Theory Preliminaries

(*  Title:       Preliminaries_RTS
    Author:      Eugene W. Stark <stark@cs.stonybrook.edu>, 2024
    Maintainer:  Eugene W. Stark <stark@cs.stonybrook.edu>
*)

theory Preliminaries
imports Main "HOL-Library.FuncSet"
        ResiduatedTransitionSystem.ResiduatedTransitionSystem
begin

  lemma (in extensional_rts) divisors_of_ide:
  assumes "composite_of t u v" and "ide v"
  shows "ide t" and "ide u"
  proof -
    show "ide t"
      using assms ide_backward_stable by blast
    show "ide u"
      by (metis assms(1-2) composite_ofE con_ide_are_eq con_prfx_composite_of(1)
          ide_backward_stable)
  qed

section "Simulations"

  abbreviation I
  where "I  identity_simulation.map"

  lemma comp_identity_simulation:
  assumes "simulation A B F"
  shows "I B  F = F"
    using assms simulation.extensional simulation.preserves_reflects_arr
    by fastforce

  lemma comp_simulation_identity:
  assumes "simulation A B F"
  shows "F  I A = F"
    using assms residuation.not_arr_null rts.axioms(1) simulation.extensional
      simulation_def
    by fastforce

  lemma product_identity_simulation:
  assumes "rts A" and "rts B"
  shows "product_simulation.map A B (I A) (I B) = I (product_rts.resid A B)"
  proof -
    interpret A: rts A
      using assms(1) by blast
    interpret B: rts B
      using assms(2) by blast
    interpret A: identity_simulation A ..
    interpret B: identity_simulation B ..
    interpret AxB: product_rts A B ..
    interpret IAxIB: product_simulation A B A B A.map B.map ..
    interpret AxB: identity_simulation AxB.resid ..
    show "IAxIB.map = AxB.map"
      using IAxIB.map_def by auto
  qed

  locale constant_simulation =
    A: rts A +
    B: rts B
  for A :: "'a resid"      (infix "\\A" 70)
  and B :: "'b resid"      (infix "\\B" 70)
  and b :: 'b +
  assumes ide_b: "B.ide b"
  begin

    abbreviation map
    where "map t  if A.arr t then b else B.null"

    sublocale simulation A B map
      using ide_b A.con_implies_arr
      by unfold_locales auto

  end

  (*
   * TODO: The order of arguments was defined here to match inverse_functors,
   * which was in turn chosen to match adjunction, but it is very confusing.
   *)
  locale inverse_simulations =
    A: rts A +
    B: rts B +
    F: simulation B A F +
    G: simulation A B G
  for A :: "'a resid"      (infix "\\A" 70)
  and B :: "'b resid"      (infix "\\B" 70)
  and F :: "'b  'a"
  and G :: "'a  'b" +
  assumes inv: "G o F = I B"
  and inv': "F o G = I A"
  begin

    lemma inv_simp [simp]:
    assumes "B.arr y"
    shows "G (F y) = y"
      using assms inv by (metis comp_apply)

    lemma inv'_simp [simp]:
    assumes "A.arr x"
    shows "F (G x) = x"
      using assms inv' by (metis comp_apply)

    lemma induce_bij_betw_arr_sets:
    shows "bij_betw F (Collect B.arr) (Collect A.arr)"
      using inv inv' by (intro bij_betwI) auto

  end

  lemma inverse_simulations_sym:
  assumes "inverse_simulations A B F G"
  shows "inverse_simulations B A G F"
    using assms
    by (simp add: inverse_simulations_axioms_def inverse_simulations_def)

  (* TODO: Interchange the definition and lemma here.  Also improve ordering of stuff. *)
  locale invertible_simulation =
    simulation +
  assumes invertible: "G. inverse_simulations A B G F"

  lemma invertible_simulation_def':
  shows "invertible_simulation A B F  (G. inverse_simulations A B G F)"
    using inverse_simulations_def invertible_simulation_axioms_def
          invertible_simulation_def
    by blast

  lemma invertible_simulation_iff:
  shows "invertible_simulation A B F 
         simulation A B F 
         bij_betw F (Collect (residuation.arr A)) (Collect (residuation.arr B)) 
         (t u. residuation.con B (F t) (F u)  residuation.con A t u)"
  proof (intro iffI conjI)
    assume F: "invertible_simulation A B F"
    interpret F: invertible_simulation A B F
      using F by blast
    obtain G where G: "inverse_simulations A B G F"
      using F.invertible by blast
    interpret FG: inverse_simulations A B G F
      using G by blast
    show "simulation A B F"
      using F.simulation_axioms by blast
    have *: "y. y  Collect F.B.arr  F (G y) = y"
      by (metis CollectD FG.inv comp_apply)
    show "bij_betw F (Collect F.A.arr) (Collect F.B.arr)"
      using G inverse_simulations.induce_bij_betw_arr_sets inverse_simulations_sym
      by blast
    show "t u. F.B.con (F t) (F u)  F.A.con t u"
      by (metis F.B.not_con_null(1) F.B.not_con_null(2) F.extensional FG.F.preserves_con
          FG.inv' comp_apply)
    next
    assume F: "simulation A B F 
               bij_betw F (Collect (residuation.arr A)) (Collect (residuation.arr B)) 
               (t u. residuation.con B (F t) (F u)  residuation.con A t u)"
    interpret F: simulation A B F
      using F by blast
    let ?G = "λy. if y  F ` Collect F.A.arr
                  then inv_into (Collect F.A.arr) F y
                  else F.A.null"
    interpret G: simulation B A ?G
    proof
      show "t. ¬ F.B.arr t  ?G t = F.A.null"
        by fastforce
      fix t u
      assume 1: "F.B.con t u"
      have 2: "?G t = inv_into (Collect F.A.arr) F t 
               ?G u = inv_into (Collect F.A.arr) F u"
        using 1 F F.B.con_implies_arr
        by (simp add: bij_betw_def)
      have 3: "F.A.con (inv_into (Collect F.A.arr) F t)
                       (inv_into (Collect F.A.arr) F u)"
        using 1 F.B.con_implies_arr F
        by (metis bij_betw_imp_surj_on f_inv_into_f mem_Collect_eq)
      thus 4: "F.A.con (?G t) (?G u)"
        using 2 by simp
      have "?G (B t u) = inv_into (Collect F.A.arr) F (B t u)"
        by (metis 1 F CollectI F.B.arr_resid_iff_con bij_betw_def)
      also have "... = A (?G t) (?G u)"
      proof -
        have "F (A (?G t) (?G u)) = B (F (?G t)) (F (?G u))"
          using 4 F.preserves_resid by presburger
        also have "... = B t u"
          using 4 F.A.not_con_null(1-2) f_inv_into_f
          by (auto simp add: f_inv_into_f)
        finally have "F (A (?G t) (?G u)) = B t u" by blast
        thus ?thesis
          by (metis 4 F F.A.arr_resid bij_betw_inv_into_left mem_Collect_eq)
      qed
      finally show "?G (B t u) = A (?G t) (?G u)" by blast
    qed
    interpret FG: inverse_simulations A B ?G F
    proof
      show "F  ?G = I B"
      proof
        fix t
        show "(F  ?G) t = I B t"
          apply simp
          by (metis F F.A.not_arr_null bij_betw_def f_inv_into_f mem_Collect_eq
              simulation.extensional)
      qed
      show "?G  F = I A"
      proof
        fix t
        show "(?G  F) t = I A t"
          apply simp
          by (metis F F.preserves_reflects_arr bij_betw_def inv_into_f_f mem_Collect_eq)
      qed
    qed
    show "invertible_simulation A B F"
      using FG.inverse_simulations_axioms invertible_simulation_def
      by unfold_locales blast
  qed

  context invertible_simulation
  begin

    lemma is_bijection_betw_arr_sets:
    shows "bij_betw F (Collect A.arr) (Collect B.arr)"
      using invertible_simulation_axioms invertible_simulation_iff by metis

    lemma reflects_con:
    assumes "residuation.con B (F t) (F u)"
    shows "residuation.con A t u"
      using assms invertible_simulation_axioms invertible_simulation_iff by metis

  end

  context inverse_simulations
  begin

    sublocale F: invertible_simulation B A F
      by (meson inverse_simulations_axioms inverse_simulations_sym invertible_simulation_def')

    sublocale G: invertible_simulation A B G
      by (meson inverse_simulations_axioms invertible_simulation_def')

  end

  lemma inverse_simulation_unique:
  assumes "inverse_simulations A B G F"
  and "inverse_simulations A B G' F"
  shows "G = G'"
  proof -
    interpret FG: inverse_simulations A B G F
      using assms(1) by simp
    interpret FG': inverse_simulations A B G' F
      using assms(2) by simp
    show ?thesis
    proof
      fix x
      show "G x = G' x"
        by (metis FG'.F.extensional FG'.F.preserves_reflects_arr FG'.inv FG.F.extensional
            FG.inv' comp_apply)
    qed
  qed

  locale inverse_simulation =
    A: rts A +
    B: rts B +
    F: invertible_simulation
  begin

    definition map
    where "map  SOME G. inverse_simulations A B G F"

    interpretation inverse_simulations A B map F
      using F.invertible invertible_simulation_def map_def
            someI_ex [of "λG. inverse_simulations A B G F"]
      by auto

    sublocale simulation B A map ..

    lemma is_simulation:
    shows "simulation B A map"
      ..

    sublocale inverse_simulations A B map F ..

    lemma map_simp:
    assumes "B.arr x"
    shows "map x = inv_into (Collect A.arr) F x"
      by (metis CollectI F.preserves_reflects_arr assms bij_betw_inv_into_left
          inv_simp inverse_simulations.induce_bij_betw_arr_sets
          inverse_simulations_axioms inverse_simulations_sym)

    lemma map_eq:
    shows "map = (λx. if B.arr x then inv_into (Collect A.arr) F x else A.null)"
      using map_simp by (meson F.extensional)

  end

  lemma invertible_simulation_identity:
  assumes "rts A"
  shows [intro]: "invertible_simulation A A (I A)"
  and "inverse_simulations A A (I A) (I A)"
  and "inverse_simulation.map A A (I A) = I A"
  proof -
    interpret A: rts A
      using assms by blast
    interpret id: identity_simulation A ..
    show 1: "inverse_simulations A A id.map id.map"
      by unfold_locales auto
    thus "invertible_simulation A A id.map"
      using id.simulation_axioms invertible_simulation.intro
            invertible_simulation_axioms.intro
      by blast
    show "inverse_simulation.map A A id.map = id.map"
      using 1 inverse_simulation_unique [of A A id.map id.map]
      by (metis (no_types, lifting) invertible_simulation A A id.map assms
          inverse_simulation.intro inverse_simulation.map_def someI_ex)
  qed

  lemma inverse_simulations_compose:
  assumes "inverse_simulations A B F' F" and "inverse_simulations B C G' G"
  shows "inverse_simulations A C (F'  G') (G  F)"
  proof -
    interpret FF': inverse_simulations A B F' F
      using assms by blast
    interpret GG': inverse_simulations B C G' G
      using assms by blast
    interpret GoF: composite_simulation A B C F G ..
    interpret F'oG': composite_simulation C B A G' F' ..
    show ?thesis
    proof
      show "GoF.map  F'oG'.map = I C"
        by (metis FF'.inv GG'.F.extensional GG'.F.preserves_reflects_arr
            GG'.inv comp_def)
      show "F'oG'.map  GoF.map = I A"
        by (metis FF'.A.not_arr_null FF'.G.preserves_reflects_arr FF'.inv
            FF'.inv' GG'.inv' comp_apply)
    qed
  qed

  lemma invertible_simulation_comp [intro]:
  assumes "invertible_simulation A B F" and "invertible_simulation B C G"
  shows "invertible_simulation A C (G  F)"
  and "inverse_simulations A C
         (inverse_simulation.map A B F  inverse_simulation.map B C G) (G  F)"
  and "inverse_simulation.map A C (G  F) =
       inverse_simulation.map A B F  inverse_simulation.map B C G"
  proof -
    obtain F' where F': "inverse_simulations A B F' F"
      using assms(1) invertible_simulation.invertible by blast
    interpret FF': inverse_simulations A B F' F
      using F' by blast
    obtain G' where G': "inverse_simulations B C G' G"
      using assms(2) invertible_simulation.invertible by blast
    interpret GG': inverse_simulations B C G' G
      using G' by blast
    interpret GoF: composite_simulation A B C F G ..
    interpret F'oG': composite_simulation C B A G' F' ..
    interpret F': inverse_simulation A B F
      using F' assms(1) inverse_simulation_def inverse_simulations_def by blast
    interpret G': inverse_simulation B C G
      using G' assms(2)
      by (simp add: inverse_simulation.intro inverse_simulations_def)
    have F'_eq: "F' = F'.map"
      using F' F'.inverse_simulations_axioms inverse_simulation_unique by blast
    have G'_eq: "G' = G'.map"
      using G' G'.inverse_simulations_axioms inverse_simulation_unique by blast
    have 1: "inverse_simulations A C (F'  G') (G  F)"
      using F' G' inverse_simulations_compose by blast
    thus 2: "invertible_simulation A C (G  F)"
      using invertible_simulation_def by unfold_locales blast
    show "inverse_simulations A C (F'.map  G'.map) GoF.map"
      using F'_eq G'_eq 1 by blast
    show "inverse_simulation.map A C GoF.map = F'.map  G'.map"
      using 1 2 F'_eq G'_eq inverse_simulation_unique
      by (metis FF'.A.rts_axioms GG'.B.rts_axioms inverse_simulation.intro
          inverse_simulation.map_def someI_ex)
  qed

  lemma inverse_simulation_product [intro]:
  assumes "invertible_simulation A B F" and "invertible_simulation C D G"
  shows "invertible_simulation (product_rts.resid A C) (product_rts.resid B D)
           (product_simulation.map A C F G)"
  and "inverse_simulations (product_rts.resid A C) (product_rts.resid B D)
         (product_simulation.map B D
            (inverse_simulation.map A B F) (inverse_simulation.map C D G))
         (product_simulation.map A C F G)"
  and "inverse_simulation.map (product_rts.resid A C) (product_rts.resid B D)
         (product_simulation.map A C F G) =
       product_simulation.map B D
         (inverse_simulation.map A B F) (inverse_simulation.map C D G)"
  proof -
    interpret A: rts A
      using assms(1) by (simp add: invertible_simulation_iff simulation_def)
    interpret B: rts B
      using assms(1) by (simp add: invertible_simulation_iff simulation_def)
    interpret C: rts C
      using assms(2) by (simp add: invertible_simulation_iff simulation_def)
    interpret D: rts D
      using assms(2) by (simp add: invertible_simulation_iff simulation_def)
    interpret AxC: product_rts A C ..
    interpret BxD: product_rts B D ..
    interpret F: simulation A B F
      using assms(1) invertible_simulation_def invertible_simulation_iff by blast
    interpret F': inverse_simulation A B F
      using assms(1) invertible_simulation.invertible by unfold_locales auto
    interpret FF': inverse_simulations A B F'.map F ..
    interpret G: simulation C D G
      using assms(2) invertible_simulation_def invertible_simulation_iff by blast
    interpret G': inverse_simulation C D G
      using assms(2) invertible_simulation.invertible by unfold_locales auto
    interpret GG': inverse_simulations C D G'.map G ..
    interpret FxG: product_simulation A C B D F G ..
    interpret F'xG': product_simulation B D A C F'.map G'.map ..
    interpret inverse_simulations AxC.resid BxD.resid F'xG'.map FxG.map
    proof
      show "FxG.map  F'xG'.map = I BxD.resid"
      proof
        fix t
        show "(FxG.map  F'xG'.map) t = I BxD.resid t"
          using F'.inv G'.inv FxG.map_def F'xG'.map_def
                F.extensional G.extensional
          by auto
      qed
      show "F'xG'.map  FxG.map = I AxC.resid"
      proof
        fix t
        show "(F'xG'.map  FxG.map) t = I AxC.resid t"
          using F'.inv' G'.inv' FxG.map_def F'xG'.map_def
                F'.extensional G'.extensional
          by auto
      qed
    qed
    show "inverse_simulations AxC.resid BxD.resid F'xG'.map FxG.map" ..
    show "invertible_simulation AxC.resid BxD.resid FxG.map"
      using inverse_simulations_axioms
      by unfold_locales blast
    thus "inverse_simulation.map AxC.resid BxD.resid FxG.map = F'xG'.map"
      by (metis inverse_simulation.intro inverse_simulation.map_def
          inverse_simulation_unique inverse_simulations_axioms invertible_simulation_def
          simulation_def someI_ex)
  qed

  lemma invertible_simulation_cancel_left:
  assumes "invertible_simulation A B H"
  shows "simulation C A F; simulation C A G; H  F = H  G  F = G"
  proof -
    obtain K where K: "inverse_simulations A B K H"
      using assms(1) invertible_simulation.invertible by blast
    interpret HK: inverse_simulations A B K H
      using K by blast
    show "simulation C A F; simulation C A G; H  F = H  G  F = G"
      by (metis HK.inv' HOL.ext comp_def simulation.extensional
          simulation.preserves_reflects_arr)
  qed

  lemma invertible_simulation_cancel_right:
  assumes "invertible_simulation A B H"
  shows "simulation B C F; simulation B C G; F  H = G  H  F = G"
  proof -
    obtain K where K: "inverse_simulations A B K H"
      using assms(1) invertible_simulation.invertible by blast
    interpret HK: inverse_simulations A B K H
      using K by blast
    show "simulation B C F; simulation B C G; F  H = G  H  F = G"
      by (metis HK.inv HOL.ext comp_def simulation.extensional)
  qed

  definition isomorphic_rts
  where "isomorphic_rts A B  F G. inverse_simulations A B G F"

  lemma isomorphic_rts_reflexive:
  assumes "rts A"
  shows "isomorphic_rts A A"
    using assms invertible_simulation_identity isomorphic_rts_def by blast

  lemma isomorphic_rts_symmetric:
  assumes "isomorphic_rts A B"
  shows "isomorphic_rts B A"
    using assms inverse_simulations_sym isomorphic_rts_def by meson

  lemma isomorphic_rts_transitive [trans]:
  assumes "isomorphic_rts A B" and "isomorphic_rts B C"
  shows "isomorphic_rts A C"
    using assms invertible_simulation_comp(1) isomorphic_rts_def
          invertible_simulation_def
    by (metis inverse_simulations.axioms(4) invertible_simulation.invertible
        invertible_simulation_axioms.intro)

  lemma (in simulation) simulation_inv_intoI:
  assumes "inj_on F (Collect A.arr)" and "F ` (Collect A.arr) = Collect B.arr"
  and "t. ¬ B.arr t  inv_into (Collect A.arr) F t = A.null"
  and "t u. t B u 
               inv_into (Collect A.arr) F t A inv_into (Collect A.arr) F u"
  shows "simulation B A (inv_into (Collect A.arr) F)"
  proof
    show "t. ¬ B.arr t  inv_into (Collect A.arr) F t = A.null"
      using assms(3) by blast
    show "t u. t B u 
                   inv_into (Collect A.arr) F t A inv_into (Collect A.arr) F u"
      using assms(4) by blast
    show "t u. t B u 
                   inv_into (Collect A.arr) F (t \\B u) =
                   inv_into (Collect A.arr) F t \\A inv_into (Collect A.arr) F u"
      by (simp add: assms(1-2,4) f_inv_into_f inv_into_f_eq B.con_implies_arr(1-2))
  qed

section "Transformations"

  lemma (in transformation) preserves_arr:
  assumes "A.arr t"
  shows "B.arr (τ t)"
    using assms B.join_of_un_upto_cong B.prfx_implies_con naturality3 by blast

  lemma (in transformation) preserves_con:
  assumes "t A u"
  shows "τ t B τ u" and "τ t B F u"
  proof -
    show "τ t B τ u"
    proof (intro B.con_with_join_of_iff(1))
      show "B.join_of (τ (A.src t)) (F t) (τ t)"
        using assms naturality3 [of t] A.con_implies_arr(1) by blast
      show "F t B τ u  τ u \\B F t B τ (A.src t) \\B F t"
      proof (intro conjI)
        show "τ u \\B F t B τ (A.src t) \\B F t"
        proof -
          have "(τ u \\B F t B τ (A.src t) \\B F t) 
                (τ u \\B τ (A.src t) B F t \\B τ (A.src t))"
            using B.con_def B.cube by force
          also have "...  τ u \\B τ (A.src t) B G t"
            using A.con_implies_arr(1) assms naturality2 by force
          also have "...  G u B G t"
            by (metis (mono_tags, lifting) A.con_imp_eq_src A.con_implies_arr(2)
                B.composite_ofE B.cong_subst_left(1) B.join_ofE assms
                naturality2 naturality3)
          also have "... = True"
            using assms A.con_sym G.preserves_con by blast
          finally show ?thesis by blast
        qed
        thus "F t B τ u"
          by (metis B.con_def B.con_sym B.not_con_null(1))
      qed
    qed
    thus "τ t B F u"
      using assms
      by (meson A.residuation_axioms B.con_sym B.con_with_join_of_iff(2)
          B.join_of_symmetric naturality3 residuation.con_implies_arr(2))
  qed

  lemma (in transformation) naturality1':
  assumes "A.arr t"
  shows "B.composite_of (F t) (τ (A.trg t)) (τ t)"
    using assms
    by (metis B.rts_axioms naturality1 naturality3 rts.join_ofE)

  lemma (in transformation) naturality2':
  assumes "A.arr t"
  shows "B.composite_of (τ (A.src t)) (G t) (τ t)"
      by (metis B.join_ofE assms naturality2 naturality3)

  locale transformation_to_extensional_rts =
    transformation +
    B: extensional_rts B
  begin

    notation B.comp  (infixr "B" 55)
    notation B.join  (infix "B" 52)

    lemma naturality1'E:
    shows "F t B τ (A.trg t) = τ t"
    and "A.arr t  B.composable (F t) (τ (A.trg t))"
    proof -
      show "F t B τ (A.trg t) = τ t"
        using naturality1' B.comp_is_composite_of(2)
        by (metis A.arr_trg_iff_arr B.comp_null(2) extensional)
      thus "A.arr t  B.composable (F t) (τ (A.trg t))"
        by (simp add: B.composable_iff_arr_comp preserves_arr)
    qed

    lemma naturality2'E:
    shows "τ (A.src t) B G t = τ t"
    and "A.arr t  B.composable (τ (A.src t)) (G t)"
    proof -
      show "τ (A.src t) B G t = τ t"
        using naturality2' B.comp_is_composite_of(2)
        by (metis B.comp_null(2) G.extensional extensional)
      thus "A.arr t  B.composable (τ (A.src t)) (G t)"
        by (simp add: B.composable_iff_arr_comp preserves_arr)
    qed

    lemma naturality3'E:
    shows "τ (A.src t) B F t = τ t"
    and "A.arr t  B.joinable (τ (A.src t)) (F t)"
    proof -
      show "τ (A.src t) B F t = τ t"
        using naturality3
        by (metis A.not_arr_null A.src_def B.join_def B.join_is_join_of
            B.join_of_unique B.joinable_def B.joinable_implies_con
            B.not_arr_null F.extensional extensional B.arrI)
      thus "A.arr t  B.joinable (τ (A.src t)) (F t)"
        by (metis B.joinable_iff_arr_join preserves_arr)
    qed

    lemma naturalityE:
    shows "τ (A.src t) B G t = F t B τ (A.trg t)"
      using naturality1'E(1) naturality2'E(1) by presburger

    lemma general_naturality:
    assumes "A.con x y"
    shows "τ x \\B F y = τ (x \\A y)"
    and "F x \\B τ y = G (x \\A y)"
    proof -
      show "τ x \\B F y = τ (x \\A y)"
        using assms
        by (metis (full_types) A.residuation_axioms A.weakly_extensional_rts_axioms
            B.extensional_rts_axioms G.simulation_axioms extensional_rts.resid_comp(2)
            naturality2'E(1) residuation.con_implies_arr(2) simulation.preserves_resid
            transformation.naturality1_ax transformation.naturality2_ax
            transformation.preserves_con(2) transformation_axioms
            weakly_extensional_rts.con_imp_eq_src weakly_extensional_rts.src_resid)
      show "F x \\B τ y = G (x \\A y)"
        using assms
        by (metis A.con_sym A.src_resid B.resid_comp(1) F.preserves_resid
            naturality1'E(1) naturality2 preserves_con(2))
    qed

    (*
     * TODO: Does this hold more generally?  I didn't immediately see how to generalize
     * the proof.
     *)
    lemma preserves_prfx:
    assumes "t A u"
    shows "τ t B τ u"
    proof -
      have "τ t \\B τ u = B.trg (τ (A.src t)) \\B (F u \\B τ (A.src t)) B
                            B.trg (F u) \\B (τ (A.src t) \\B F u)"
      proof -
        have "τ t \\B τ u = (τ (A.src t) B F t) \\B (τ (A.src t) B F u)"
          by (metis A.con_imp_eq_src A.prfx_implies_con assms naturality3'E(1))
        also have "... = (τ (A.src t) \\B (τ (A.src t) B F u)) B
                         (F t \\B (τ (A.src t) B F u))"
          by (metis assms calculation A.con_implies_arr(2) A.con_sym
              A.prfx_implies_con B.arr_resid_iff_con B.con_sym B.resid_joinE(3)
              naturality3'E(2) preserves_con(1))
        also have "... = (τ (A.src t) \\B τ (A.src t)) \\B (F u \\B τ (A.src t)) B
                           (F t \\B F u) \\B (τ (A.src t) \\B F u)"
          by (metis (full_types) assms calculation A.prfx_implies_con
              B.arr_prfx_join_self B.conE B.conI B.join_def B.prfx_implies_con
              B.resid_joinE(1-2) B.null_is_zero(2) preserves_con(1))
        also have "... = B.trg (τ (A.src t)) \\B (F u \\B τ (A.src t)) B
                           B.trg (F u) \\B (τ (A.src t) \\B F u)"
          by (metis A.arr_resid_iff_con A.con_implies_arr(2) A.ide_implies_arr
              A.src_ide A.src_resid B.trg_def F.preserves_resid F.preserves_trg
              assms)
        finally show ?thesis by blast
      qed
      moreover have "B.ide ..."
      proof -
        have "B.ide (B.trg (τ (A.src t)) \\B (F u \\B τ (A.src t)))"
          by (metis assms A.con_imp_eq_src A.con_implies_arr(2) A.cong_reflexive
              A.ide_src A.prfx_implies_con A.resid_src_arr A.trg_def naturality2
              preserves_trg G.preserves_prfx)
        moreover have "B.ide (B.trg (F u) \\B (τ (A.src t) \\B F u))"
          using B.apex_sym B.cube B.trg_def calculation by force
        ultimately show ?thesis
          by (metis B.apex_sym B.ide_iff_src_self B.ide_implies_arr
              B.join_arr_self B.prfx_implies_con B.src_resid)
      qed
      ultimately show ?thesis by simp
    qed

  end

  (*
   * TODO: The (strong) extensionality assumption on B is used to guarantee the
   * existence of unique joins, so that the definition of map makes sense.
   * It might be possible to replace this by weak extensionality if the "joinable"
   * locale assumption is strengthened to state that exactly one join exists for
   * the indicated transitions.
   *)

  locale transformation_by_components =
    A: weakly_extensional_rts A +
    B: extensional_rts B + 
    F: simulation A B F +
    G: simulation A B G
  for A :: "'a resid"      (infix "\\A" 55)
  and B :: "'b resid"      (infix "\\B" 55)
  and F :: "'a  'b"
  and G :: "'a  'b"
  and τ :: "'a  'b" +
  assumes preserves_src: "A.ide a  B.src (τ a) = F a"
  and preserves_trg: "A.ide a  B.trg (τ a) = G a"
  and naturality1: "A.arr t  τ (A.src t) \\B F t = τ (A.trg t)"
  and naturality2: "A.arr t  F t \\B τ (A.src t) = G t"
  and joinable: "A.arr t  B.joinable (τ (A.src t)) (F t)"
  begin

    notation B.comp  (infixr "B" 55)
    notation B.join  (infix "B" 52)

    definition map
    where "map t = τ (A.src t) B F t"

    lemma map_eq:
    shows "map t = (if A.arr t then τ (A.src t) B F t else B.null)"
      unfolding map_def
      by (metis B.conE B.join_def B.joinable_implies_con B.null_is_zero(2)
          F.extensional)

    lemma map_simp_ide [simp]:
    assumes "A.ide a"
    shows "map a = τ a"
      using assms map_def
      by (metis A.ide_iff_src_self A.ide_implies_arr B.arr_trg_iff_arr B.join_src
          B.join_sym G.preserves_ide preserves_src preserves_trg B.ide_implies_arr)

    sublocale transformation A B F G map
      using map_eq preserves_src preserves_trg naturality1 naturality2 joinable
      apply (unfold_locales, simp_all)
          apply (metis A.ide_implies_arr A.src_ide B.src_join)
         apply (metis A.ide_implies_arr A.src_ide A.trg_ide B.trg_join)
        apply (metis A.arr_src_iff_arr A.arr_trg_iff_arr A.ide_src A.src_src A.src_trg
          map_simp_ide)
       apply (metis A.arr_src_iff_arr A.ide_src A.src_src map_simp_ide)
      by (metis A.arr_src_iff_arr A.ide_src A.src_src B.join_is_join_of map_simp_ide)

    lemma is_transformation:
    shows "transformation A B F G map"
      ..

  end

  locale identity_transformation =
    transformation +
  assumes identity: "A.ide a  B.ide (τ a)"
  begin

    lemma src_eq_trg:
    shows "F = G"
    proof
      fix x
      show "F x = G x"
        by (metis A.ide_src B.ideE B.resid_arr_src B.src_eqI B.src_join_of(1-2)
          F.extensional F.preserves_reflects_arr G.extensional identity
          naturality3 naturality2)
    qed

    sublocale simulation ..

  end

  lemma comp_identity_transformation:
  assumes "transformation A B F G T"
  shows "I B  T = T"
    using assms transformation.extensional transformation.preserves_arr
    by fastforce

  lemma comp_transformation_identity:
  assumes "transformation A B F G T"
  shows "T  I A = T"
    using assms residuation.not_arr_null rts.axioms(1) transformation.extensional
          transformation_def simulation_def
    by fastforce

  locale constant_transformation =
    A: weakly_extensional_rts A +
    B: weakly_extensional_rts B
  for A :: "'a resid"      (infix "\\A" 70)
  and B :: "'b resid"      (infix "\\B" 70)
  and t :: 'b +
  assumes arr_t: "B.arr t"
  begin

    abbreviation map
    where "map x  if A.arr x then t else B.null"

    abbreviation F
    where "F  constant_simulation.map A B (B.src t)"

    abbreviation G
    where "G  constant_simulation.map A B (B.trg t)"

    interpretation F: simulation A B F
      using arr_t A.con_implies_arr B.resid_arr_ide
      by unfold_locales auto

    interpretation G: simulation A B G
      using arr_t A.con_implies_arr B.resid_arr_ide
      by unfold_locales auto

    sublocale transformation A B F G map
      using arr_t B.join_of_arr_src(2)
      by unfold_locales auto

  end

  locale simulation_as_transformation =
    simulation +
    A: weakly_extensional_rts A +
    B: weakly_extensional_rts B
  begin

    sublocale transformation A B F F F
      using extensional A.con_arr_src(1-2) B.join_of_arr_src(1)
      apply unfold_locales
      subgoal by simp
      subgoal by simp
      subgoal by simp
      subgoal by simp (metis A.con_arr_src(2) A.resid_src_arr preserves_resid)
      subgoal by simp (metis A.con_arr_src(1) A.resid_arr_src preserves_resid)
      subgoal by simp
      done

    sublocale identity_transformation A B F F F
      by unfold_locales auto

  end

  lemma transformation_eqI:
  assumes "transformation A B F G σ" and "transformation A B F G τ"
  and "extensional_rts B"
  and "a. residuation.ide A a  σ a = τ a"
  shows "σ = τ"
  proof
    interpret A: weakly_extensional_rts A
      using assms(1) simulation.axioms(1) transformation_def by blast
    interpret B: extensional_rts B
      using assms(3) by simp
    interpret F: simulation A B F
      using assms(1) transformation.axioms(3) by blast
    interpret G: simulation A B G
      using assms(1) transformation.axioms(4) by blast
    interpret σ: transformation A B F G σ
      using assms(1) by blast
    interpret τ: transformation A B F G τ
      using assms(2) by blast
    fix t
    show "σ t = τ t"
      by (metis A.ide_src B.join_of_unique σ.extensional σ.naturality3
          τ.extensional τ.naturality3 assms(4))
  qed

  lemma invertible_simulation_cancel_left':
  assumes "invertible_simulation A B H"
  shows "transformation C A F G S; transformation C A F G T;
          H  S = H  T
             S = T"
  proof -
    obtain K where K: "inverse_simulations A B K H"
      using assms(1) invertible_simulation.invertible by blast
    interpret HK: inverse_simulations A B K H
      using K by blast
    show "transformation C A F G S; transformation C A F G T;
           H  S = H  T
              S = T"
      by (metis HK.inv' HOL.ext comp_def transformation.extensional
          transformation.preserves_arr)
  qed

  lemma invertible_simulation_cancel_right':
  assumes "invertible_simulation A B H"
  shows "transformation B C F G S; transformation B C F G T;
          S  H = T  H
             S = T"
  proof -
    obtain K where K: "inverse_simulations A B K H"
      using assms(1) invertible_simulation.invertible by blast
    interpret HK: inverse_simulations A B K H
      using K by blast
    show "transformation B C F G S; transformation B C F G T;
           S  H = T  H
              S = T"
      by (metis HK.inv HOL.ext comp_def transformation.extensional)
  qed

  section "Binary Simulations"

  locale binary_simulation_between_weakly_extensional_rts =
    binary_simulation +
    A1: weakly_extensional_rts A1 +
    A0: weakly_extensional_rts A0 +
    B: weakly_extensional_rts B
  begin

    interpretation A: product_of_weakly_extensional_rts A1 A0 ..
    sublocale simulation_to_weakly_extensional_rts A.resid B F ..

    lemma fixing_arr_gives_transformation_1:
    assumes "A1.arr t1"
    shows "transformation A0 B
             (λt0. F (A1.src t1, t0)) (λt0. F (A1.trg t1, t0))
             (λt0. F (t1, t0))"
    proof -
      interpret Fsrc: simulation A0 B λt0. F (A1.src t1, t0)
        using assms fixing_ide_gives_simulation_1 by simp
      interpret Fsrc: simulation_to_weakly_extensional_rts A0 B
                        λt0. F (A1.src t1, t0)
        ..
      interpret Ftrg: simulation A0 B λt0. F (A1.trg t1, t0)
        using assms fixing_ide_gives_simulation_1 by simp
      interpret Ftrg: simulation_to_weakly_extensional_rts A0 B
                        λt0. F (A1.trg t1, t0)
        ..
      show "transformation A0 B
              (λt0. F (A1.src t1, t0)) (λt0. F (A1.trg t1, t0))
              (λt0. F (t1, t0))"
      proof
        show "f. ¬ A0.arr f  F (t1, f) = B.null"
          by (simp add: extensional)
        show "f. A0.ide f  B.src (F (t1, f)) = F (A1.src t1, f)"
          using assms B.src_eqI by simp
        show "f. A0.ide f  B.trg (F (t1, f)) = F (A1.trg t1, f)"
          by (metis assms fixing_ide_gives_simulation_0 simulation.preserves_trg)
        fix f
        assume f: "A0.arr f"
        show "F (t1, A0.src f) \\B F (A1.src t1, f) = F (t1, A0.trg f)"
        proof -
          have "F (t1, A0.src f) \\B F (A1.src t1, f) =
                F (A.resid (t1, A0.src f) (A1.src t1, f))"
            by (simp add: assms f)
          also have "... = F (t1, A0.trg f)"
            by (simp add: assms f A.resid_def)
          finally show ?thesis by blast
        qed
        show "F (A1.src t1, f) \\B F (t1, A0.src f) = F (A1.trg t1, f)"
        proof -
          have "F (A1.src t1, f) \\B F (t1, A0.src f) =
                F (A.resid (A1.src t1, f) (t1, A0.src f))"
            by (simp add: assms f)
          also have "... = F (A1.trg t1, f)"
            by (simp add: assms f A.resid_def)
          finally show ?thesis by blast
        qed
        show "B.join_of (F (t1, A0.src f)) (F (A1.src t1, f)) (F (t1, f))"
          by (simp add: f A1.join_of_arr_src(2) A0.join_of_arr_src(1)
              assms preserves_joins A.join_of_char(1))
      qed
    qed

    lemma fixing_arr_gives_transformation_0:
    assumes "A0.arr t2"
    shows "transformation A1 B
             (λt1. F (t1, A0.src t2)) (λt1. F (t1, A0.trg t2))
             (λt1. F (t1, t2))"
    proof -
      interpret Fsrc: simulation A1 B λt1. F (t1, A0.src t2)
        using assms fixing_ide_gives_simulation_0 by simp
      interpret Fsrc: simulation_to_weakly_extensional_rts A1 B
        λt1. F (t1, A0.src t2)
        ..
      interpret Ftrg: simulation A1 B λt1. F (t1, A0.trg t2)
        using assms fixing_ide_gives_simulation_0 by simp
      interpret Ftrg: simulation_to_weakly_extensional_rts A1 B
                        λt1. F (t1, A0.trg t2)
        ..
      show "transformation A1 B
              (λt1. F (t1, A0.src t2)) (λt1. F (t1, A0.trg t2))
              (λt1. F (t1, t2))"
      proof
        show "f. ¬ A1.arr f  F (f, t2) = B.null"
          by (simp add: extensional)
        show "f. A1.ide f  B.src (F (f, t2)) = F (f, A0.src t2)"
          using assms B.src_eqI by simp
        show "f. A1.ide f  B.trg (F (f, t2)) = F (f, A0.trg t2)"
          by (metis assms fixing_ide_gives_simulation_1 simulation.preserves_trg)
        fix f
        assume f: "A1.arr f"
        show "F (A1.src f, t2) \\B F (f, A0.src t2) = F (A1.trg f, t2)"
          using f fixing_arr_gives_transformation_1 transformation.naturality2
          by fastforce
        show "F (f, A0.src t2) \\B F (A1.src f, t2) = F (f, A0.trg t2)"
          by (metis assms f fixing_arr_gives_transformation_1
              transformation.naturality1_ax)
        show "f. A1.arr f 
                    B.join_of (F (A1.src f, t2)) (F (f, A0.src t2)) (F (f, t2))"
          by (simp add: A1.join_of_arr_src(1) A0.join_of_arr_src(2)
              assms preserves_joins A.join_of_char(1))
      qed
    qed

  end

  locale transformation_of_binary_simulations =
    A1: weakly_extensional_rts A1 +
    A0: weakly_extensional_rts A0 +
    B: weakly_extensional_rts B +
    A1xA0: product_rts A1 A0 +
    F: binary_simulation A1 A0 B F +
    G: binary_simulation A1 A0 B G +
    transformation A1xA0.resid B F G τ
  for A1 :: "'a1 resid"     (infix "\\A1" 55)
  and A0 :: "'a0 resid"     (infix "\\A0" 55)
  and B :: "'b resid"       (infix "\\B" 55)
  and F :: "'a1 * 'a0  'b"
  and G :: "'a1 * 'a0  'b"
  and τ :: "'a1 * 'a0  'b"
  begin

    notation A0.con     (infix "A0" 50)
    notation A0.prfx    (infix "A0" 50)
    notation A0.cong    (infix "A0" 50)

    notation A1.con     (infix "A1" 50)
    notation A1.prfx    (infix "A1" 50)
    notation A1.cong    (infix "A1" 50)

    notation B.con     (infix "B" 50)
    notation B.prfx    (infix "B" 50)
    notation B.cong    (infix "B" 50)

    notation A1xA0.resid    (infix "\\A1xA0" 55)

    sublocale A1xA0: product_of_weakly_extensional_rts A1 A0 ..

    lemma fixing_ide_gives_transformation_1:
    assumes "A1.ide a1"
    shows "transformation A0 B (λf0. F (a1, f0)) (λf0. G (a1, f0))
             (λf0. τ (a1, f0))"
    proof -
      interpret Fa1: simulation A0 B λf0. F (a1, f0)
        using assms F.fixing_ide_gives_simulation_1 by simp
      interpret Ga1: simulation A0 B λf0. G (a1, f0)
        using assms "G.fixing_ide_gives_simulation_1" by simp
      show ?thesis
      proof
        fix f
        show "¬ A0.arr f  τ (a1, f) = B.null"
          by (simp add: extensional)
        show "A0.ide f  B.src (τ (a1, f)) = F (a1, f)"
          using assms preserves_src by force
        show "A0.ide f  B.trg (τ (a1, f)) = G (a1, f)"
          by (simp add: assms preserves_trg)
        show "A0.arr f  τ (a1, A0.src f) \\B F (a1, f) = τ (a1, A0.trg f)"
          by (metis A1.ide_iff_src_self A1.ide_iff_trg_self A1.ide_implies_arr
              A1xA0.src_char A1xA0.trg_char F.preserves_reflects_arr
              Fa1.preserves_reflects_arr assms fst_conv naturality1 snd_conv)
        show "A0.arr f  F (a1, f) \\B τ (a1, A0.src f) = G (a1, f)"
          by (metis assms A1.ide_iff_src_self A1.ide_implies_arr A1xA0.src_char
              G.preserves_reflects_arr Ga1.preserves_reflects_arr fst_conv
              naturality2 snd_conv)
        show "A0.arr f  B.join_of (τ (a1, A0.src f)) (F (a1, f)) (τ (a1, f))"
          by (metis assms A1.ide_iff_src_self A1.ide_implies_arr A1xA0.src_char
              G.preserves_reflects_arr Ga1.preserves_reflects_arr fst_conv naturality3
              snd_conv)
      qed
    qed

    lemma fixing_ide_gives_transformation_0:
    assumes "A0.ide a0"
    shows "transformation A1 B (λf1. F (f1, a0)) (λf1. G (f1, a0))
             (λf1. τ (f1, a0))"
    proof -
      interpret Fa0: simulation A1 B λf1. F (f1, a0)
        using assms F.fixing_ide_gives_simulation_0 by simp
      interpret Ga0: simulation A1 B λf1. G (f1, a0)
        using assms "G.fixing_ide_gives_simulation_0" by simp
      show ?thesis
      proof
        fix f
        show "¬ A1.arr f  τ (f, a0) = B.null"
          by (simp add: extensional)
        show "A1.ide f  B.src (τ (f, a0)) = F (f, a0)"
          by (simp add: assms preserves_src)
        show "A1.ide f  B.trg (τ (f, a0)) = G (f, a0)"
          by (simp add: assms preserves_trg)
        show "A1.arr f  τ (A1.src f, a0) \\B F (f, a0) = τ (A1.trg f, a0)"
          by (metis A1xA0.src_char A1xA0.trg_char A0.ide_iff_src_self
              A0.ide_iff_trg_self A0.ide_implies_arr F.preserves_reflects_arr
              Fa0.preserves_reflects_arr assms fst_conv naturality1 snd_conv)
        show "A1.arr f  F (f, a0) \\B τ (A1.src f, a0) = G (f, a0)"
          by (metis A1xA0.src_char A0.ide_iff_src_self A0.ide_implies_arr
              F.preserves_reflects_arr Fa0.preserves_reflects_arr assms
              fst_conv naturality2 snd_conv)
        show "A1.arr f  B.join_of (τ (A1.src f, a0)) (F (f, a0)) (τ (f, a0))"
          by (metis A1xA0.src_char A0.ide_iff_src_self A0.ide_implies_arr
              F.preserves_reflects_arr Fa0.preserves_reflects_arr assms
              fst_conv naturality3 snd_conv)
      qed
    qed

  end

  section "Horizontal Composite of Transformations"

  lemma transformation_whisker_left:
  assumes "transformation A B F G τ" and "simulation B C H"
  and "weakly_extensional_rts C"
  shows "transformation A C (H  F) (H  G) (H  τ)"
  proof -
    interpret C: weakly_extensional_rts C
      using assms(3) by blast
    interpret τ: transformation A B F G τ
      using assms by blast
    interpret H: simulation B C H
      using assms by blast
    interpret HoF: composite_simulation A B C F H ..
    interpret HoG: composite_simulation A B C G H ..
    show ?thesis
    proof
      fix t
      show "¬ τ.A.arr t  (H  τ) t = C.null"
        by (simp add: H.extensional τ.extensional)
      show "τ.A.ide t  C.src ((H  τ) t) = HoF.map t"
        by (metis C.src_eqI H.preserves_con HoF.preserves_ide τ.A.ide_implies_arr
            τ.B.con_arr_src(2) τ.preserves_arr τ.preserves_src comp_eq_dest_lhs)
      show "τ.A.ide t  C.trg ((H  τ) t) = HoG.map t"
        by (metis H.preserves_trg τ.A.ide_implies_arr τ.preserves_arr
            τ.preserves_trg comp_apply)
      show "τ.A.arr t 
              C ((H  τ) (τ.A.src t)) (HoF.map t) = (H  τ) (τ.A.trg t)"
        by (metis H.preserves_resid τ.B.conI τ.B.con_sym_ax τ.B.not_arr_null
            τ.G.preserves_reflects_arr τ.naturality1_ax τ.naturality2_ax comp_apply)
      show "τ.A.arr t  C (HoF.map t) ((H  τ) (τ.A.src t)) = HoG.map t"
        by (metis H.preserves_resid τ.B.arr_resid_iff_con τ.G.preserves_reflects_arr
            τ.naturality2_ax comp_apply)
      show "τ.A.arr t  C.join_of ((H  τ) (τ.A.src t)) (HoF.map t) ((H  τ) t)"
        by (metis H.simulation_axioms τ.naturality3 comp_apply
            simulation.preserves_joins)
    qed
  qed

  lemma transformation_whisker_right:
  assumes "transformation B C F G τ" and "simulation A B H"
  and "weakly_extensional_rts A"
  shows "transformation A C (F  H) (G  H) (τ  H)"
  proof -
    interpret A: weakly_extensional_rts A
      using assms(3) by blast
    interpret τ: transformation B C F G τ
      using assms by blast
    interpret H: simulation A B H
      using assms by blast
    interpret FoH: composite_simulation A B C H F ..
    interpret GoH: composite_simulation A B C H G ..
    show ?thesis
    proof
      fix t
      show "¬ A.arr t  (τ  H) t = τ.B.null"
        by (simp add: τ.extensional)
      show "A.ide t  τ.B.src ((τ  H) t) = FoH.map t"
        by (simp add: τ.preserves_src)
      show "A.ide t  τ.B.trg ((τ  H) t) = GoH.map t"
        by (simp add: τ.preserves_trg)
      show "A.arr t  C ((τ  H) (A.src t)) (FoH.map t) = (τ  H) (A.trg t)"
        by (metis A.arr_has_un_source A.arr_src_iff_arr A.con_arr_src(1)
            A.src_in_sources A.trg_src H.preserves_con H.preserves_trg
            τ.A.con_imp_eq_src τ.A.src_trg τ.naturality1 comp_def)
      show "A.arr t  C (FoH.map t) ((τ  H) (A.src t)) = GoH.map t"
        by (metis A.con_arr_src(2) A.ide_src H.preserves_con H.preserves_ide
            τ.A.con_imp_eq_src τ.naturality2 comp_apply τ.A.src_ide)
      show "A.arr t  τ.B.join_of ((τ  H) (A.src t)) (FoH.map t) ((τ  H) t)"
        by (metis (full_types) A.con_arr_src(2) A.ide_src FoH.preserves_reflects_arr
            H.preserves_con H.preserves_ide τ.B.not_arr_null
            τ.F.extensional τ.naturality3 comp_apply τ.A.con_imp_eq_src τ.A.src_ide)
    qed
  qed

  text‹
    Horizontal composition of transformations requires reasoning about joins
    which it is not clear that it is possible to do unless extensionality is assumed.
  ›

  lemma horizontal_composite:
  assumes "transformation B C F G σ" and "transformation A B H K τ"
  and "extensional_rts A" and "extensional_rts B" and "extensional_rts C"
  shows "transformation A C (F  H) (G  K) (σ  τ)"
  proof -
    interpret A: extensional_rts A
      using assms(3) by blast
    interpret B: extensional_rts B
      using assms(4) by blast
    interpret C: extensional_rts C
      using assms(5) by blast
    interpret σ: transformation B C F G σ
      using assms by blast
    interpret σ: transformation_to_extensional_rts B C F G σ ..
    interpret τ: transformation A B H K τ
      using assms by blast
    interpret τ: transformation_to_extensional_rts A B H K τ ..
    interpret FoH: composite_simulation A B C H F ..
    interpret GoH: composite_simulation A B C H G ..
    interpret FoK: composite_simulation A B C K F ..
    interpret GoK: composite_simulation A B C K G ..
    show ?thesis
    proof
       write A  (infix "\\A" 55)
       write B  (infix "\\B" 55)
       write C  (infix "\\C" 55)
       write B.join  (infixr "B" 52)
       write C.join  (infixr "C" 52)
       fix t
       show "¬ A.arr t  (σ  τ) t = C.null"
         by (simp add: σ.extensional τ.extensional)
       show "A.ide t  C.src ((σ  τ) t) = FoH.map t"
         by (metis A.arr_def A.ideE C.weakly_extensional_rts_axioms σ.naturality3
             σ.transformation_axioms τ.F.preserves_ide τ.preserves_arr τ.preserves_src
             comp_apply transformation.preserves_src weakly_extensional_rts.src_join_of(1))
       show "A.ide t  C.trg ((σ  τ) t) = GoK.map t"
         by (metis A.arr_resid_iff_con A.ideE C.apex_sym C.trg_join_of(1)
             σ.G.preserves_trg σ.naturality2 σ.naturality3 τ.preserves_arr
             τ.preserves_trg comp_apply)
       assume t: "A.arr t"
       show "(σ  τ) (A.src t) \\C FoH.map t = (σ  τ) (A.trg t)"
         by (simp add: σ.general_naturality(1) τ.naturality1_ax
             τ.preserves_con(2) t)
       show "FoH.map t \\C (σ  τ) (A.src t) = GoK.map t"
         by (simp add: B.con_sym σ.general_naturality(2) τ.naturality2_ax
             τ.preserves_con(2) t)
       show "C.join_of ((σ  τ) (A.src t)) (FoH.map t) ((σ  τ) t)"
       proof -
         have "σ (τ (A.src t)) C F (H t) = σ (τ t)"
         proof (intro C.join_eqI)
           show 1: "C.prfx (σ (τ (A.src t))) (σ (τ t))"
             using t τ.preserves_prfx σ.preserves_prfx by simp
           show 2: "C.prfx (F (H t)) (σ (τ t))"
             using t
             by (meson C.composite_ofE C.prfx_transitive σ.F.preserves_composites
                 σ.naturality1' τ.naturality1' τ.preserves_arr)
           show 3: "σ (τ t) \\C F (H t) = σ (τ (A.src t)) \\C F (H t)"
             by (simp add: A.trg_def σ.general_naturality(1) τ.general_naturality(1)
                 τ.preserves_con(2) t)
           show "σ (τ t) \\C σ (τ (A.src t)) = F (H t) \\C σ (τ (A.src t))"
             using t 1 2 3 C.apex_arr_prfx(1) C.apex_sym C.cube C.extensional
	           C.ideE C.trg_def
             by (smt (verit, del_insts))
         qed
         thus ?thesis
           using t
           by (metis C.join_is_join_of C.joinable_iff_arr_join σ.preserves_arr
               τ.preserves_arr comp_apply)
       qed
     qed
   qed

end