Theory TypeSystem
section ‹Type System for Ensuring SIFUM-Security of Commands›
theory TypeSystem
imports Main Preliminaries Security Language Compositionality
begin
subsection ‹Typing Rules›
type_synonym Type = Sec
type_synonym 'Var TyEnv = "'Var ⇀ Type"
locale sifum_types =
sifum_lang ev⇩A ev⇩B + sifum_security dma Stop eval⇩w
for ev⇩A :: "('Var, 'Val) Mem ⇒ 'AExp ⇒ 'Val"
and ev⇩B :: "('Var, 'Val) Mem ⇒ 'BExp ⇒ bool"
context sifum_types
begin
abbreviation mm_equiv_abv2 :: "(_, _, _) LocalConf ⇒ (_, _, _) LocalConf ⇒ bool"
(infix "≈" 60)
where "mm_equiv_abv2 c c' ≡ mm_equiv_abv c c'"
abbreviation eval_abv2 :: "(_, 'Var, 'Val) LocalConf ⇒ (_, _, _) LocalConf ⇒ bool"
(infixl "↝" 70)
where
"x ↝ y ≡ (x, y) ∈ eval⇩w"
abbreviation low_indistinguishable_abv :: "'Var Mds ⇒ ('Var, 'AExp, 'BExp) Stmt ⇒ (_, _, _) Stmt ⇒ bool"
("_ ∼ı _" [100, 100] 80)
where
"c ∼⇘mds⇙ c' ≡ low_indistinguishable mds c c'"
definition to_total :: "'Var TyEnv ⇒ 'Var ⇒ Sec"
where "to_total Γ v ≡ if v ∈ dom Γ then the (Γ v) else dma v"
definition max_dom :: "Sec set ⇒ Sec"
where "max_dom xs ≡ if High ∈ xs then High else Low"
inductive type_aexpr :: "'Var TyEnv ⇒ 'AExp ⇒ Type ⇒ bool" ("_ ⊢⇩a _ ∈ _" [120, 120, 120] 1000)
where
type_aexpr [intro!]: "Γ ⊢⇩a e ∈ max_dom (image (λ x. to_total Γ x) (aexp_vars e))"
inductive_cases type_aexpr_elim [elim]: "Γ ⊢⇩a e ∈ t"
inductive type_bexpr :: "'Var TyEnv ⇒ 'BExp ⇒ Type ⇒ bool" ("_ ⊢⇩b _ ∈ _ " [120, 120, 120] 1000)
where
type_bexpr [intro!]: "Γ ⊢⇩b e ∈ max_dom (image (λ x. to_total Γ x) (bexp_vars e))"
inductive_cases type_bexpr_elim [elim]: "Γ ⊢⇩b e ∈ t"
definition mds_consistent :: "'Var Mds ⇒ 'Var TyEnv ⇒ bool"
where "mds_consistent mds Γ ≡
dom Γ = {(x :: 'Var). (dma x = Low ∧ x ∈ mds AsmNoRead) ∨
(dma x = High ∧ x ∈ mds AsmNoWrite)}"
fun add_anno_dom :: "'Var TyEnv ⇒ 'Var ModeUpd ⇒ 'Var set"
where
"add_anno_dom Γ (Acq v AsmNoRead) = (if dma v = Low then dom Γ ∪ {v} else dom Γ)" |
"add_anno_dom Γ (Acq v AsmNoWrite) = (if dma v = High then dom Γ ∪ {v} else dom Γ)" |
"add_anno_dom Γ (Acq v _) = dom Γ" |
"add_anno_dom Γ (Rel v AsmNoRead) = (if dma v = Low then dom Γ - {v} else dom Γ)" |
"add_anno_dom Γ (Rel v AsmNoWrite) = (if dma v = High then dom Γ - {v} else dom Γ)" |
"add_anno_dom Γ (Rel v _) = dom Γ"
definition add_anno :: "'Var TyEnv ⇒ 'Var ModeUpd ⇒ 'Var TyEnv" (infix "⊕" 60)
where
"Γ ⊕ upd = ((λx. Some (to_total Γ x)) |` add_anno_dom Γ upd)"
definition context_le :: "'Var TyEnv ⇒ 'Var TyEnv ⇒ bool" (infixr "⊑⇩c" 100)
where
"Γ ⊑⇩c Γ' ≡ (dom Γ = dom Γ') ∧ (∀ x ∈ dom Γ. the (Γ x) ⊑ the (Γ' x))"
inductive has_type :: "'Var TyEnv ⇒ ('Var, 'AExp, 'BExp) Stmt ⇒ 'Var TyEnv ⇒ bool"
("⊢ _ {_} _" [120, 120, 120] 1000)
where
stop_type [intro]: "⊢ Γ {Stop} Γ" |
skip_type [intro] : "⊢ Γ {Skip} Γ" |
assign⇩1 : "⟦ x ∉ dom Γ ; Γ ⊢⇩a e ∈ t; t ⊑ dma x ⟧ ⟹ ⊢ Γ {x ← e} Γ" |
assign⇩2 : "⟦ x ∈ dom Γ ; Γ ⊢⇩a e ∈ t ⟧ ⟹ has_type Γ (x ← e) (Γ (x := Some t))" |
if_type [intro]: "⟦ Γ ⊢⇩b e ∈ High ⟶
((∀ mds. mds_consistent mds Γ ⟶ (low_indistinguishable mds c⇩1 c⇩2)) ∧
(∀ x ∈ dom Γ'. Γ' x = Some High))
; ⊢ Γ { c⇩1 } Γ'
; ⊢ Γ { c⇩2 } Γ' ⟧ ⟹
⊢ Γ { If e c⇩1 c⇩2 } Γ'" |
while_type [intro]: "⟦ Γ ⊢⇩b e ∈ Low ; ⊢ Γ { c } Γ ⟧ ⟹ ⊢ Γ { While e c } Γ" |
anno_type [intro]: "⟦ Γ' = Γ ⊕ upd ; ⊢ Γ' { c } Γ'' ; c ≠ Stop ;
∀ x. to_total Γ x ⊑ to_total Γ' x ⟧ ⟹ ⊢ Γ { c@[upd] } Γ''" |
seq_type [intro]: "⟦ ⊢ Γ { c⇩1 } Γ' ; ⊢ Γ' { c⇩2 } Γ'' ⟧ ⟹ ⊢ Γ { c⇩1 ;; c⇩2 } Γ''" |
sub : "⟦ ⊢ Γ⇩1 { c } Γ⇩1' ; Γ⇩2 ⊑⇩c Γ⇩1 ; Γ⇩1' ⊑⇩c Γ⇩2' ⟧ ⟹ ⊢ Γ⇩2 { c } Γ⇩2'"
subsection ‹Typing Soundness›
text ‹The following predicate is needed to exclude some pathological
cases, that abuse the @{term Stop} command which is not allowed to
occur in actual programs.›
fun has_annotated_stop :: "('Var, 'AExp, 'BExp) Stmt ⇒ bool"
where
"has_annotated_stop (c@[_]) = (if c = Stop then True else has_annotated_stop c)" |
"has_annotated_stop (Seq p q) = (has_annotated_stop p ∨ has_annotated_stop q)" |
"has_annotated_stop (If _ p q) = (has_annotated_stop p ∨ has_annotated_stop q)" |
"has_annotated_stop (While _ p) = has_annotated_stop p" |
"has_annotated_stop _ = False"
inductive_cases has_type_elim: "⊢ Γ { c } Γ'"
inductive_cases has_type_stop_elim: "⊢ Γ { Stop } Γ'"
definition tyenv_eq :: "'Var TyEnv ⇒ ('Var, 'Val) Mem ⇒ ('Var, 'Val) Mem ⇒ bool"
(infix "=ı" 60)
where "mem⇩1 =⇘Γ⇙ mem⇩2 ≡ ∀ x. (to_total Γ x = Low ⟶ mem⇩1 x = mem⇩2 x)"
lemma tyenv_eq_sym: "mem⇩1 =⇘Γ⇙ mem⇩2 ⟹ mem⇩2 =⇘Γ⇙ mem⇩1"
by (auto simp: tyenv_eq_def)
inductive_set ℛ⇩1 :: "'Var TyEnv ⇒ (('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf rel"
and ℛ⇩1_abv :: "'Var TyEnv ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
bool" ("_ ℛ⇧1ı _" [120, 120] 1000)
for Γ' :: "'Var TyEnv"
where
"x ℛ⇧1⇘Γ⇙ y ≡ (x, y) ∈ ℛ⇩1 Γ" |
intro [intro!] : "⟦ ⊢ Γ { c } Γ' ; mds_consistent mds Γ ; mem⇩1 =⇘Γ⇙ mem⇩2 ⟧ ⟹ ⟨c, mds, mem⇩1⟩ ℛ⇧1⇘Γ'⇙ ⟨c, mds, mem⇩2⟩"
inductive_set ℛ⇩2 :: "'Var TyEnv ⇒ (('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf rel"
and ℛ⇩2_abv :: "'Var TyEnv ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
bool" ("_ ℛ⇧2ı _" [120, 120] 1000)
for Γ' :: "'Var TyEnv"
where
"x ℛ⇧2⇘Γ⇙ y ≡ (x, y) ∈ ℛ⇩2 Γ" |
intro [intro!] : "⟦ ⟨c⇩1, mds, mem⇩1⟩ ≈ ⟨c⇩2, mds, mem⇩2⟩ ;
∀ x ∈ dom Γ'. Γ' x = Some High ;
⊢ Γ⇩1 { c⇩1 } Γ' ; ⊢ Γ⇩2 { c⇩2 } Γ' ;
mds_consistent mds Γ⇩1 ; mds_consistent mds Γ⇩2 ⟧ ⟹
⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
inductive ℛ⇩3_aux :: "'Var TyEnv ⇒ (('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
bool" ("_ ℛ⇧3ı _" [120, 120] 1000)
and ℛ⇩3 :: "'Var TyEnv ⇒ (('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf rel"
where
"ℛ⇩3 Γ' ≡ {(lc⇩1, lc⇩2). ℛ⇩3_aux Γ' lc⇩1 lc⇩2}" |
intro⇩1 [intro] : "⟦ ⟨c⇩1, mds, mem⇩1⟩ ℛ⇧1⇘Γ⇙ ⟨c⇩2, mds, mem⇩2⟩; ⊢ Γ { c } Γ' ⟧ ⟹
⟨Seq c⇩1 c, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨Seq c⇩2 c, mds, mem⇩2⟩" |
intro⇩2 [intro] : "⟦ ⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ⇙ ⟨c⇩2, mds, mem⇩2⟩; ⊢ Γ { c } Γ' ⟧ ⟹
⟨Seq c⇩1 c, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨Seq c⇩2 c, mds, mem⇩2⟩" |
intro⇩3 [intro] : "⟦ ⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ⇙ ⟨c⇩2, mds, mem⇩2⟩; ⊢ Γ { c } Γ' ⟧ ⟹
⟨Seq c⇩1 c, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨Seq c⇩2 c, mds, mem⇩2⟩"
definition weak_bisim :: "(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf rel ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf rel ⇒ bool"
where "weak_bisim 𝒯⇩1 𝒯 ≡ ∀ c⇩1 c⇩2 mds mem⇩1 mem⇩2 c⇩1' mds' mem⇩1'.
((⟨c⇩1, mds, mem⇩1⟩, ⟨c⇩2, mds, mem⇩2⟩) ∈ 𝒯⇩1 ∧
(⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1', mds', mem⇩1'⟩)) ⟶
(∃ c⇩2' mem⇩2'. ⟨c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2', mds', mem⇩2'⟩ ∧
(⟨c⇩1', mds', mem⇩1'⟩, ⟨c⇩2', mds', mem⇩2'⟩) ∈ 𝒯)"
inductive_set ℛ :: "'Var TyEnv ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf rel"
and ℛ_abv :: "'Var TyEnv ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
bool" ("_ ℛ⇧uı _" [120, 120] 1000)
for Γ :: "'Var TyEnv"
where
"x ℛ⇧u⇘Γ⇙ y ≡ (x, y) ∈ ℛ Γ" |
intro⇩1: "lc ℛ⇧1⇘Γ⇙ lc' ⟹ (lc, lc') ∈ ℛ Γ" |
intro⇩2: "lc ℛ⇧2⇘Γ⇙ lc' ⟹ (lc, lc') ∈ ℛ Γ" |
intro⇩3: "lc ℛ⇧3⇘Γ⇙ lc' ⟹ (lc, lc') ∈ ℛ Γ"
inductive_cases ℛ⇩1_elim [elim]: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧1⇘Γ⇙ ⟨c⇩2, mds, mem⇩2⟩"
inductive_cases ℛ⇩2_elim [elim]: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ⇙ ⟨c⇩2, mds, mem⇩2⟩"
inductive_cases ℛ⇩3_elim [elim]: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ⇙ ⟨c⇩2, mds, mem⇩2⟩"
inductive_cases ℛ_elim [elim]: "(⟨c⇩1, mds, mem⇩1⟩, ⟨c⇩2, mds, mem⇩2⟩) ∈ ℛ Γ"
inductive_cases ℛ_elim': "(⟨c⇩1, mds, mem⇩1⟩, ⟨c⇩2, mds⇩2, mem⇩2⟩) ∈ ℛ Γ"
inductive_cases ℛ⇩1_elim' : "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧1⇘Γ⇙ ⟨c⇩2, mds⇩2, mem⇩2⟩"
inductive_cases ℛ⇩2_elim' : "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ⇙ ⟨c⇩2, mds⇩2, mem⇩2⟩"
inductive_cases ℛ⇩3_elim' : "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ⇙ ⟨c⇩2, mds⇩2, mem⇩2⟩"
lemma ℛ⇩1_sym: "sym (ℛ⇩1 Γ)"
unfolding sym_def
apply auto
by (metis (no_types) ℛ⇩1.intro ℛ⇩1_elim' tyenv_eq_sym)
lemma ℛ⇩2_sym: "sym (ℛ⇩2 Γ)"
unfolding sym_def
apply clarify
by (metis (no_types) ℛ⇩2.intro ℛ⇩2_elim' mm_equiv_sym)
lemma ℛ⇩3_sym: "sym (ℛ⇩3 Γ)"
unfolding sym_def
proof (clarify)
fix c⇩1 mds mem⇩1 c⇩2 mds' mem⇩2
assume asm: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ⇙ ⟨c⇩2, mds', mem⇩2⟩"
hence [simp]: "mds' = mds"
using ℛ⇩3_elim' by blast
from asm show "⟨c⇩2, mds', mem⇩2⟩ ℛ⇧3⇘Γ⇙ ⟨c⇩1, mds, mem⇩1⟩"
apply auto
apply (induct rule: ℛ⇩3_aux.induct)
apply (metis (lifting) ℛ⇩1_sym ℛ⇩3_aux.intro⇩1 symD)
apply (metis (lifting) ℛ⇩2_sym ℛ⇩3_aux.intro⇩2 symD)
by (metis (lifting) ℛ⇩3_aux.intro⇩3)
qed
lemma ℛ_mds [simp]: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧u⇘Γ⇙ ⟨c⇩2, mds', mem⇩2⟩ ⟹ mds = mds'"
apply (rule ℛ_elim')
apply (auto)
apply (metis ℛ⇩1_elim')
apply (metis ℛ⇩2_elim')
apply (insert ℛ⇩3_elim')
by blast
lemma ℛ_sym: "sym (ℛ Γ)"
unfolding sym_def
proof (clarify)
fix c⇩1 mds mem⇩1 c⇩2 mds⇩2 mem⇩2
assume asm: "(⟨c⇩1, mds, mem⇩1⟩, ⟨c⇩2, mds⇩2, mem⇩2⟩) ∈ ℛ Γ"
with ℛ_mds have [simp]: "mds⇩2 = mds"
by blast
from asm show "(⟨c⇩2, mds⇩2, mem⇩2⟩, ⟨c⇩1, mds, mem⇩1⟩) ∈ ℛ Γ"
using ℛ.intro⇩1 [of Γ] and ℛ.intro⇩2 [of Γ] and ℛ.intro⇩3 [of Γ]
using ℛ⇩1_sym [of Γ] and ℛ⇩2_sym [of Γ] and ℛ⇩3_sym [of Γ]
apply simp
apply (erule ℛ_elim)
by (auto simp: sym_def)
qed
lemma ℛ⇩1_closed_glob_consistent: "closed_glob_consistent (ℛ⇩1 Γ')"
unfolding closed_glob_consistent_def
proof (clarify)
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2 x Γ'
assume R1: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧1⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
hence [simp]: "c⇩2 = c⇩1" by blast
from R1 obtain Γ where Γ_props: "⊢ Γ { c⇩1 } Γ'" "mem⇩1 =⇘Γ⇙ mem⇩2" "mds_consistent mds Γ"
by blast
hence "⋀ v. ⟨c⇩1, mds, mem⇩1 (x := v)⟩ ℛ⇧1⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2 (x := v)⟩"
by (auto simp: tyenv_eq_def mds_consistent_def)
moreover
from Γ_props have "⋀ v⇩1 v⇩2. ⟦ dma x = High ; x ∉ mds AsmNoWrite ⟧ ⟹
⟨c⇩1, mds, mem⇩1(x := v⇩1)⟩ ℛ⇧1⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2(x := v⇩2)⟩"
apply (auto simp: mds_consistent_def tyenv_eq_def)
by (metis (lifting, full_types) Sec.simps(2) mem_Collect_eq to_total_def)
ultimately show
"(dma x = High ∧ x ∉ mds AsmNoWrite ⟶
(∀v⇩1 v⇩2. ⟨c⇩1, mds, mem⇩1(x := v⇩1)⟩ ℛ⇧1⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2(x := v⇩2)⟩))
∧
(dma x = Low ∧ x ∉ mds AsmNoWrite ⟶
(∀v. ⟨c⇩1, mds, mem⇩1(x := v)⟩ ℛ⇧1⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2(x := v)⟩))"
using intro⇩1
by auto
qed
lemma ℛ⇩2_closed_glob_consistent: "closed_glob_consistent (ℛ⇩2 Γ')"
unfolding closed_glob_consistent_def
proof (clarify)
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2 x Γ'
assume R2: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
then obtain Γ⇩1 Γ⇩2 where Γ_prop: "⊢ Γ⇩1 { c⇩1 } Γ'" "⊢ Γ⇩2 { c⇩2 } Γ'"
"mds_consistent mds Γ⇩1" "mds_consistent mds Γ⇩2"
by blast
from R2 have bisim: "⟨c⇩1, mds, mem⇩1⟩ ≈ ⟨c⇩2, mds, mem⇩2⟩"
by blast
then obtain ℛ' where ℛ'_prop: "(⟨c⇩1, mds, mem⇩1⟩, ⟨c⇩2, mds, mem⇩2⟩) ∈ ℛ' ∧ strong_low_bisim_mm ℛ'"
apply (rule mm_equiv_elim)
by (auto simp: strong_low_bisim_mm_def)
from ℛ'_prop have ℛ'_cons: "closed_glob_consistent ℛ'"
by (auto simp: strong_low_bisim_mm_def)
moreover
from Γ_prop and ℛ'_prop
have "⋀mem⇩1 mem⇩2. (⟨c⇩1, mds, mem⇩1⟩, ⟨c⇩2, mds, mem⇩2⟩) ∈ ℛ' ⟹ ⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
using ℛ⇩2.intro [where Γ' = Γ' and Γ⇩1 = Γ⇩1 and Γ⇩2 = Γ⇩2]
using mm_equiv_intro and R2
by blast
ultimately show
"(dma x = High ∧ x ∉ mds AsmNoWrite ⟶
(∀v⇩1 v⇩2. ⟨c⇩1, mds, mem⇩1(x := v⇩1)⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2(x := v⇩2)⟩))
∧
(dma x = Low ∧ x ∉ mds AsmNoWrite ⟶
(∀v. ⟨c⇩1, mds, mem⇩1(x := v)⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2(x := v)⟩))"
using ℛ'_prop
unfolding closed_glob_consistent_def
by simp
qed
fun closed_glob_helper :: "'Var TyEnv ⇒ (('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒ (('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒ bool"
where
"closed_glob_helper Γ' ⟨c⇩1, mds, mem⇩1⟩ ⟨c⇩2, mds⇩2, mem⇩2⟩ =
(∀ x. ((dma x = High ∧ x ∉ mds AsmNoWrite) ⟶
(∀ v⇩1 v⇩2. (⟨ c⇩1, mds, mem⇩1 (x := v⇩1) ⟩, ⟨ c⇩2, mds, mem⇩2 (x := v⇩2) ⟩) ∈ ℛ⇩3 Γ')) ∧
((dma x = Low ∧ x ∉ mds AsmNoWrite) ⟶
(∀ v. (⟨ c⇩1, mds, mem⇩1 (x := v) ⟩, ⟨ c⇩2, mds, mem⇩2 (x := v) ⟩) ∈ ℛ⇩3 Γ')))"
lemma ℛ⇩3_closed_glob_consistent:
assumes R3: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
shows "∀ x.
(dma x = High ∧ x ∉ mds AsmNoWrite ⟶
(∀v⇩1 v⇩2. (⟨c⇩1, mds, mem⇩1(x := v⇩1)⟩, ⟨c⇩2, mds, mem⇩2(x := v⇩2)⟩) ∈ ℛ⇩3 Γ')) ∧
(dma x = Low ∧ x ∉ mds AsmNoWrite ⟶ (∀v. (⟨c⇩1, mds, mem⇩1(x := v)⟩, ⟨c⇩2, mds, mem⇩2(x := v)⟩) ∈ ℛ⇩3 Γ'))"
proof -
from R3 have "closed_glob_helper Γ' ⟨c⇩1, mds, mem⇩1⟩ ⟨c⇩2, mds, mem⇩2⟩"
proof (induct rule: ℛ⇩3_aux.induct)
case (intro⇩1 Γ c⇩1 mds mem⇩1 c⇩2 mem⇩2 c Γ')
thus ?case
using ℛ⇩1_closed_glob_consistent [of Γ] and ℛ⇩3_aux.intro⇩1
unfolding closed_glob_consistent_def
by (simp, blast)
next
case (intro⇩2 Γ c⇩1 mds mem⇩1 c⇩2 mem⇩2 c Γ')
thus ?case
using ℛ⇩2_closed_glob_consistent [of Γ] and ℛ⇩3_aux.intro⇩2
unfolding closed_glob_consistent_def
by (simp, blast)
next
case intro⇩3
thus ?case
using ℛ⇩3_aux.intro⇩3
by (simp, blast)
qed
thus ?thesis by simp
qed
lemma ℛ_closed_glob_consistent: "closed_glob_consistent (ℛ Γ')"
unfolding closed_glob_consistent_def
proof (clarify, erule ℛ_elim, simp_all)
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2 x
assume R1: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧1⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
with ℛ⇩1_closed_glob_consistent show
"(dma x = High ∧ x ∉ mds AsmNoWrite ⟶
(∀v⇩1 v⇩2. (⟨c⇩1, mds, mem⇩1(x := v⇩1)⟩, ⟨c⇩2, mds, mem⇩2(x := v⇩2)⟩) ∈ ℛ Γ')) ∧
(dma x = Low ∧ x ∉ mds AsmNoWrite ⟶
(∀v. (⟨c⇩1, mds, mem⇩1(x := v)⟩, ⟨c⇩2, mds, mem⇩2(x := v)⟩) ∈ ℛ Γ'))"
unfolding closed_glob_consistent_def
using intro⇩1
apply clarify
by metis
next
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2 x
assume R2: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
with ℛ⇩2_closed_glob_consistent show
"(dma x = High ∧ x ∉ mds AsmNoWrite ⟶
(∀v⇩1 v⇩2. (⟨c⇩1, mds, mem⇩1(x := v⇩1)⟩, ⟨c⇩2, mds, mem⇩2(x := v⇩2)⟩) ∈ ℛ Γ'))
∧
(dma x = Low ∧ x ∉ mds AsmNoWrite ⟶
(∀v. (⟨c⇩1, mds, mem⇩1(x := v)⟩, ⟨c⇩2, mds, mem⇩2(x := v)⟩) ∈ ℛ Γ'))"
unfolding closed_glob_consistent_def
using intro⇩2
apply clarify
by metis
next
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2 x Γ'
assume R3: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
thus
"(dma x = High ∧ x ∉ mds AsmNoWrite ⟶
(∀v⇩1 v⇩2. (⟨c⇩1, mds, mem⇩1(x := v⇩1)⟩, ⟨c⇩2, mds, mem⇩2(x := v⇩2)⟩) ∈ ℛ Γ'))
∧
(dma x = Low ∧ x ∉ mds AsmNoWrite ⟶
(∀v. (⟨c⇩1, mds, mem⇩1(x := v)⟩, ⟨c⇩2, mds, mem⇩2(x := v)⟩) ∈ ℛ Γ'))"
using ℛ⇩3_closed_glob_consistent
apply auto
apply (metis ℛ.intro⇩3)
by (metis (lifting) ℛ.intro⇩3)
qed
lemma type_low_vars_low:
assumes typed: "Γ ⊢⇩a e ∈ Low"
assumes mds_cons: "mds_consistent mds Γ"
assumes x_in_vars: "x ∈ aexp_vars e"
shows "to_total Γ x = Low"
using assms
by (metis (full_types) Sec.exhaust imageI max_dom_def type_aexpr_elim)
lemma type_low_vars_low_b:
assumes typed : "Γ ⊢⇩b e ∈ Low"
assumes mds_cons: "mds_consistent mds Γ"
assumes x_in_vars: "x ∈ bexp_vars e"
shows "to_total Γ x = Low"
using assms
by (metis (full_types) Sec.exhaust imageI max_dom_def type_bexpr.simps)
lemma mode_update_add_anno:
"mds_consistent mds Γ ⟹ mds_consistent (update_modes upd mds) (Γ ⊕ upd)"
apply (induct arbitrary: Γ rule: add_anno_dom.induct)
by (auto simp: add_anno_def mds_consistent_def)
lemma context_le_trans: "⟦ Γ ⊑⇩c Γ' ; Γ' ⊑⇩c Γ'' ⟧ ⟹ Γ ⊑⇩c Γ''"
apply (auto simp: context_le_def)
by (metis domI order_trans option.sel)
lemma context_le_refl [simp]: "Γ ⊑⇩c Γ"
by (metis context_le_def order_refl)
lemma stop_cxt :
"⟦ ⊢ Γ { c } Γ' ; c = Stop ⟧ ⟹ Γ ⊑⇩c Γ'"
apply (induct rule: has_type.induct)
apply auto
by (metis context_le_trans)
lemma preservation:
assumes typed: "⊢ Γ { c } Γ'"
assumes eval: "⟨c, mds, mem⟩ ↝ ⟨c', mds', mem'⟩"
shows "∃ Γ''. (⊢ Γ'' { c' } Γ') ∧ (mds_consistent mds Γ ⟶ mds_consistent mds' Γ'')"
using typed eval
proof (induct arbitrary: c' mds rule: has_type.induct)
case (anno_type Γ'' Γ upd c⇩1 Γ')
hence "⟨c⇩1, update_modes upd mds, mem⟩ ↝ ⟨c', mds', mem'⟩"
by (metis upd_elim)
with anno_type(3) obtain Γ''' where
"⊢ Γ''' { c' } Γ' ∧ (mds_consistent (update_modes upd mds) Γ'' ⟶
mds_consistent mds' Γ''')"
by auto
moreover
have "mds_consistent mds Γ ⟶ mds_consistent (update_modes upd mds) Γ''"
using anno_type
apply auto
by (metis mode_update_add_anno)
ultimately show ?case
by blast
next
case stop_type
with stop_no_eval show ?case ..
next
case skip_type
hence "c' = Stop ∧ mds' = mds"
by (metis skip_elim)
thus ?case
by (metis stop_type)
next
case (assign⇩1 x Γ e t c' mds)
hence "c' = Stop ∧ mds' = mds"
by (metis assign_elim)
thus ?case
by (metis stop_type)
next
case (assign⇩2 x Γ e t c' mds)
hence "c' = Stop ∧ mds' = mds"
by (metis assign_elim)
thus ?case
apply (rule_tac x = "Γ (x ↦ t)" in exI)
apply (auto simp: mds_consistent_def)
apply (metis Sec.exhaust)
apply (metis (lifting, full_types) CollectD domI assign⇩2(1))
apply (metis (lifting, full_types) CollectD domI assign⇩2(1))
apply (metis (lifting) CollectE domI assign⇩2(1))
apply (metis (lifting, full_types) domD mem_Collect_eq)
by (metis (lifting, full_types) domD mem_Collect_eq)
next
case (if_type Γ e th el Γ' c' mds)
thus ?case
apply (rule_tac x = Γ in exI)
by force
next
case (while_type Γ e c c' mds)
hence [simp]: "mds' = mds ∧ c' = If e (c ;; While e c) Stop"
by (metis while_elim)
thus ?case
apply (rule_tac x = Γ in exI)
apply auto
by (metis Sec.simps(2) has_type.while_type if_type while_type(1) while_type(2) seq_type stop_type type_bexpr_elim)
next
case (seq_type Γ c⇩1 Γ⇩1 c⇩2 Γ⇩2 c' mds)
thus ?case
proof (cases "c⇩1 = Stop")
assume [simp]: "c⇩1 = Stop"
with seq_type have [simp]: "mds' = mds ∧ c' = c⇩2"
by (metis seq_stop_elim)
thus ?case
apply auto
by (metis (lifting) ‹c⇩1 = Stop› context_le_refl seq_type(1) seq_type(3) stop_cxt sub)
next
assume "c⇩1 ≠ Stop"
then obtain c⇩1' where "⟨c⇩1, mds, mem⟩ ↝ ⟨c⇩1', mds', mem'⟩ ∧ c' = (c⇩1' ;; c⇩2)"
by (metis seq_elim seq_type.prems)
then obtain Γ''' where "⊢ Γ''' {c⇩1'} Γ⇩1 ∧
(mds_consistent mds Γ ⟶ mds_consistent mds' Γ''')"
using seq_type(2)
by auto
moreover
from seq_type have "⊢ Γ⇩1 { c⇩2 } Γ⇩2" by auto
moreover
ultimately show ?case
apply (rule_tac x = Γ''' in exI)
by (metis (lifting) ‹⟨c⇩1, mds, mem⟩ ↝ ⟨c⇩1', mds', mem'⟩ ∧ c' = c⇩1' ;; c⇩2› has_type.seq_type)
qed
next
case (sub Γ⇩1 c Γ⇩1' Γ⇩2 Γ⇩2' c' mds)
then obtain Γ'' where "⊢ Γ'' { c' } Γ⇩1' ∧
(mds_consistent mds Γ⇩1 ⟶ mds_consistent mds' Γ'')"
by auto
thus ?case
apply (rule_tac x = Γ'' in exI)
apply (rule conjI)
apply (metis (lifting) has_type.sub sub(4) stop_cxt stop_type)
apply (simp add: mds_consistent_def)
by (metis context_le_def sub.hyps(3))
qed
lemma ℛ⇩1_mem_eq: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧1⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩ ⟹ mem⇩1 =⇘mds⇙⇧l mem⇩2"
apply (rule ℛ⇩1_elim)
apply (auto simp: tyenv_eq_def mds_consistent_def to_total_def)
by (metis (lifting) Sec.simps(1) low_mds_eq_def)
lemma ℛ⇩2_mem_eq: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩ ⟹ mem⇩1 =⇘mds⇙⇧l mem⇩2"
apply (rule ℛ⇩2_elim)
by (auto simp: mm_equiv_elim strong_low_bisim_mm_def)
fun bisim_helper :: "(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒
(('Var, 'AExp, 'BExp) Stmt, 'Var, 'Val) LocalConf ⇒ bool"
where
"bisim_helper ⟨c⇩1, mds, mem⇩1⟩ ⟨c⇩2, mds⇩2, mem⇩2⟩ = mem⇩1 =⇘mds⇙⇧l mem⇩2"
lemma ℛ⇩3_mem_eq: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩ ⟹ mem⇩1 =⇘mds⇙⇧l mem⇩2"
apply (subgoal_tac "bisim_helper ⟨c⇩1, mds, mem⇩1⟩ ⟨c⇩2, mds, mem⇩2⟩")
apply simp
apply (induct rule: ℛ⇩3_aux.induct)
by (auto simp: ℛ⇩1_mem_eq ℛ⇩2_mem_eq)
lemma ℛ⇩2_bisim_step:
assumes case2: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
assumes eval: "⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1', mds', mem⇩1'⟩"
shows "∃ c⇩2' mem⇩2'. ⟨c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2', mds', mem⇩2'⟩ ∧ ⟨c⇩1', mds', mem⇩1'⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2', mds', mem⇩2'⟩"
proof -
from case2 have aux: "⟨c⇩1, mds, mem⇩1⟩ ≈ ⟨c⇩2, mds, mem⇩2⟩" "∀ x ∈ dom Γ'. Γ' x = Some High"
by (rule ℛ⇩2_elim, auto)
with eval obtain c⇩2' mem⇩2' where c⇩2'_props:
"⟨c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2', mds', mem⇩2'⟩ ∧
⟨c⇩1', mds', mem⇩1'⟩ ≈ ⟨c⇩2', mds', mem⇩2'⟩"
using mm_equiv_strong_low_bisim strong_low_bisim_mm_def
by metis
from case2 obtain Γ⇩1 Γ⇩2 where "⊢ Γ⇩1 { c⇩1 } Γ'" "⊢ Γ⇩2 { c⇩2 } Γ'"
"mds_consistent mds Γ⇩1" "mds_consistent mds Γ⇩2"
by (metis ℛ⇩2_elim')
with preservation and c⇩2'_props obtain Γ⇩1' Γ⇩2' where
"⊢ Γ⇩1' {c⇩1'} Γ'" "mds_consistent mds' Γ⇩1'"
"⊢ Γ⇩2' {c⇩2'} Γ'" "mds_consistent mds' Γ⇩2'"
using eval
by metis
with c⇩2'_props show ?thesis
using ℛ⇩2.intro aux(2) c⇩2'_props
by blast
qed
lemma ℛ⇩2_weak_bisim:
"weak_bisim (ℛ⇩2 Γ') (ℛ Γ')"
unfolding weak_bisim_def
using ℛ.intro⇩2
apply auto
by (metis ℛ⇩2_bisim_step)
lemma ℛ⇩2_bisim: "strong_low_bisim_mm (ℛ⇩2 Γ')"
unfolding strong_low_bisim_mm_def
by (auto simp: ℛ⇩2_sym ℛ⇩2_closed_glob_consistent ℛ⇩2_mem_eq ℛ⇩2_bisim_step)
lemma annotated_no_stop: "⟦ ¬ has_annotated_stop (c@[upd]) ⟧ ⟹ ¬ has_annotated_stop c"
apply (cases c)
by auto
lemma typed_no_annotated_stop:
"⟦ ⊢ Γ { c } Γ' ⟧ ⟹ ¬ has_annotated_stop c"
by (induct rule: has_type.induct, auto)
lemma not_stop_eval:
"⟦ c ≠ Stop ; ¬ has_annotated_stop c ⟧ ⟹
∀ mds mem. ∃ c' mds' mem'. ⟨c, mds, mem⟩ ↝ ⟨c', mds', mem'⟩"
proof (induct)
case (Assign x exp)
thus ?case
by (metis cxt_to_stmt.simps(1) eval⇩w_simplep.assign eval⇩wp.unannotated eval⇩wp_eval⇩w_eq)
next
case Skip
thus ?case
by (metis cxt_to_stmt.simps(1) eval⇩w.unannotated eval⇩w_simple.skip)
next
case (ModeDecl c mu)
hence "¬ has_annotated_stop c ∧ c ≠ Stop"
by (metis has_annotated_stop.simps(1))
with ModeDecl show ?case
apply (clarify, rename_tac mds mem)
apply simp
apply (erule_tac x = "update_modes mu mds" in allE)
apply (erule_tac x = mem in allE)
apply (erule exE)+
by (metis cxt_to_stmt.simps(1) eval⇩w.decl)
next
case (Seq c⇩1 c⇩2)
thus ?case
proof (cases "c⇩1 = Stop")
assume "c⇩1 = Stop"
thus ?case
by (metis cxt_to_stmt.simps(1) eval⇩w_simplep.seq_stop eval⇩wp.unannotated eval⇩wp_eval⇩w_eq)
next
assume "c⇩1 ≠ Stop"
with Seq show ?case
by (metis eval⇩w.seq has_annotated_stop.simps(2))
qed
next
case (If bexp c⇩1 c⇩2)
thus ?case
apply (clarify, rename_tac mds mem)
apply (case_tac "ev⇩B mem bexp")
apply (metis cxt_to_stmt.simps(1) eval⇩w.unannotated eval⇩w_simple.if_true)
by (metis cxt_to_stmt.simps(1) eval⇩w.unannotated eval⇩w_simple.if_false)
next
case (While bexp c)
thus ?case
by (metis cxt_to_stmt.simps(1) eval⇩w_simplep.while eval⇩wp.unannotated eval⇩wp_eval⇩w_eq)
next
case Stop
thus ?case by blast
qed
lemma stop_bisim:
assumes bisim: "⟨Stop, mds, mem⇩1⟩ ≈ ⟨c, mds, mem⇩2⟩"
assumes typeable: "⊢ Γ { c } Γ'"
shows "c = Stop"
proof (rule ccontr)
let ?lc⇩1 = "⟨Stop, mds, mem⇩1⟩" and
?lc⇩2 = "⟨c, mds, mem⇩2⟩"
assume "c ≠ Stop"
from typeable have "¬ has_annotated_stop c"
by (metis typed_no_annotated_stop)
with ‹c ≠ Stop› obtain c' mds' mem⇩2' where "?lc⇩2 ↝ ⟨c', mds', mem⇩2'⟩"
using not_stop_eval
by blast
moreover
from bisim have "?lc⇩2 ≈ ?lc⇩1"
by (metis mm_equiv_sym)
ultimately obtain c⇩1' mds⇩1' mem⇩1'
where "⟨Stop, mds, mem⇩1⟩ ↝ ⟨c⇩1', mds⇩1', mem⇩1'⟩"
using mm_equiv_strong_low_bisim
unfolding strong_low_bisim_mm_def
by blast
thus False
by (metis (lifting) stop_no_eval)
qed
lemma ℛ_typed_step:
"⟦ ⊢ Γ { c⇩1 } Γ' ;
mds_consistent mds Γ ;
mem⇩1 =⇘Γ⇙ mem⇩2 ;
⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1', mds', mem⇩1'⟩ ⟧ ⟹
(∃ c⇩2' mem⇩2'. ⟨c⇩1, mds, mem⇩2⟩ ↝ ⟨c⇩2', mds', mem⇩2'⟩ ∧
⟨c⇩1', mds', mem⇩1'⟩ ℛ⇧u⇘Γ'⇙ ⟨c⇩2', mds', mem⇩2'⟩)"
proof (induct arbitrary: mds c⇩1' rule: has_type.induct)
case (seq_type Γ c⇩1 Γ'' c⇩2 Γ' mds)
show ?case
proof (cases "c⇩1 = Stop")
assume "c⇩1 = Stop"
hence [simp]: "c⇩1' = c⇩2" "mds' = mds" "mem⇩1' = mem⇩1"
using seq_type
by (auto simp: seq_stop_elim)
from seq_type ‹c⇩1 = Stop› have "Γ ⊑⇩c Γ''"
by (metis stop_cxt)
hence "⊢ Γ { c⇩2 } Γ'"
by (metis context_le_refl seq_type(3) sub)
have "⟨c⇩2, mds, mem⇩1⟩ ℛ⇧1⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
apply (rule ℛ⇩1.intro [of Γ])
by (auto simp: seq_type ‹⊢ Γ { c⇩2 } Γ'›)
thus ?case
using ℛ.intro⇩1
apply clarify
apply (rule_tac x = c⇩2 in exI)
apply (rule_tac x = mem⇩2 in exI)
apply (auto simp: ‹c⇩1 = Stop›)
by (metis cxt_to_stmt.simps(1) eval⇩w_simplep.seq_stop eval⇩wp.unannotated eval⇩wp_eval⇩w_eq)
next
assume "c⇩1 ≠ Stop"
with ‹⟨c⇩1 ;; c⇩2, mds, mem⇩1⟩ ↝ ⟨c⇩1', mds', mem⇩1'⟩› obtain c⇩1'' where c⇩1''_props:
"⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1'', mds', mem⇩1'⟩ ∧ c⇩1' = c⇩1'' ;; c⇩2"
by (metis seq_elim)
with seq_type(2) obtain c⇩2'' mem⇩2' where c⇩2''_props:
"⟨c⇩1, mds, mem⇩2⟩ ↝ ⟨c⇩2'', mds', mem⇩2'⟩ ∧ ⟨c⇩1'', mds', mem⇩1'⟩ ℛ⇧u⇘Γ''⇙ ⟨c⇩2'', mds', mem⇩2'⟩"
by (metis seq_type(5) seq_type(6))
hence "⟨c⇩1'' ;; c⇩2, mds', mem⇩1'⟩ ℛ⇧u⇘Γ'⇙ ⟨c⇩2'' ;; c⇩2, mds', mem⇩2'⟩"
apply (rule conjE)
apply (erule ℛ_elim, auto)
apply (metis ℛ.intro⇩3 ℛ⇩3_aux.intro⇩1 seq_type(3))
apply (metis ℛ.intro⇩3 ℛ⇩3_aux.intro⇩2 seq_type(3))
by (metis ℛ.intro⇩3 ℛ⇩3_aux.intro⇩3 seq_type(3))
moreover
from c⇩2''_props have "⟨c⇩1 ;; c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2'' ;; c⇩2, mds', mem⇩2'⟩"
by (metis eval⇩w.seq)
ultimately show ?case
by (metis c⇩1''_props)
qed
next
case (anno_type Γ' Γ upd c Γ'' mds)
have "mem⇩1 =⇘Γ'⇙ mem⇩2"
by (metis less_eq_Sec_def anno_type(5) anno_type(7) tyenv_eq_def)
have "mds_consistent (update_modes upd mds) Γ'"
by (metis (lifting) anno_type(1) anno_type(6) mode_update_add_anno)
then obtain c⇩2' mem⇩2' where "(⟨c, update_modes upd mds, mem⇩2⟩ ↝ ⟨c⇩2', mds', mem⇩2'⟩ ∧
⟨c⇩1', mds', mem⇩1'⟩ ℛ⇧u⇘Γ''⇙ ⟨c⇩2', mds', mem⇩2'⟩)"
using anno_type
apply auto
by (metis ‹mem⇩1 =⇘Γ'⇙ mem⇩2› anno_type(1) upd_elim)
thus ?case
apply (rule_tac x = c⇩2' in exI)
apply (rule_tac x = mem⇩2' in exI)
apply auto
by (metis cxt_to_stmt.simps(1) eval⇩w.decl)
next
case stop_type
with stop_no_eval show ?case by auto
next
case (skip_type Γ mds)
moreover
with skip_type have [simp]: "mds' = mds" "c⇩1' = Stop" "mem⇩1' = mem⇩1"
using skip_elim
by (metis, metis, metis)
with skip_type have "⟨Stop, mds, mem⇩1⟩ ℛ⇧1⇘Γ⇙ ⟨Stop, mds, mem⇩2⟩"
by auto
thus ?case
using ℛ.intro⇩1 and unannotated [where c = Skip and E = "[]"]
apply auto
by (metis eval⇩w_simple.skip)
next
case (assign⇩1 x Γ e t mds)
hence [simp]: "c⇩1' = Stop" "mds' = mds" "mem⇩1' = mem⇩1 (x := ev⇩A mem⇩1 e)"
using assign_elim
by (auto, metis)
have "mem⇩1 (x := ev⇩A mem⇩1 e) =⇘Γ⇙ mem⇩2 (x := ev⇩A mem⇩2 e)"
proof (cases "to_total Γ x")
assume "to_total Γ x = High"
thus ?thesis
using assign⇩1 tyenv_eq_def
by auto
next
assume "to_total Γ x = Low"
with assign⇩1 have [simp]: "t = Low"
by (metis less_eq_Sec_def to_total_def)
hence "dma x = Low"
using assign⇩1 ‹to_total Γ x = Low›
by (metis to_total_def)
with assign⇩1 have "∀ v ∈ aexp_vars e. to_total Γ v = Low"
using type_low_vars_low
by auto
thus ?thesis
using eval_vars_det⇩A
apply (auto simp: tyenv_eq_def)
apply (metis (no_types) assign⇩1(5) tyenv_eq_def)
by (metis assign⇩1(5) tyenv_eq_def)
qed
hence "⟨x ← e, mds, mem⇩2⟩ ↝ ⟨Stop, mds', mem⇩2 (x := ev⇩A mem⇩2 e)⟩"
"⟨Stop, mds', mem⇩1 (x := ev⇩A mem⇩1 e)⟩ ℛ⇧u⇘Γ⇙ ⟨Stop, mds', mem⇩2 (x := ev⇩A mem⇩2 e)⟩"
apply auto
apply (metis cxt_to_stmt.simps(1) eval⇩w.unannotated eval⇩w_simple.assign)
by (rule ℛ.intro⇩1, auto simp: assign⇩1)
thus ?case
using ‹c⇩1' = Stop› and ‹mem⇩1' = mem⇩1 (x := ev⇩A mem⇩1 e)›
by blast
next
case (assign⇩2 x Γ e t mds)
hence [simp]: "c⇩1' = Stop" "mds' = mds" "mem⇩1' = mem⇩1 (x := ev⇩A mem⇩1 e)"
using assign_elim assign⇩2
by (auto, metis)
let ?Γ' = "Γ (x ↦ t)"
have "⟨x ← e, mds, mem⇩2⟩ ↝ ⟨Stop, mds, mem⇩2 (x := ev⇩A mem⇩2 e)⟩"
using assign⇩2
by (metis cxt_to_stmt.simps(1) eval⇩w_simplep.assign eval⇩wp.unannotated eval⇩wp_eval⇩w_eq)
moreover
have "⟨Stop, mds, mem⇩1 (x := ev⇩A mem⇩1 e)⟩ ℛ⇧1⇘?Γ'⇙ ⟨Stop, mds, mem⇩2 (x := ev⇩A mem⇩2 e)⟩"
proof (auto)
from assign⇩2 show "mds_consistent mds ?Γ'"
apply (simp add: mds_consistent_def)
by (metis (lifting) insert_absorb assign⇩2(1))
next
show "mem⇩1 (x := ev⇩A mem⇩1 e) =⇘?Γ'⇙ mem⇩2 (x := ev⇩A mem⇩2 e)"
unfolding tyenv_eq_def
proof (auto)
assume "to_total (Γ(x ↦ t)) x = Low"
with ‹Γ ⊢⇩a e ∈ t› have "⋀ x. x ∈ aexp_vars e ⟹ to_total Γ x = Low"
by (metis assign⇩2.prems(1) domI fun_upd_same option.sel to_total_def type_low_vars_low)
thus "ev⇩A mem⇩1 e = ev⇩A mem⇩2 e"
by (metis assign⇩2.prems(2) eval_vars_det⇩A tyenv_eq_def)
next
fix y
assume "y ≠ x" and "to_total (Γ (x ↦ t)) y = Low"
thus "mem⇩1 y = mem⇩2 y"
by (metis (full_types) assign⇩2.prems(2) domD domI fun_upd_other to_total_def tyenv_eq_def)
qed
qed
ultimately have "⟨x ← e, mds, mem⇩2⟩ ↝ ⟨Stop, mds', mem⇩2 (x := ev⇩A mem⇩2 e)⟩"
"⟨Stop, mds', mem⇩1 (x := ev⇩A mem⇩1 e)⟩ ℛ⇧u⇘Γ(x ↦ t)⇙ ⟨Stop, mds', mem⇩2 (x := ev⇩A mem⇩2 e)⟩"
using ℛ.intro⇩1
by auto
thus ?case
using ‹mds' = mds› ‹c⇩1' = Stop› ‹mem⇩1' = mem⇩1(x := ev⇩A mem⇩1 e)›
by blast
next
case (if_type Γ e th el Γ')
have "(⟨c⇩1', mds, mem⇩1⟩, ⟨c⇩1', mds, mem⇩2⟩) ∈ ℛ Γ'"
apply (rule intro⇩1)
apply clarify
apply (rule ℛ⇩1.intro [where Γ = Γ and Γ' = Γ'])
apply (auto simp: if_type)
by (metis (lifting) if_elim if_type(2) if_type(4) if_type(8))
have eq_condition: "ev⇩B mem⇩1 e = ev⇩B mem⇩2 e ⟹ ?case"
proof -
assume "ev⇩B mem⇩1 e = ev⇩B mem⇩2 e"
with if_type(8) have "(⟨If e th el, mds, mem⇩2⟩ ↝ ⟨c⇩1', mds, mem⇩2⟩)"
apply (cases "ev⇩B mem⇩1 e")
apply (subgoal_tac "c⇩1' = th")
apply clarify
apply (metis cxt_to_stmt.simps(1) eval⇩w_simplep.if_true eval⇩wp.unannotated eval⇩wp_eval⇩w_eq if_type(8))
apply (metis if_elim if_type(8))
apply (subgoal_tac "c⇩1' = el")
apply (metis (opaque_lifting, mono_tags) cxt_to_stmt.simps(1) eval⇩w.unannotated eval⇩w_simple.if_false if_type(8))
by (metis if_elim if_type(8))
thus ?thesis
by (metis ‹⟨c⇩1', mds, mem⇩1⟩ ℛ⇧u⇘Γ'⇙ ⟨c⇩1', mds, mem⇩2⟩› if_elim if_type(8))
qed
have "mem⇩1 =⇘mds⇙⇧l mem⇩2"
apply (auto simp: low_mds_eq_def mds_consistent_def)
apply (subgoal_tac "x ∉ dom Γ")
apply (metis if_type(7) to_total_def tyenv_eq_def)
by (metis (lifting, mono_tags) CollectD Sec.simps(2) if_type(6) mds_consistent_def)
obtain t where "Γ ⊢⇩b e ∈ t"
by (metis type_bexpr.intros)
from if_type show ?case
proof (cases t)
assume "t = High"
with if_type show ?thesis
proof (cases "ev⇩B mem⇩1 e = ev⇩B mem⇩2 e")
assume "ev⇩B mem⇩1 e = ev⇩B mem⇩2 e"
with eq_condition show ?thesis by auto
next
assume neq: "ev⇩B mem⇩1 e ≠ ev⇩B mem⇩2 e"
from if_type ‹t = High› have "th ∼⇘mds⇙ el"
by (metis ‹Γ ⊢⇩b e ∈ t›)
from neq show ?thesis
proof (cases "ev⇩B mem⇩1 e")
assume "ev⇩B mem⇩1 e"
hence "c⇩1' = th"
by (metis (lifting) if_elim if_type(8))
hence "⟨If e th el, mds, mem⇩2⟩ ↝ ⟨el, mds, mem⇩2⟩"
by (metis ‹ev⇩B mem⇩1 e› cxt_to_stmt.simps(1) eval⇩w.unannotated eval⇩w_simple.if_false if_type(8) neq)
moreover
with ‹mem⇩1 =⇘mds⇙⇧l mem⇩2› have "⟨th, mds, mem⇩1⟩ ≈ ⟨el, mds, mem⇩2⟩"
by (metis low_indistinguishable_def ‹th ∼⇘mds⇙ el›)
have "∀ x ∈ dom Γ'. Γ' x = Some High"
using if_type ‹t = High›
by (metis ‹Γ ⊢⇩b e ∈ t›)
have "⟨th, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨el, mds, mem⇩2⟩"
by (metis (lifting) ℛ⇩2.intro ‹∀x∈dom Γ'. Γ' x = Some High› ‹⟨th, mds, mem⇩1⟩ ≈ ⟨el, mds, mem⇩2⟩› if_type(2) if_type(4) if_type(6))
ultimately show ?thesis
using ℛ.intro⇩2
apply clarify
by (metis ‹c⇩1' = th› if_elim if_type(8))
next
assume "¬ ev⇩B mem⇩1 e"
hence [simp]: "c⇩1' = el"
by (metis (lifting) if_type(8) if_elim)
hence "⟨If e th el, mds, mem⇩2⟩ ↝ ⟨th, mds, mem⇩2⟩"
by (metis (opaque_lifting, mono_tags) ‹¬ ev⇩B mem⇩1 e› cxt_to_stmt.simps(1) eval⇩w.unannotated eval⇩w_simple.if_true if_type(8) neq)
moreover
from ‹th ∼⇘mds⇙ el› have "el ∼⇘mds⇙ th"
by (metis low_indistinguishable_sym)
with ‹mem⇩1 =⇘mds⇙⇧l mem⇩2› have "⟨el, mds, mem⇩1⟩ ≈ ⟨th, mds, mem⇩2⟩"
by (metis low_indistinguishable_def)
have "∀ x ∈ dom Γ'. Γ' x = Some High"
using if_type ‹t = High›
by (metis ‹Γ ⊢⇩b e ∈ t›)
have "⟨el, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨th, mds, mem⇩2⟩"
apply (rule ℛ⇩2.intro [where Γ⇩1 = Γ and Γ⇩2 = Γ])
by (auto simp: if_type ‹⟨el, mds, mem⇩1⟩ ≈ ⟨th, mds, mem⇩2⟩› ‹∀ x ∈ dom Γ'. Γ' x = Some High›)
ultimately show ?thesis
using ℛ.intro⇩2
apply clarify
by (metis ‹c⇩1' = el› if_elim if_type(8))
qed
qed
next
assume "t = Low"
with if_type have "ev⇩B mem⇩1 e = ev⇩B mem⇩2 e"
using eval_vars_det⇩B
apply (simp add: tyenv_eq_def ‹Γ ⊢⇩b e ∈ t› type_low_vars_low_b)
by (metis (lifting) ‹Γ ⊢⇩b e ∈ t› type_low_vars_low_b)
with eq_condition show ?thesis by auto
qed
next
case (while_type Γ e c)
hence [simp]: "c⇩1' = (If e (c ;; While e c) Stop)" and
[simp]: "mds' = mds" and
[simp]: "mem⇩1' = mem⇩1"
by (auto simp: while_elim)
with while_type have "⟨While e c, mds, mem⇩2⟩ ↝ ⟨c⇩1', mds, mem⇩2⟩"
by (metis cxt_to_stmt.simps(1) eval⇩w_simplep.while eval⇩wp.unannotated eval⇩wp_eval⇩w_eq)
moreover
have "⟨c⇩1', mds, mem⇩1⟩ ℛ⇧1⇘Γ⇙ ⟨c⇩1', mds, mem⇩2⟩"
apply (rule ℛ⇩1.intro [where Γ = Γ])
apply (auto simp: while_type)
apply (rule if_type)
apply (metis (lifting) Sec.simps(1) while_type(1) type_bexpr_elim)
apply (rule seq_type [where Γ' = Γ])
by (auto simp: while_type)
ultimately show ?case
using ℛ.intro⇩1 [of Γ]
by (auto, blast)
next
case (sub Γ⇩1 c Γ⇩1' Γ Γ' mds c⇩1')
hence "dom Γ⇩1 ⊆ dom Γ" "dom Γ' ⊆ dom Γ⇩1'"
apply (metis (lifting) context_le_def equalityE)
by (metis context_le_def sub(4) order_refl)
hence "mds_consistent mds Γ⇩1"
using sub
apply (auto simp: mds_consistent_def)
apply (metis (lifting, full_types) context_le_def domD mem_Collect_eq)
by (metis (lifting, full_types) context_le_def domD mem_Collect_eq)
moreover have "mem⇩1 =⇘Γ⇩1⇙ mem⇩2"
unfolding tyenv_eq_def
by (metis (lifting, no_types) context_le_def less_eq_Sec_def sub.hyps(3) sub.prems(2) to_total_def tyenv_eq_def)
ultimately obtain c⇩2' mem⇩2' where c⇩2'_props: "⟨c, mds, mem⇩2⟩ ↝ ⟨c⇩2', mds', mem⇩2'⟩"
"⟨c⇩1', mds', mem⇩1'⟩ ℛ⇧u⇘Γ⇩1'⇙ ⟨c⇩2', mds', mem⇩2'⟩"
using sub
by blast
moreover
have "⋀ c⇩1 mds mem⇩1 c⇩2 mem⇩2. ⟨c⇩1, mds, mem⇩1⟩ ℛ⇧u⇘Γ⇩1'⇙ ⟨c⇩2, mds, mem⇩2⟩ ⟹
⟨c⇩1, mds, mem⇩1⟩ ℛ⇧u⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
proof -
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2
let ?lc⇩1 = "⟨c⇩1, mds, mem⇩1⟩" and ?lc⇩2 = "⟨c⇩2, mds, mem⇩2⟩"
assume asm: "?lc⇩1 ℛ⇧u⇘Γ⇩1'⇙ ?lc⇩2"
moreover
have "?lc⇩1 ℛ⇧1⇘Γ⇩1'⇙ ?lc⇩2 ⟹ ?lc⇩1 ℛ⇧1⇘Γ'⇙ ?lc⇩2"
apply (erule ℛ⇩1_elim)
apply auto
by (metis (lifting) has_type.sub sub(4) stop_cxt stop_type)
moreover
have "?lc⇩1 ℛ⇧2⇘Γ⇩1'⇙ ?lc⇩2 ⟹ ?lc⇩1 ℛ⇧2⇘Γ'⇙ ?lc⇩2"
proof -
assume r2: "?lc⇩1 ℛ⇧2⇘Γ⇩1'⇙ ?lc⇩2"
then obtain Λ⇩1 Λ⇩2 where "⊢ Λ⇩1 { c⇩1 } Γ⇩1'" "⊢ Λ⇩2 { c⇩2 } Γ⇩1'" "mds_consistent mds Λ⇩1"
"mds_consistent mds Λ⇩2"
by (metis ℛ⇩2_elim)
hence "⊢ Λ⇩1 { c⇩1 } Γ'"
using sub(4)
by (metis context_le_refl has_type.sub sub(4))
moreover
have "⊢ Λ⇩2 { c⇩2 } Γ'"
by (metis ‹⊢ Λ⇩2 {c⇩2} Γ⇩1'› context_le_refl has_type.sub sub(4))
moreover
from r2 have "∀ x ∈ dom Γ⇩1'. Γ⇩1' x = Some High"
apply (rule ℛ⇩2_elim)
by auto
hence "∀ x ∈ dom Γ'. Γ' x = Some High"
by (metis Sec.simps(2) ‹dom Γ' ⊆ dom Γ⇩1'› context_le_def domD less_eq_Sec_def sub(4) rev_subsetD option.sel)
ultimately show ?thesis
by (metis (no_types) ℛ⇩2.intro ℛ⇩2_elim' ‹mds_consistent mds Λ⇩1› ‹mds_consistent mds Λ⇩2› r2)
qed
moreover
have "?lc⇩1 ℛ⇧3⇘Γ⇩1'⇙ ?lc⇩2 ⟹ ?lc⇩1 ℛ⇧3⇘Γ'⇙ ?lc⇩2"
apply (erule ℛ⇩3_elim)
proof -
fix Γ c⇩1'' c⇩2''' c
assume [simp]: "c⇩1 = c⇩1'' ;; c" "c⇩2 = c⇩2''' ;; c"
assume case1: "⊢ Γ {c} Γ⇩1'" "⟨c⇩1'', mds, mem⇩1⟩ ℛ⇧1⇘Γ⇙ ⟨c⇩2''', mds, mem⇩2⟩"
hence "⊢ Γ {c} Γ'"
using context_le_refl has_type.sub sub.hyps(4)
by blast
with case1 show "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
using ℛ⇩3_aux.intro⇩1 by simp
next
fix Γ c⇩1'' c⇩2''' c''
assume [simp]: "c⇩1 = c⇩1'' ;; c''" "c⇩2 = c⇩2''' ;; c''"
assume "⟨c⇩1'', mds, mem⇩1⟩ ℛ⇧2⇘Γ⇙ ⟨c⇩2''', mds, mem⇩2⟩" "⊢ Γ {c''} Γ⇩1'"
thus "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
using ℛ⇩3_aux.intro⇩2
apply simp
apply (rule ℛ⇩3_aux.intro⇩2 [where Γ = Γ])
apply simp
by (metis context_le_refl has_type.sub sub.hyps(4))
next
fix Γ c⇩1'' c⇩2''' c''
assume [simp]: "c⇩1 = c⇩1'' ;; c''" "c⇩2 = c⇩2''' ;; c''"
assume "⟨c⇩1'', mds, mem⇩1⟩ ℛ⇧3⇘Γ⇙ ⟨c⇩2''', mds, mem⇩2⟩" "⊢ Γ {c''} Γ⇩1'"
thus "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
using ℛ⇩3_aux.intro⇩3
apply auto
by (metis (opaque_lifting, no_types) context_le_refl has_type.sub sub.hyps(4))
qed
ultimately show "?thesis c⇩1 mds mem⇩1 c⇩2 mem⇩2"
by (auto simp: ℛ.intros)
qed
with c⇩2'_props show ?case
by blast
qed
lemma ℛ⇩1_weak_bisim:
"weak_bisim (ℛ⇩1 Γ') (ℛ Γ')"
unfolding weak_bisim_def
using ℛ⇩1_elim ℛ_typed_step
by auto
lemma ℛ_to_ℛ⇩3: "⟦ ⟨c⇩1, mds, mem⇩1⟩ ℛ⇧u⇘Γ⇙ ⟨c⇩2, mds, mem⇩2⟩ ; ⊢ Γ { c } Γ' ⟧ ⟹
⟨c⇩1 ;; c, mds, mem⇩1⟩ ℛ⇧3⇘Γ'⇙ ⟨c⇩2 ;; c, mds, mem⇩2⟩"
apply (erule ℛ_elim)
by auto
lemma ℛ⇩2_implies_typeable: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧2⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩ ⟹ ∃ Γ⇩1. ⊢ Γ⇩1 { c⇩2 } Γ'"
apply (erule ℛ⇩2_elim)
by auto
lemma ℛ⇩3_weak_bisim:
"weak_bisim (ℛ⇩3 Γ') (ℛ Γ')"
proof -
{
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2 c⇩1' mds' mem⇩1'
assume case3: "(⟨c⇩1, mds, mem⇩1⟩, ⟨c⇩2, mds, mem⇩2⟩) ∈ ℛ⇩3 Γ'"
assume eval: "⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1', mds', mem⇩1'⟩"
have "∃ c⇩2' mem⇩2'. ⟨c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2', mds', mem⇩2'⟩ ∧ ⟨c⇩1', mds', mem⇩1'⟩ ℛ⇧u⇘Γ'⇙ ⟨c⇩2', mds', mem⇩2'⟩"
using case3 eval
apply simp
proof (induct arbitrary: c⇩1' rule: ℛ⇩3_aux.induct)
case (intro⇩1 Γ c⇩1 mds mem⇩1 c⇩2 mem⇩2 c Γ')
hence [simp]: "c⇩2 = c⇩1"
by (metis (lifting) ℛ⇩1_elim)
thus ?case
proof (cases "c⇩1 = Stop")
assume [simp]: "c⇩1 = Stop"
from intro⇩1(1) show ?thesis
apply (rule ℛ⇩1_elim)
apply simp
apply (rule_tac x = c in exI)
apply (rule_tac x = mem⇩2 in exI)
apply (rule conjI)
apply (metis ‹c⇩1 = Stop› cxt_to_stmt.simps(1) eval⇩w_simplep.seq_stop eval⇩wp.unannotated eval⇩wp_eval⇩w_eq intro⇩1.prems seq_stop_elim)
apply (rule ℛ.intro⇩1, clarify)
by (metis (no_types) ℛ⇩1.intro ‹c⇩1 = Stop› context_le_refl intro⇩1.prems intro⇩1(2) seq_stop_elim stop_cxt sub)
next
assume "c⇩1 ≠ Stop"
from intro⇩1
obtain c⇩1'' where "⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1'', mds', mem⇩1'⟩ ∧ c⇩1' = (c⇩1'' ;; c)"
by (metis ‹c⇩1 ≠ Stop› intro⇩1.prems seq_elim)
with intro⇩1
obtain c⇩2'' mem⇩2' where "⟨c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2'', mds', mem⇩2'⟩" "⟨c⇩1'', mds', mem⇩1'⟩ ℛ⇧u⇘Γ⇙ ⟨c⇩2'', mds', mem⇩2'⟩"
using ℛ⇩1_weak_bisim and weak_bisim_def
by blast
thus ?thesis
using intro⇩1(2) ℛ_to_ℛ⇩3
apply (rule_tac x = "c⇩2'' ;; c" in exI)
apply (rule_tac x = mem⇩2' in exI)
apply (rule conjI)
apply (metis eval⇩w.seq)
apply auto
apply (rule ℛ.intro⇩3)
by (metis (opaque_lifting, no_types) ‹⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1'', mds', mem⇩1'⟩ ∧ c⇩1' = c⇩1'' ;; c›)
qed
next
case (intro⇩2 Γ c⇩1 mds mem⇩1 c⇩2 mem⇩2 cn Γ')
thus ?case
proof (cases "c⇩1 = Stop")
assume [simp]: "c⇩1 = Stop"
hence [simp]: "c⇩1' = cn" "mds' = mds" "mem⇩1' = mem⇩1"
using eval intro⇩2 seq_stop_elim
by auto
from intro⇩2 have bisim: "⟨c⇩1, mds, mem⇩1⟩ ≈ ⟨c⇩2, mds, mem⇩2⟩"
by (metis (lifting) ℛ⇩2_elim')
from intro⇩2 obtain Γ⇩1 where "⊢ Γ⇩1 { c⇩2 } Γ"
by (metis ℛ⇩2_implies_typeable)
with bisim have [simp]: "c⇩2 = Stop"
apply auto
apply (rule stop_bisim [of mds mem⇩1 c⇩2 mem⇩2 Γ⇩1 Γ])
by simp_all
have "⟨c⇩2 ;; cn, mds, mem⇩2⟩ ↝ ⟨cn, mds', mem⇩2⟩"
apply (auto simp: intro⇩2)
by (metis cxt_to_stmt.simps(1) eval⇩w_simplep.seq_stop eval⇩wp.unannotated eval⇩wp_eval⇩w_eq)
moreover
from intro⇩2(1) have "mds_consistent mds Γ"
apply auto
apply (erule ℛ⇩2_elim)
apply (simp add: mds_consistent_def)
by (metis context_le_def stop_cxt)
moreover
from bisim have "mem⇩1 =⇘mds⇙⇧l mem⇩2"
by (auto simp: mm_equiv.simps strong_low_bisim_mm_def)
have "∀ x ∈ dom Γ. Γ x = Some High"
using intro⇩2(1)
by (metis ℛ⇩2_elim')
hence "mem⇩1 =⇘Γ⇙ mem⇩2"
using ‹mds_consistent mds Γ› ‹mem⇩1 =⇘mds⇙⇧l mem⇩2›
apply (auto simp: tyenv_eq_def low_mds_eq_def mds_consistent_def)
by (metis Sec.simps(1) ‹∀x∈dom Γ. Γ x = Some High› ‹mds' = mds› domI option.sel to_total_def)
ultimately have "⟨cn, mds, mem⇩1⟩ ℛ⇧1⇘Γ'⇙ ⟨cn, mds, mem⇩2⟩"
by (metis (lifting) ℛ⇩1.intro intro⇩2(2))
thus "?thesis"
using ℛ.intro⇩1
apply auto
by (metis ‹⟨c⇩2 ;; cn, mds, mem⇩2⟩ ↝ ⟨cn, mds', mem⇩2⟩› ‹c⇩2 = Stop› ‹mds' = mds›)
next
assume "c⇩1 ≠ Stop"
then obtain c⇩1''' where "c⇩1' = c⇩1''' ;; cn" "⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1''', mds', mem⇩1'⟩"
by (metis (no_types) intro⇩2.prems seq_elim)
then obtain c⇩2''' mem⇩2' where c⇩2'''_props:
"⟨c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2''', mds', mem⇩2'⟩ ∧
⟨c⇩1''', mds', mem⇩1'⟩ ℛ⇧2⇘Γ⇙ ⟨c⇩2''', mds', mem⇩2'⟩"
using ℛ⇩2_bisim_step intro⇩2
by blast
let ?c⇩2' = "c⇩2''' ;; cn"
from c⇩2'''_props have "⟨c⇩2 ;; cn, mds, mem⇩2⟩ ↝ ⟨?c⇩2', mds', mem⇩2'⟩"
by (metis (lifting) intro⇩2 eval⇩w.seq)
moreover
have "(⟨c⇩1''' ;; cn, mds', mem⇩1'⟩, ⟨?c⇩2', mds', mem⇩2'⟩) ∈ ℛ⇩3 Γ'"
by (metis (lifting) ℛ⇩3_aux.intro⇩2 c⇩2'''_props intro⇩2(2) mem_Collect_eq case_prodI)
ultimately show ?thesis
using ℛ.intro⇩3
by (metis (lifting) ℛ⇩3_aux.intro⇩2 ‹c⇩1' = c⇩1''' ;; cn› c⇩2'''_props intro⇩2(2))
qed
next
case (intro⇩3 Γ c⇩1 mds mem⇩1 c⇩2 mem⇩2 c Γ')
thus ?case
apply (cases "c⇩1 = Stop")
apply blast
proof -
assume "c⇩1 ≠ Stop"
then obtain c⇩1'' where "⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1'', mds', mem⇩1'⟩" "c⇩1' = (c⇩1'' ;; c)"
by (metis intro⇩3.prems seq_elim)
then obtain c⇩2'' mem⇩2' where "⟨c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2'', mds', mem⇩2'⟩" "⟨c⇩1'', mds', mem⇩1'⟩ ℛ⇧u⇘Γ⇙ ⟨c⇩2'', mds', mem⇩2'⟩"
using intro⇩3(2) mem_Collect_eq case_prodI
by metis
thus ?thesis
apply (rule_tac x = "c⇩2'' ;; c" in exI)
apply (rule_tac x = mem⇩2' in exI)
apply (rule conjI)
apply (metis eval⇩w.seq)
apply (erule ℛ_elim)
apply simp_all
apply (metis ℛ.intro⇩3 ℛ_to_ℛ⇩3 ‹⟨c⇩1'', mds', mem⇩1'⟩ ℛ⇧u⇘Γ⇙ ⟨c⇩2'', mds', mem⇩2'⟩› ‹c⇩1' = c⇩1'' ;; c› intro⇩3(3))
apply (metis (lifting) ℛ.intro⇩3 ℛ_to_ℛ⇩3 ‹⟨c⇩1'', mds', mem⇩1'⟩ ℛ⇧u⇘Γ⇙ ⟨c⇩2'', mds', mem⇩2'⟩› ‹c⇩1' = c⇩1'' ;; c› intro⇩3(3))
by (metis (lifting) ℛ.intro⇩3 ℛ⇩3_aux.intro⇩3 ‹c⇩1' = c⇩1'' ;; c› intro⇩3(3))
qed
qed
}
thus ?thesis
unfolding weak_bisim_def
by auto
qed
lemma ℛ_bisim: "strong_low_bisim_mm (ℛ Γ')"
unfolding strong_low_bisim_mm_def
proof (auto)
from ℛ_sym show "sym (ℛ Γ')" .
next
from ℛ_closed_glob_consistent show "closed_glob_consistent (ℛ Γ')" .
next
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2
assume "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧u⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
thus "mem⇩1 =⇘mds⇙⇧l mem⇩2"
apply (rule ℛ_elim)
by (auto simp: ℛ⇩1_mem_eq ℛ⇩2_mem_eq ℛ⇩3_mem_eq)
next
fix c⇩1 mds mem⇩1 c⇩2 mem⇩2 c⇩1' mds' mem⇩1'
assume eval: "⟨c⇩1, mds, mem⇩1⟩ ↝ ⟨c⇩1', mds', mem⇩1'⟩"
assume R: "⟨c⇩1, mds, mem⇩1⟩ ℛ⇧u⇘Γ'⇙ ⟨c⇩2, mds, mem⇩2⟩"
from R show "∃ c⇩2' mem⇩2'. ⟨c⇩2, mds, mem⇩2⟩ ↝ ⟨c⇩2', mds', mem⇩2'⟩ ∧
⟨c⇩1', mds', mem⇩1'⟩ ℛ⇧u⇘Γ'⇙ ⟨c⇩2', mds', mem⇩2'⟩"
apply (rule ℛ_elim)
apply (insert ℛ⇩1_weak_bisim ℛ⇩2_weak_bisim ℛ⇩3_weak_bisim eval weak_bisim_def)
apply (clarify, blast)+
by (metis mem_Collect_eq case_prodI)
qed
lemma Typed_in_ℛ:
assumes typeable: "⊢ Γ { c } Γ'"
assumes mds_cons: "mds_consistent mds Γ"
assumes mem_eq: "∀ x. to_total Γ x = Low ⟶ mem⇩1 x = mem⇩2 x"
shows "⟨c, mds, mem⇩1⟩ ℛ⇧u⇘Γ'⇙ ⟨c, mds, mem⇩2⟩"
apply (rule ℛ.intro⇩1 [of Γ'])
apply clarify
apply (rule ℛ⇩1.intro [of Γ])
by (auto simp: assms tyenv_eq_def)
theorem type_soundness:
assumes well_typed: "⊢ Γ { c } Γ'"
assumes mds_cons: "mds_consistent mds Γ"
assumes mem_eq: "∀ x. to_total Γ x = Low ⟶ mem⇩1 x = mem⇩2 x"
shows "⟨c, mds, mem⇩1⟩ ≈ ⟨c, mds, mem⇩2⟩"
using ℛ_bisim Typed_in_ℛ
by (metis mds_cons mem_eq mm_equiv.simps well_typed)
definition "Γ⇩0" :: "'Var TyEnv"
where "Γ⇩0 x = None"
inductive type_global :: "('Var, 'AExp, 'BExp) Stmt list ⇒ bool"
("⊢ _" [120] 1000)
where
"⟦ list_all (λ c. ⊢ Γ⇩0 { c } Γ⇩0) cs ;
∀ mem. sound_mode_use (add_initial_modes cs, mem) ⟧ ⟹
type_global cs"
inductive_cases type_global_elim: "⊢ cs"
lemma mds⇩s_consistent: "mds_consistent mds⇩s Γ⇩0"
by (auto simp: mds⇩s_def mds_consistent_def Γ⇩0_def)
lemma typed_secure:
"⟦ ⊢ Γ⇩0 { c } Γ⇩0 ⟧ ⟹ com_sifum_secure c"
apply (auto simp: com_sifum_secure_def low_indistinguishable_def mds_consistent_def type_soundness)
apply (auto simp: low_mds_eq_def)
apply (rule type_soundness [of Γ⇩0 c Γ⇩0])
apply (auto simp: mds⇩s_consistent to_total_def Γ⇩0_def)
by (metis empty_iff mds⇩s_def)
lemma "⟦ mds_consistent mds Γ⇩0 ; dma x = Low ⟧ ⟹ x ∉ mds AsmNoRead"
by (auto simp: mds_consistent_def Γ⇩0_def)
lemma list_all_set: "∀ x ∈ set xs. P x ⟹ list_all P xs"
by (metis (lifting) list_all_iff)
theorem type_soundness_global:
assumes typeable: "⊢ cs"
assumes no_assms_term: "no_assumptions_on_termination cs"
shows "prog_sifum_secure cs"
using typeable
apply (rule type_global_elim)
apply (subgoal_tac "∀ c ∈ set cs. com_sifum_secure c")
apply (metis list_all_set no_assms_term sifum_compositionality sound_mode_use.simps)
by (metis (lifting) list_all_iff typed_secure)
end
end