix u :: complex assume dist: "norm (u - of_real x) = x / 2"
have "Re (of_real x - u) ≤ norm (of_real x - u)" by (rule complex_Re_le_cmod)
also have "… = x / 2" using dist by (simp add: norm_minus_commute)
finally have Re_u: "Re u ≥ x/2" using elim by simp
have "norm (stirling_integral m u / (u - of_real x) ^ Suc j) ≤
c / Re u ^ m / (x / 2) ^ Suc j" using Re_u elim
unfolding norm_divide norm_power dist
by (intro divide_right_mono zero_le_power c) simp_all
also have "… ≤ c / (x/2) ^ m / (x / 2) ^ Suc j" using c_nonneg elim Re_u
by (intro divide_right_mono divide_left_mono power_mono) simp_all
also have "… = B / x ^ (m + Suc j)" using elim by (simp add: B_def field_simps power_add)
finally show "norm (stirling_integral m u / (u - of_real x) ^ Suc j) ≤ B / x ^ (m + Suc j)" .
qed (insert elim c_nonneg, auto simp: B_def simp del: power_Suc)
hence "cmod ((deriv ^^ j) (stirling_integral m) (of_real x)) ≤ B' / x ^ (j + m)"
using elim by (simp add: field_simps norm_divide norm_mult norm_power B'_def)
with elim m show ?case by (simp_all add: add_ac deriv_stirling_integral_complex_of_real)
qed
thus ?thesis by (rule bigoI)
qed
definition stirling_sum where
"stirling_sum j m x =
(-1) ^ j * (∑k = 1..<m. (of_real (bernoulli (Suc k)) * pochhammer (of_nat k) j / (of_nat k *
of_nat (Suc k))) * inverse x ^ (k + j))"
definition stirling_sum' where
"stirling_sum' j m x =
(-1) ^ (Suc j) * (∑k≤m. (of_real (bernoulli' k) *
pochhammer (of_nat (Suc k)) (j - 1) * inverse x ^ (k + j)))"
lemma stirling_sum_complex_of_real:
"stirling_sum j m (complex_of_real x) = complex_of_real (stirling_sum j m x)"
by (simp add: stirling_sum_def pochhammer_of_real [symmetric] del: of_nat_Suc)
lemma stirling_sum'_complex_of_real:
"stirling_sum' j m (complex_of_real x) = complex_of_real (stirling_sum' j m x)"
by (simp add: stirling_sum'_def pochhammer_of_real [symmetric] del: of_nat_Suc)
lemma has_field_derivative_stirling_sum_complex [derivative_intros]:
"Re x > 0 ⟹ (stirling_sum j m has_field_derivative stirling_sum (Suc j) m x) (at x)"
unfolding stirling_sum_def [abs_def] sum_distrib_left
by (rule DERIV_sum) (auto intro!: derivative_eq_intros simp del: of_nat_Suc
simp: pochhammer_Suc power_diff)
lemma has_field_derivative_stirling_sum_real [derivative_intros]:
"x > (0::real) ⟹ (stirling_sum j m has_field_derivative stirling_sum (Suc j) m x) (at x)"
unfolding stirling_sum_def [abs_def] sum_distrib_left
by (rule DERIV_sum) (auto intro!: derivative_eq_intros simp del: of_nat_Suc
simp: pochhammer_Suc power_diff)
lemma has_field_derivative_stirling_sum'_complex [derivative_intros]:
assumes "j > 0" "Re x > 0"
shows "(stirling_sum' j m has_field_derivative stirling_sum' (Suc j) m x) (at x)"
proof (cases j)
case (Suc j')
from assms have [simp]: "x ≠ 0" by auto
define c where "c = (λn. (-1) ^ Suc j * complex_of_real (bernoulli' n) *
pochhammer (of_nat (Suc n)) j')"
define T where "T = (λn x. c n * inverse x ^ (j + n))"
define T' where "T' = (λn x. - (of_nat (j + n)) * c n * inverse x ^ (Suc (j + n)))"
have "((λx. ∑k≤m. T k x) has_field_derivative (∑k≤m. T' k x)) (at x)" using assms Suc
by (intro DERIV_sum)
(auto simp: T_def T'_def intro!: derivative_eq_intros
simp: field_simps power_add [symmetric] simp del: of_nat_Suc power_Suc of_nat_add)
also have "(λx. (∑k≤m. T k x)) = stirling_sum' j m"
by (simp add: Suc T_def c_def stirling_sum'_def fun_eq_iff add_ac mult.assoc sum_distrib_left)
also have "(∑k≤m. T' k x) = stirling_sum' (Suc j) m x"
by (simp add: T'_def c_def Suc stirling_sum'_def sum_distrib_left
sum_distrib_right algebra_simps pochhammer_Suc)
finally show ?thesis .
qed (insert assms, simp_all)
lemma has_field_derivative_stirling_sum'_real [derivative_intros]:
assumes "j > 0" "x > (0::real)"
shows "(stirling_sum' j m has_field_derivative stirling_sum' (Suc j) m x) (at x)"
proof (cases j)
case (Suc j')
from assms have [simp]: "x ≠ 0" by auto
define c where "c = (λn. (-1) ^ Suc j * (bernoulli' n) * pochhammer (of_nat (Suc n)) j')"
define T where "T = (λn x. c n * inverse x ^ (j + n))"
define T' where "T' = (λn x. - (of_nat (j + n)) * c n * inverse x ^ (Suc (j + n)))"
have "((λx. ∑k≤m. T k x) has_field_derivative (∑k≤m. T' k x)) (at x)" using assms Suc
by (intro DERIV_sum)
(auto simp: T_def T'_def intro!: derivative_eq_intros
simp: field_simps power_add [symmetric] simp del: of_nat_Suc power_Suc of_nat_add)
also have "(λx. (∑k≤m. T k x)) = stirling_sum' j m"
by (simp add: Suc T_def c_def stirling_sum'_def fun_eq_iff add_ac mult.assoc sum_distrib_left)
also have "(∑k≤m. T' k x) = stirling_sum' (Suc j) m x"
by (simp add: T'_def c_def Suc stirling_sum'_def sum_distrib_left
sum_distrib_right algebra_simps pochhammer_Suc)
finally show ?thesis .
qed (insert assms, simp_all)
lemma higher_deriv_stirling_sum_complex:
"Re x > 0 ⟹ (deriv ^^ i) (stirling_sum j m) x = stirling_sum (i + j) m x"
proof (induction i arbitrary: x)
case (Suc i)
have "deriv ((deriv ^^ i) (stirling_sum j m)) x = deriv (stirling_sum (i + j) m) x"
using eventually_nhds_in_open[of "{x. Re x > 0}" x] Suc.prems
by (intro deriv_cong_ev refl) (auto elim!: eventually_mono simp: open_halfspace_Re_gt Suc.IH)
also from Suc.prems have "… = stirling_sum (Suc (i + j)) m x"
by (intro DERIV_imp_deriv has_field_derivative_stirling_sum_complex)
finally show ?case by simp
qed simp_all
definition Polygamma_approx :: "nat ⇒ nat ⇒ 'a ⇒ 'a :: {real_normed_field, ln}" where
"Polygamma_approx j m =
(deriv ^^ j) (λx. (x - 1 / 2) * ln x - x + of_real (ln (2 * pi)) / 2 + stirling_sum 0 m x)"
lemma Polygamma_approx_Suc: "Polygamma_approx (Suc j) m = deriv (Polygamma_approx j m)"
by (simp add: Polygamma_approx_def)
lemma Polygamma_approx_0:
"Polygamma_approx 0 m x = (x - 1/2) * ln x - x + of_real (ln (2*pi)) / 2 + stirling_sum 0 m x"
by (simp add: Polygamma_approx_def)
lemma Polygamma_approx_1_complex:
"Re x > 0 ⟹
Polygamma_approx (Suc 0) m x = ln x - 1 / (2*x) + stirling_sum (Suc 0) m x"
unfolding Polygamma_approx_Suc Polygamma_approx_0
by (intro DERIV_imp_deriv)
(auto intro!: derivative_eq_intros elim!: nonpos_Reals_cases simp: field_simps)
lemma Polygamma_approx_1_real:
"x > (0 :: real) ⟹
Polygamma_approx (Suc 0) m x = ln x - 1 / (2*x) + stirling_sum (Suc 0) m x"
unfolding Polygamma_approx_Suc Polygamma_approx_0
by (intro DERIV_imp_deriv)
(auto intro!: derivative_eq_intros elim!: nonpos_Reals_cases simp: field_simps)
lemma stirling_sum_2_conv_stirling_sum'_1:
fixes x :: "'a :: {real_div_algebra, field_char_0}"
assumes "m > 0" "x ≠ 0"
shows "stirling_sum' 1 m x = 1 / x + 1 / (2 * x^2) + stirling_sum 2 m x"
proof -
have pochhammer_2: "pochhammer (of_nat k) 2 = of_nat k * of_nat (Suc k)" for k
by (simp add: pochhammer_Suc eval_nat_numeral add_ac)
have "stirling_sum 2 m x =
(∑k = Suc 0..<m. of_real (bernoulli' (Suc k)) * inverse x ^ Suc (Suc k))"
unfolding stirling_sum_def pochhammer_2 power2_minus power_one mult_1_left
by (intro sum.cong refl)
(simp_all add: stirling_sum_def pochhammer_2 power2_eq_square divide_simps bernoulli'_def
del: of_nat_Suc power_Suc)
also have "1 / (2 * x^2) + … =
(∑k=0..<m. of_real (bernoulli' (Suc k)) * inverse x ^ Suc (Suc k))" using assms
by (subst (2) sum.atLeast_Suc_lessThan) (simp_all add: power2_eq_square field_simps)
also have "1 / x + … = (∑k=0..<Suc m. of_real (bernoulli' k) * inverse x ^ Suc k)"
by (subst sum.atLeast0_lessThan_Suc_shift) (simp_all add: bernoulli'_def divide_simps)
also have "… = (∑k≤m. of_real (bernoulli' k) * inverse x ^ Suc k)"
by (intro sum.cong) auto
also have "… = stirling_sum' 1 m x" by (simp add: stirling_sum'_def)
finally show ?thesis by (simp add: add_ac)
qed
lemma Polygamma_approx_2_real:
assumes "x > (0::real)" "m > 0"
shows "Polygamma_approx (Suc (Suc 0)) m x = stirling_sum' 1 m x"
proof -
have "Polygamma_approx (Suc (Suc 0)) m x = deriv (Polygamma_approx (Suc 0) m) x"
by (simp add: Polygamma_approx_Suc)
also have "… = deriv (λx. ln x - 1 / (2*x) + stirling_sum (Suc 0) m x) x"
using eventually_nhds_in_open[of "{0<..}" x] assms
by (intro deriv_cong_ev) (auto elim!: eventually_mono simp: Polygamma_approx_1_real)
also have "… = 1 / x + 1 / (2*x^2) + stirling_sum (Suc (Suc 0)) m x" using assms
by (intro DERIV_imp_deriv) (auto intro!: derivative_eq_intros
elim!: nonpos_Reals_cases simp: field_simps power2_eq_square)
also have "… = stirling_sum' 1 m x" using stirling_sum_2_conv_stirling_sum'_1[of m x] assms
by (simp add: eval_nat_numeral)
finally show ?thesis .
qed
lemma Polygamma_approx_2_complex:
assumes "Re x > 0" "m > 0"
shows "Polygamma_approx (Suc (Suc 0)) m x = stirling_sum' 1 m x"
proof -
have "Polygamma_approx (Suc (Suc 0)) m x = deriv (Polygamma_approx (Suc 0) m) x"
by (simp add: Polygamma_approx_Suc)
also have "… = deriv (λx. ln x - 1 / (2*x) + stirling_sum (Suc 0) m x) x"
using eventually_nhds_in_open[of "{s. Re s > 0}" x] assms
by (intro deriv_cong_ev)
(auto simp: open_halfspace_Re_gt elim!: eventually_mono simp: Polygamma_approx_1_complex)
also have "… = 1 / x + 1 / (2*x^2) + stirling_sum (Suc (Suc 0)) m x" using assms
by (intro DERIV_imp_deriv) (auto intro!: derivative_eq_intros
elim!: nonpos_Reals_cases simp: field_simps power2_eq_square)
also have "… = stirling_sum' 1 m x" using stirling_sum_2_conv_stirling_sum'_1[of m x] assms
by (subst stirling_sum_2_conv_stirling_sum'_1) (auto simp: eval_nat_numeral)
finally show ?thesis .
qed
lemma Polygamma_approx_ge_2_real:
assumes "x > (0::real)" "m > 0"
shows "Polygamma_approx (Suc (Suc j)) m x = stirling_sum' (Suc j) m x"
using assms(1)
proof (induction j arbitrary: x)
case (0 x)
with assms show ?case by (simp add: Polygamma_approx_2_real)
next
case (Suc j x)
have "Polygamma_approx (Suc (Suc (Suc j))) m x = deriv (Polygamma_approx (Suc (Suc j)) m) x"
by (simp add: Polygamma_approx_Suc)
also have "… = deriv (stirling_sum' (Suc j) m) x"
using eventually_nhds_in_open[of "{0<..}" x] Suc.prems
by (intro deriv_cong_ev refl) (auto elim!: eventually_mono simp: Suc.IH)
also have "… = stirling_sum' (Suc (Suc j)) m x" using Suc.prems
by (intro DERIV_imp_deriv derivative_intros) simp_all
finally show ?case .
qed
lemma Polygamma_approx_ge_2_complex:
assumes "Re x > 0" "m > 0"
shows "Polygamma_approx (Suc (Suc j)) m x = stirling_sum' (Suc j) m x"
using assms(1)
proof (induction j arbitrary: x)
case (0 x)
with assms show ?case by (simp add: Polygamma_approx_2_complex)
next
case (Suc j x)
have "Polygamma_approx (Suc (Suc (Suc j))) m x = deriv (Polygamma_approx (Suc (Suc j)) m) x"
by (simp add: Polygamma_approx_Suc)
also have "… = deriv (stirling_sum' (Suc j) m) x"
using eventually_nhds_in_open[of "{x. Re x > 0}" x] Suc.prems
by (intro deriv_cong_ev refl) (auto elim!: eventually_mono simp: Suc.IH open_halfspace_Re_gt)
also have "… = stirling_sum' (Suc (Suc j)) m x" using Suc.prems
by (intro DERIV_imp_deriv derivative_intros) simp_all
finally show ?case .
qed
lemma Polygamma_approx_complex_of_real:
assumes "x > 0" "m > 0"
shows "Polygamma_approx j m (complex_of_real x) = of_real (Polygamma_approx j m x)"
proof (cases j)
case 0
with assms show ?thesis by (simp add: Polygamma_approx_0 Ln_of_real stirling_sum_complex_of_real)
next
case [simp]: (Suc j')
thus ?thesis
proof (cases j')
case 0
with assms show ?thesis
by (simp add: Polygamma_approx_1_complex
Polygamma_approx_1_real stirling_sum_complex_of_real Ln_of_real)
next
case (Suc j'')
with assms show ?thesis
by (simp add: Polygamma_approx_ge_2_complex Polygamma_approx_ge_2_real
stirling_sum'_complex_of_real)
qed
qed
lemma higher_deriv_Polygamma_approx [simp]:
"(deriv ^^ j) (Polygamma_approx i m) = Polygamma_approx (j + i) m"
by (simp add: Polygamma_approx_def funpow_add)
lemma stirling_sum_holomorphic [holomorphic_intros]:
"0 ∉ A ⟹ stirling_sum j m holomorphic_on A"
unfolding stirling_sum_def by (intro holomorphic_intros) auto
lemma Polygamma_approx_holomorphic [holomorphic_intros]:
"Polygamma_approx j m holomorphic_on {s. Re s > 0}"
unfolding Polygamma_approx_def
by (intro holomorphic_intros) (auto simp: open_halfspace_Re_gt elim!: nonpos_Reals_cases)
lemma higher_deriv_lnGamma_stirling:
assumes m: "m > 0"
shows "(λx::real. (deriv ^^ j) ln_Gamma x - Polygamma_approx j m x) ∈ O(λx. 1 / x ^ (m + j))"
proof -
have "eventually (λx. ¦(deriv ^^ j) ln_Gamma x - Polygamma_approx j m x¦ =
inverse (real m) * ¦(deriv ^^ j) (stirling_integral m) x¦) at_top"
using eventually_gt_at_top[of "0::real"]
proof eventually_elim
case (elim x)
note x = this
have "∀⇩F y in nhds (complex_of_real x). y ∈ - ℝ⇩≤⇩0"
using elim by (intro eventually_nhds_in_open) auto
hence "(deriv ^^ j) (λx. ln_Gamma x - Polygamma_approx 0 m x) (complex_of_real x) =
(deriv ^^ j) (λx. (-inverse (of_nat m)) * stirling_integral m x) (complex_of_real x)"
using x m
by (intro higher_deriv_cong_ev refl)
(auto elim!: eventually_mono simp: ln_Gamma_stirling_complex Polygamma_approx_def
field_simps open_halfspace_Re_gt stirling_sum_def)
also have "… = - inverse (of_nat m) * (deriv ^^ j) (stirling_integral m) (of_real x)" using x m
by (intro higher_deriv_cmult[of _ "-ℝ⇩≤⇩0"] stirling_integral_holomorphic)
(auto simp: open_halfspace_Re_gt)
also have "(deriv ^^ j) (λx. ln_Gamma x - Polygamma_approx 0 m x) (complex_of_real x) =
(deriv ^^ j) ln_Gamma (of_real x) - (deriv ^^ j) (Polygamma_approx 0 m) (of_real x)"
using x
by (intro higher_deriv_diff[of _ "{s. Re s > 0}"])
(auto intro!: holomorphic_intros elim!: nonpos_Reals_cases simp: open_halfspace_Re_gt)
also have "(deriv ^^ j) (Polygamma_approx 0 m) (complex_of_real x) =
of_real (Polygamma_approx j m x)" using x m
by (simp add: Polygamma_approx_complex_of_real)
also have "norm (- inverse (of_nat m) * (deriv ^^ j) (stirling_integral m) (complex_of_real x)) =
inverse (real m) * ¦(deriv ^^ j) (stirling_integral m) x¦"
using x m by (simp add: norm_mult norm_inverse deriv_stirling_integral_complex_of_real)
also have "(deriv ^^ j) ln_Gamma (complex_of_real x) = of_real ((deriv ^^ j) ln_Gamma x)" using x
by (simp add: higher_deriv_ln_Gamma_complex_of_real)
also have "norm (… - of_real (Polygamma_approx j m x)) =
¦(deriv ^^ j) ln_Gamma x - Polygamma_approx j m x¦"
by (simp only: of_real_diff [symmetric] norm_of_real)
finally show ?case .
qed
from bigthetaI_cong[OF this] m
have "(λx::real. (deriv ^^ j) ln_Gamma x - Polygamma_approx j m x) ∈
Θ(λx. (deriv ^^ j) (stirling_integral m) x)" by simp
also have "(λx::real. (deriv ^^ j) (stirling_integral m) x) ∈ O(λx. 1 / x ^ (m + j))" using m
by (rule deriv_stirling_integral_real_bound)
finally show ?thesis .
qed
lemma Polygamma_approx_1_real':
assumes x: "(x::real) > 0" and m: "m > 0"
shows "Polygamma_approx 1 m x = ln x - (∑k = Suc 0..m. bernoulli' k * inverse x ^ k / real k)"
proof -
have "Polygamma_approx 1 m x = ln x - (1 / (2 * x) +
(∑k=Suc 0..<m. bernoulli (Suc k) * inverse x ^ Suc k / real (Suc k)))"
(is "_ = _ - (_ + ?S)") using x by (simp add: Polygamma_approx_1_real stirling_sum_def)
also have "?S = (∑k=Suc 0..<m. bernoulli' (Suc k) * inverse x ^ Suc k / real (Suc k))"
by (intro sum.cong refl) (simp_all add: bernoulli'_def)
also have "1 / (2 * x) + … =
(∑k=0..<m. bernoulli' (Suc k) * inverse x ^ Suc k / real (Suc k))" using m
by (subst (2) sum.atLeast_Suc_lessThan) (simp_all add: field_simps)
also have "… = (∑k = Suc 0..m. bernoulli' k * inverse x ^ k / real k)" using assms
by (subst sum.shift_bounds_Suc_ivl [symmetric]) (simp add: atLeastLessThanSuc_atLeastAtMost)
finally show ?thesis .
qed
theorem
assumes m: "m > 0"
shows ln_Gamma_real_asymptotics:
"(λx. ln_Gamma x - ((x - 1 / 2) * ln x - x + ln (2 * pi) / 2 +
(∑k = 1..<m. bernoulli (Suc k) / (real k * real (Suc k)) / x^k)))
∈ O(λx. 1 / x ^ m)" (is ?th1)
and Digamma_real_asymptotics:
"(λx. Digamma x - (ln x - (∑k=1..m. bernoulli' k / real k / x ^ k)))
∈ O(λx. 1 / (x ^ Suc m))" (is ?th2)
and Polygamma_real_asymptotics: "j > 0 ⟹
(λx. Polygamma j x - (- 1) ^ Suc j * (∑k≤m. bernoulli' k *
pochhammer (real (Suc k)) (j - 1) / x ^ (k + j)))
∈ O(λx. 1 / x ^ (m+j+1))" (is "_ ⟹ ?th3")
proof -
define G :: "nat ⇒ real ⇒ real" where
"G = (λm. if m = 0 then ln_Gamma else Polygamma (m - 1))"
have *: "(λx. G j x - h x) ∈ O(λx. 1 / x ^ (m + j))"
if "⋀x::real. x > 0 ⟹ Polygamma_approx j m x = h x" for j h
proof -
have "(λx. G j x - h x) ∈
Θ(λx. (deriv ^^ j) ln_Gamma x - Polygamma_approx j m x)" (is "_ ∈ Θ(?f)")
using that
by (intro bigthetaI_cong) (auto intro: eventually_mono[OF eventually_gt_at_top[of "0::real"]]
simp del: funpow.simps simp: higher_deriv_ln_Gamma_real G_def)
also have "?f ∈ O(λx::real. 1 / x ^ (m + j))" using m
by (rule higher_deriv_lnGamma_stirling)
finally show ?thesis .
qed
note [[simproc del: simplify_landau_sum]]
from *[OF Polygamma_approx_0] assms show ?th1
by (simp add: G_def Polygamma_approx_0 stirling_sum_def field_simps)
from *[OF Polygamma_approx_1_real'] assms show ?th2 by (simp add: G_def field_simps)
assume j: "j > 0"
from *[OF Polygamma_approx_ge_2_real, of "j - 1"] assms j show ?th3
by (simp add: G_def stirling_sum'_def power_add power_diff field_simps)
qed
subsection ‹Asymptotics of the complex Gamma function›
text ‹
The ‹m›-th order remainder of Stirling's formula for $\log\Gamma$ is $O(s^{-m})$ uniformly over
any complex cone $\text{Arg}(z) \leq \alpha$, $z\neq 0$ for any angle
$\alpha\in(0, \pi)$. This means that there is bounded by $c z^{-m}$ for some constant $c$ for
all $z$ in this cone.
›
context
fixes F and α
assumes α: "α ∈ {0<..<pi}"
defines "F ≡ principal (complex_cone' α - {0})"
begin
lemma stirling_integral_bigo:
fixes m :: nat
assumes m: "m > 0"
shows "stirling_integral m ∈ O[F](λs. 1 / s ^ m)"
proof -
obtain c where c: "⋀s. s ∈ complex_cone' α - {0} ⟹ norm (stirling_integral m s) ≤ c / norm s ^ m"
using stirling_integral_bound'[OF ‹m > 0› α] by blast
have "0 ≤ norm (stirling_integral m 1 :: complex)"
by simp
also have "… ≤ c"
using c[of 1] α by simp
finally have "c ≥ 0" .
have "eventually (λs. s ∈ complex_cone' α - {0}) F"
unfolding F_def by (auto simp: eventually_principal)
hence "eventually (λs. norm (stirling_integral m s) ≤
c * norm (1 / s ^ m)) F"
by eventually_elim (use c in ‹simp add: norm_divide norm_power›)
thus "stirling_integral m ∈ O[F](λs. 1 / s ^ m)"
by (intro bigoI[of _ c]) auto
qed
end
text ‹
The following is a more explicit statement of this:
›
theorem ln_Gamma_complex_asymptotics_explicit:
fixes m :: nat and α :: real
assumes "m > 0" and "α ∈ {0<..<pi}"
obtains C :: real and R :: "complex ⇒ complex"
where "∀s::complex. s ∉ ℝ⇩≤⇩0 ⟶
ln_Gamma s = (s - 1/2) * ln s - s + ln (2 * pi) / 2 +
(∑k=1..<m. bernoulli (k+1) / (k * (k+1) * s ^ k)) - R s"
and "∀s. s ≠ 0 ∧ ¦Arg s¦ ≤ α ⟶ norm (R s) ≤ C / norm s ^ m"
proof -
obtain c where c: "⋀s. s ∈ complex_cone' α - {0} ⟹ norm (stirling_integral m s) ≤ c / norm s ^ m"
using stirling_integral_bound'[OF assms] by blast
have "0 ≤ norm (stirling_integral m 1 :: complex)"
by simp
also have "… ≤ c"
using c[of 1] assms by simp
finally have "c ≥ 0" .
define R where "R = (λs::complex. stirling_integral m s / of_nat m)"
show ?thesis
proof (rule that)
from ln_Gamma_stirling_complex[of _ m] assms show
"∀s::complex. s ∉ ℝ⇩≤⇩0 ⟶
ln_Gamma s = (s - 1 / 2) * ln s - s + ln (2 * pi) / 2 +
(∑k=1..<m. bernoulli (k+1) / (k * (k+1) * s ^ k)) - R s"
by (auto simp add: R_def algebra_simps)
show "∀s. s ≠ 0 ∧ ¦Arg s¦ ≤ α ⟶ cmod (R s) ≤ c / real m / cmod s ^ m"
proof (safe, goal_cases)
case (1 s)
show ?case
using 1 c[of s] assms
by (auto simp: complex_cone_altdef abs_le_iff R_def norm_divide field_simps)
qed
qed
qed
text ‹
Lastly, we can also derive the asymptotics of $\Gamma$ itself:
\[\Gamma(z) \sim \sqrt{2\pi / z} \left(\frac{z}{e}\right)^z\]
uniformly for $|z|\to\infty$ within the cone $\text{Arg}(z) \leq \alpha$ for $\alpha\in(0,\pi)$:
›
context
fixes F and α
assumes α: "α ∈ {0<..<pi}"
defines "F ≡ inf at_infinity (principal (complex_cone' α))"
begin
lemma Gamma_complex_asymp_equiv:
"Gamma ∼[F] (λs. sqrt (2 * pi) * (s / exp 1) powr s / s powr (1 / 2))"
proof -
define I :: "complex ⇒ complex" where "I = stirling_integral 1"
have "eventually (λs. s ∈ complex_cone' α) F"
by (auto simp: eventually_inf_principal F_def)
moreover have "eventually (λs. s ≠ 0) F"
unfolding F_def eventually_inf_principal
using eventually_not_equal_at_infinity by eventually_elim auto
ultimately have "eventually (λs. Gamma s =
sqrt (2 * pi) * (s / exp 1) powr s / s powr (1 / 2) / exp (I s)) F"
proof eventually_elim
case (elim s)
from elim have s': "s ∉ ℝ⇩≤⇩0"
using complex_cone_inter_nonpos_Reals[of "-α" α] α by auto
from elim have [simp]: "s ≠ 0" by auto
from s' have "Gamma s = exp (ln_Gamma s)"
unfolding Gamma_complex_altdef using nonpos_Ints_subset_nonpos_Reals by auto
also from s' have "ln_Gamma s = (s-1/2) * Ln s - s + complex_of_real (ln (2 * pi) / 2) - I s"
by (subst ln_Gamma_stirling_complex[of _ 1]) (simp_all add: exp_add exp_diff I_def)
also have "exp … = exp ((s - 1 / 2) * Ln s) / exp s *
exp (complex_of_real (ln (2 * pi) / 2)) / exp (I s)"
unfolding exp_diff exp_add by (simp add: exp_diff exp_add)
also have "exp ((s - 1 / 2) * Ln s) = s powr (s - 1 / 2)"
by (simp add: powr_def)
also have "exp (complex_of_real (ln (2 * pi) / 2)) = sqrt (2 * pi)"
by (subst exp_of_real) (auto simp: powr_def simp flip: powr_half_sqrt)
also have "exp s = exp 1 powr s"
by (simp add: powr_def)
also have "s powr (s - 1 / 2) / exp 1 powr s = (s powr s / exp 1 powr s) / s powr (1/2)"
by (subst powr_diff) auto
also have *: "Ln (s / exp 1) = Ln s - 1"
using Ln_divide_of_real[of "exp 1" s] by (simp flip: exp_of_real)
hence "s powr s / exp 1 powr s = (s / exp 1) powr s"
unfolding powr_def by (subst *) (auto simp: exp_diff field_simps)
finally show "Gamma s = sqrt (2 * pi) * (s / exp 1) powr s / s powr (1 / 2) / exp (I s)"
by (simp add: algebra_simps)
qed
hence "Gamma ∼[F] (λs. sqrt (2 * pi) * (s / exp 1) powr s / s powr (1 / 2) / exp (I s))"
by (rule asymp_equiv_refl_ev)
also have "… ∼[F] (λs. sqrt (2 * pi) * (s / exp 1) powr s / s powr (1 / 2) / 1)"
proof (intro asymp_equiv_intros)
have "F ≤ principal (complex_cone' α - {0})"
unfolding le_principal F_def eventually_inf_principal
using eventually_not_equal_at_infinity by eventually_elim auto
moreover have "I ∈ O[principal (complex_cone' α - {0})](λs. 1 / s)"
using stirling_integral_bigo[of α 1] α unfolding F_def by (simp add: I_def)
ultimately have "I ∈ O[F](λs. 1 / s)"
by (rule landau_o.big.filter_mono)
also have "(λs. 1 / s) ∈ o[F](λs. 1)"
proof (rule landau_o.smallI)
fix c :: real
assume c: "c > 0"
hence "eventually (λz::complex. norm z ≥ 1 / c) at_infinity"
by (auto simp: eventually_at_infinity)
moreover have "eventually (λz::complex. z ≠ 0) at_infinity"
by (rule eventually_not_equal_at_infinity)
ultimately show "eventually (λz::complex. norm (1 / z) ≤ c * norm (1 :: complex)) F"
unfolding F_def eventually_inf_principal
by eventually_elim (use ‹c > 0› in ‹auto simp: norm_divide field_simps›)
qed
finally have "I ∈ o[F](λs. 1)" .
from smalloD_tendsto[OF this] have [tendsto_intros]: "(I ⤏ 0) F"
by simp
show "(λx. exp (I x)) ∼[F] (λx. 1)"
by (rule asymp_equivI' tendsto_eq_intros refl | simp)+
qed
finally show ?thesis by simp
qed
end
end