Theory Sepref_HOL_Bindings
section ‹HOL Setup›
theory Sepref_HOL_Bindings
imports Sepref_Tool
begin
subsection ‹Assertion Annotation›
text ‹Annotate an assertion to a term. The term must then be refined with this assertion.›
definition ASSN_ANNOT :: "('a ⇒ 'ai ⇒ assn) ⇒ 'a ⇒ 'a" where [simp]: "ASSN_ANNOT A x ≡ x"
context fixes A :: "'a ⇒ 'ai ⇒ assn" begin
sepref_register "PR_CONST (ASSN_ANNOT A)"
lemma [def_pat_rules]: "ASSN_ANNOT$A ≡ UNPROTECT (ASSN_ANNOT A)" by simp
lemma [sepref_fr_rules]: "(return o (λx. x), RETURN o PR_CONST (ASSN_ANNOT A)) ∈ A⇧d→⇩aA"
by sepref_to_hoare sep_auto
end
lemma annotate_assn: "x ≡ ASSN_ANNOT A x" by simp
subsection ‹Shortcuts›
abbreviation "nat_assn ≡ (id_assn::nat ⇒ _)"
abbreviation "int_assn ≡ (id_assn::int ⇒ _)"
abbreviation "bool_assn ≡ (id_assn::bool ⇒ _)"
subsection ‹Identity Relations›
definition "IS_ID R ≡ R=Id"
definition "IS_BELOW_ID R ≡ R⊆Id"
lemma [safe_constraint_rules]:
"IS_ID Id"
"IS_ID R1 ⟹ IS_ID R2 ⟹ IS_ID (R1 → R2)"
"IS_ID R ⟹ IS_ID (⟨R⟩option_rel)"
"IS_ID R ⟹ IS_ID (⟨R⟩list_rel)"
"IS_ID R1 ⟹ IS_ID R2 ⟹ IS_ID (R1 ×⇩r R2)"
"IS_ID R1 ⟹ IS_ID R2 ⟹ IS_ID (⟨R1,R2⟩sum_rel)"
by (auto simp: IS_ID_def)
lemma [safe_constraint_rules]:
"IS_BELOW_ID Id"
"IS_BELOW_ID R ⟹ IS_BELOW_ID (⟨R⟩option_rel)"
"IS_BELOW_ID R1 ⟹ IS_BELOW_ID R2 ⟹ IS_BELOW_ID (R1 ×⇩r R2)"
"IS_BELOW_ID R1 ⟹ IS_BELOW_ID R2 ⟹ IS_BELOW_ID (⟨R1,R2⟩sum_rel)"
by (auto simp: IS_ID_def IS_BELOW_ID_def option_rel_def sum_rel_def list_rel_def)
lemma IS_BELOW_ID_fun_rel_aux: "R1⊇Id ⟹ IS_BELOW_ID R2 ⟹ IS_BELOW_ID (R1 → R2)"
by (auto simp: IS_BELOW_ID_def dest: fun_relD)
corollary IS_BELOW_ID_fun_rel[safe_constraint_rules]:
"IS_ID R1 ⟹ IS_BELOW_ID R2 ⟹ IS_BELOW_ID (R1 → R2)"
using IS_BELOW_ID_fun_rel_aux[of Id R2]
by (auto simp: IS_ID_def)
lemma IS_BELOW_ID_list_rel[safe_constraint_rules]:
"IS_BELOW_ID R ⟹ IS_BELOW_ID (⟨R⟩list_rel)"
unfolding IS_BELOW_ID_def
proof safe
fix l l'
assume A: "R⊆Id"
assume "(l,l')∈⟨R⟩list_rel"
thus "l=l'"
apply induction
using A by auto
qed
lemma IS_ID_imp_BELOW_ID[constraint_rules]:
"IS_ID R ⟹ IS_BELOW_ID R"
by (auto simp: IS_ID_def IS_BELOW_ID_def )
subsection ‹Inverse Relation›
lemma inv_fun_rel_eq[simp]: "(A→B)¯ = A¯→B¯"
by (auto dest: fun_relD)
lemma inv_option_rel_eq[simp]: "(⟨K⟩option_rel)¯ = ⟨K¯⟩option_rel"
by (auto simp: option_rel_def)
lemma inv_prod_rel_eq[simp]: "(P ×⇩r Q)¯ = P¯ ×⇩r Q¯"
by (auto)
lemma inv_sum_rel_eq[simp]: "(⟨P,Q⟩sum_rel)¯ = ⟨P¯,Q¯⟩sum_rel"
by (auto simp: sum_rel_def)
lemma inv_list_rel_eq[simp]: "(⟨R⟩list_rel)¯ = ⟨R¯⟩list_rel"
unfolding list_rel_def
apply safe
apply (subst list.rel_flip[symmetric])
apply (simp add: conversep_iff[abs_def])
apply (subst list.rel_flip[symmetric])
apply (simp add: conversep_iff[abs_def])
done
lemmas [constraint_simps] =
Relation.converse_Id
inv_fun_rel_eq
inv_option_rel_eq
inv_prod_rel_eq
inv_sum_rel_eq
inv_list_rel_eq
subsection ‹Single Valued and Total Relations›
definition "IS_LEFT_UNIQUE R ≡ single_valued (R¯)"
definition "IS_LEFT_TOTAL R ≡ Domain R = UNIV"
definition "IS_RIGHT_TOTAL R ≡ Range R = UNIV"
abbreviation (input) "IS_RIGHT_UNIQUE ≡ single_valued"
lemmas IS_RIGHT_UNIQUED = single_valuedD
lemma IS_LEFT_UNIQUED: "⟦IS_LEFT_UNIQUE r; (y, x) ∈ r; (z, x) ∈ r⟧ ⟹ y = z"
by (auto simp: IS_LEFT_UNIQUE_def dest: single_valuedD)
lemma prop2p:
"IS_LEFT_UNIQUE R = left_unique (rel2p R)"
"IS_RIGHT_UNIQUE R = right_unique (rel2p R)"
"right_unique (rel2p (R¯)) = left_unique (rel2p R)"
"IS_LEFT_TOTAL R = left_total (rel2p R)"
"IS_RIGHT_TOTAL R = right_total (rel2p R)"
by (auto
simp: IS_LEFT_UNIQUE_def left_unique_def single_valued_def
simp: right_unique_def
simp: IS_LEFT_TOTAL_def left_total_def
simp: IS_RIGHT_TOTAL_def right_total_def
simp: rel2p_def
)
lemma p2prop:
"left_unique P = IS_LEFT_UNIQUE (p2rel P)"
"right_unique P = IS_RIGHT_UNIQUE (p2rel P)"
"left_total P = IS_LEFT_TOTAL (p2rel P)"
"right_total P = IS_RIGHT_TOTAL (p2rel P)"
"bi_unique P ⟷ left_unique P ∧ right_unique P"
by (auto
simp: IS_LEFT_UNIQUE_def left_unique_def single_valued_def
simp: right_unique_def bi_unique_alt_def
simp: IS_LEFT_TOTAL_def left_total_def
simp: IS_RIGHT_TOTAL_def right_total_def
simp: p2rel_def
)
lemmas [safe_constraint_rules] =
single_valued_Id
prod_rel_sv
list_rel_sv
option_rel_sv
sum_rel_sv
lemma [safe_constraint_rules]:
"IS_LEFT_UNIQUE Id"
"IS_LEFT_UNIQUE R1 ⟹ IS_LEFT_UNIQUE R2 ⟹ IS_LEFT_UNIQUE (R1×⇩rR2)"
"IS_LEFT_UNIQUE R1 ⟹ IS_LEFT_UNIQUE R2 ⟹ IS_LEFT_UNIQUE (⟨R1,R2⟩sum_rel)"
"IS_LEFT_UNIQUE R ⟹ IS_LEFT_UNIQUE (⟨R⟩option_rel)"
"IS_LEFT_UNIQUE R ⟹ IS_LEFT_UNIQUE (⟨R⟩list_rel)"
by (auto simp: IS_LEFT_UNIQUE_def prod_rel_sv sum_rel_sv option_rel_sv list_rel_sv)
lemma IS_LEFT_TOTAL_alt: "IS_LEFT_TOTAL R ⟷ (∀x. ∃y. (x,y)∈R)"
by (auto simp: IS_LEFT_TOTAL_def)
lemma IS_RIGHT_TOTAL_alt: "IS_RIGHT_TOTAL R ⟷ (∀x. ∃y. (y,x)∈R)"
by (auto simp: IS_RIGHT_TOTAL_def)
lemma [safe_constraint_rules]:
"IS_LEFT_TOTAL Id"
"IS_LEFT_TOTAL R1 ⟹ IS_LEFT_TOTAL R2 ⟹ IS_LEFT_TOTAL (R1×⇩rR2)"
"IS_LEFT_TOTAL R1 ⟹ IS_LEFT_TOTAL R2 ⟹ IS_LEFT_TOTAL (⟨R1,R2⟩sum_rel)"
"IS_LEFT_TOTAL R ⟹ IS_LEFT_TOTAL (⟨R⟩option_rel)"
apply (auto simp: IS_LEFT_TOTAL_alt sum_rel_def option_rel_def list_rel_def)
apply (rename_tac x; case_tac x; auto)
apply (rename_tac x; case_tac x; auto)
done
lemma [safe_constraint_rules]: "IS_LEFT_TOTAL R ⟹ IS_LEFT_TOTAL (⟨R⟩list_rel)"
unfolding IS_LEFT_TOTAL_alt
proof safe
assume A: "∀x.∃y. (x,y)∈R"
fix l
show "∃l'. (l,l')∈⟨R⟩list_rel"
apply (induction l)
using A
by (auto simp: list_rel_split_right_iff)
qed
lemma [safe_constraint_rules]:
"IS_RIGHT_TOTAL Id"
"IS_RIGHT_TOTAL R1 ⟹ IS_RIGHT_TOTAL R2 ⟹ IS_RIGHT_TOTAL (R1×⇩rR2)"
"IS_RIGHT_TOTAL R1 ⟹ IS_RIGHT_TOTAL R2 ⟹ IS_RIGHT_TOTAL (⟨R1,R2⟩sum_rel)"
"IS_RIGHT_TOTAL R ⟹ IS_RIGHT_TOTAL (⟨R⟩option_rel)"
apply (auto simp: IS_RIGHT_TOTAL_alt sum_rel_def option_rel_def) []
apply (auto simp: IS_RIGHT_TOTAL_alt sum_rel_def option_rel_def) []
apply (auto simp: IS_RIGHT_TOTAL_alt sum_rel_def option_rel_def) []
apply (rename_tac x; case_tac x; auto)
apply (clarsimp simp: IS_RIGHT_TOTAL_alt option_rel_def)
apply (rename_tac x; case_tac x; auto)
done
lemma [safe_constraint_rules]: "IS_RIGHT_TOTAL R ⟹ IS_RIGHT_TOTAL (⟨R⟩list_rel)"
unfolding IS_RIGHT_TOTAL_alt
proof safe
assume A: "∀x.∃y. (y,x)∈R"
fix l
show "∃l'. (l',l)∈⟨R⟩list_rel"
apply (induction l)
using A
by (auto simp: list_rel_split_left_iff)
qed
lemma [constraint_simps]:
"IS_LEFT_TOTAL (R¯) ⟷ IS_RIGHT_TOTAL R "
"IS_RIGHT_TOTAL (R¯) ⟷ IS_LEFT_TOTAL R "
"IS_LEFT_UNIQUE (R¯) ⟷ IS_RIGHT_UNIQUE R"
"IS_RIGHT_UNIQUE (R¯) ⟷ IS_LEFT_UNIQUE R "
by (auto simp: IS_RIGHT_TOTAL_alt IS_LEFT_TOTAL_alt IS_LEFT_UNIQUE_def)
lemma [safe_constraint_rules]:
"IS_RIGHT_UNIQUE A ⟹ IS_RIGHT_TOTAL B ⟹ IS_RIGHT_TOTAL (A→B)"
"IS_RIGHT_TOTAL A ⟹ IS_RIGHT_UNIQUE B ⟹ IS_RIGHT_UNIQUE (A→B)"
"IS_LEFT_UNIQUE A ⟹ IS_LEFT_TOTAL B ⟹ IS_LEFT_TOTAL (A→B)"
"IS_LEFT_TOTAL A ⟹ IS_LEFT_UNIQUE B ⟹ IS_LEFT_UNIQUE (A→B)"
apply (simp_all add: prop2p rel2p)
apply (blast intro!: transfer_raw)+
done
lemma [constraint_rules]:
"IS_BELOW_ID R ⟹ IS_RIGHT_UNIQUE R"
"IS_BELOW_ID R ⟹ IS_LEFT_UNIQUE R"
"IS_ID R ⟹ IS_RIGHT_TOTAL R"
"IS_ID R ⟹ IS_LEFT_TOTAL R"
by (auto simp: IS_BELOW_ID_def IS_ID_def IS_LEFT_UNIQUE_def IS_RIGHT_TOTAL_def IS_LEFT_TOTAL_def
intro: single_valuedI)
thm constraint_rules
subsubsection ‹Additional Parametricity Lemmas›
lemma param_distinct[param]: "⟦IS_LEFT_UNIQUE A; IS_RIGHT_UNIQUE A⟧ ⟹ (distinct, distinct) ∈ ⟨A⟩list_rel → bool_rel"
apply (fold rel2p_def)
apply (simp add: rel2p)
apply (rule distinct_transfer)
apply (simp add: p2prop)
done
lemma param_Image[param]:
assumes "IS_LEFT_UNIQUE A" "IS_RIGHT_UNIQUE A"
shows "((``), (``)) ∈ ⟨A×⇩rB⟩set_rel → ⟨A⟩set_rel → ⟨B⟩set_rel"
apply (clarsimp simp: set_rel_def; intro conjI)
apply (fastforce dest: IS_RIGHT_UNIQUED[OF assms(2)])
apply (fastforce dest: IS_LEFT_UNIQUED[OF assms(1)])
done
lemma pres_eq_iff_svb: "((=),(=))∈K→K→bool_rel ⟷ (single_valued K ∧ single_valued (K¯))"
apply (safe intro!: single_valuedI)
apply (metis (full_types) IdD fun_relD1)
apply (metis (full_types) IdD fun_relD1)
by (auto dest: single_valuedD)
definition "IS_PRES_EQ R ≡ ((=), (=))∈R→R→bool_rel"
lemma [constraint_rules]: "⟦single_valued R; single_valued (R¯)⟧ ⟹ IS_PRES_EQ R"
by (simp add: pres_eq_iff_svb IS_PRES_EQ_def)
subsection ‹Bounded Assertions›
definition "b_rel R P ≡ R ∩ UNIV×Collect P"
definition "b_assn A P ≡ λx y. A x y * ↑(P x)"
lemma b_assn_pure_conv[constraint_simps]: "b_assn (pure R) P = pure (b_rel R P)"
by (auto intro!: ext simp: b_rel_def b_assn_def pure_def)
lemmas [sepref_import_rewrite, sepref_frame_normrel_eqs, fcomp_norm_unfold]
= b_assn_pure_conv[symmetric]
lemma b_rel_nesting[simp]:
"b_rel (b_rel R P1) P2 = b_rel R (λx. P1 x ∧ P2 x)"
by (auto simp: b_rel_def)
lemma b_rel_triv[simp]:
"b_rel R (λ_. True) = R"
by (auto simp: b_rel_def)
lemma b_assn_nesting[simp]:
"b_assn (b_assn A P1) P2 = b_assn A (λx. P1 x ∧ P2 x)"
by (auto simp: b_assn_def pure_def intro!: ext)
lemma b_assn_triv[simp]:
"b_assn A (λ_. True) = A"
by (auto simp: b_assn_def pure_def intro!: ext)
lemmas [simp,constraint_simps,sepref_import_rewrite, sepref_frame_normrel_eqs, fcomp_norm_unfold]
= b_rel_nesting b_assn_nesting
lemma b_rel_simp[simp]: "(x,y)∈b_rel R P ⟷ (x,y)∈R ∧ P y"
by (auto simp: b_rel_def)
lemma b_assn_simp[simp]: "b_assn A P x y = A x y * ↑(P x)"
by (auto simp: b_assn_def)
lemma b_rel_Range[simp]: "Range (b_rel R P) = Range R ∩ Collect P" by auto
lemma b_assn_rdom[simp]: "rdomp (b_assn R P) x ⟷ rdomp R x ∧ P x"
by (auto simp: rdomp_def)
lemma b_rel_below_id[constraint_rules]:
"IS_BELOW_ID R ⟹ IS_BELOW_ID (b_rel R P)"
by (auto simp: IS_BELOW_ID_def)
lemma b_rel_left_unique[constraint_rules]:
"IS_LEFT_UNIQUE R ⟹ IS_LEFT_UNIQUE (b_rel R P)"
by (auto simp: IS_LEFT_UNIQUE_def single_valued_def)
lemma b_rel_right_unique[constraint_rules]:
"IS_RIGHT_UNIQUE R ⟹ IS_RIGHT_UNIQUE (b_rel R P)"
by (auto simp: single_valued_def)
lemma b_assn_is_pure[safe_constraint_rules]:
"is_pure A ⟹ is_pure (b_assn A P)"
by (auto simp: is_pure_conv b_assn_pure_conv)
lemma b_assn_subtyping_match[sepref_frame_match_rules]:
assumes "hn_ctxt (b_assn A P) x y ⟹⇩t hn_ctxt A' x y"
assumes "⟦vassn_tag (hn_ctxt A x y); vassn_tag (hn_ctxt A' x y); P x⟧ ⟹ P' x"
shows "hn_ctxt (b_assn A P) x y ⟹⇩t hn_ctxt (b_assn A' P') x y"
using assms
unfolding hn_ctxt_def b_assn_def entailst_def entails_def
by (fastforce simp: vassn_tag_def mod_star_conv)
lemma b_assn_subtyping_match_eqA[sepref_frame_match_rules]:
assumes "⟦vassn_tag (hn_ctxt A x y); P x⟧ ⟹ P' x"
shows "hn_ctxt (b_assn A P) x y ⟹⇩t hn_ctxt (b_assn A P') x y"
apply (rule b_assn_subtyping_match)
subgoal
unfolding hn_ctxt_def b_assn_def entailst_def entails_def
by (fastforce simp: vassn_tag_def mod_star_conv)
subgoal
using assms .
done
lemma b_assn_subtyping_match_tR[sepref_frame_match_rules]:
assumes "⟦P x⟧ ⟹ hn_ctxt A x y ⟹⇩t hn_ctxt A' x y"
shows "hn_ctxt (b_assn A P) x y ⟹⇩t hn_ctxt A' x y"
using assms
unfolding hn_ctxt_def b_assn_def entailst_def entails_def
by (fastforce simp: vassn_tag_def mod_star_conv)
lemma b_assn_subtyping_match_tL[sepref_frame_match_rules]:
assumes "hn_ctxt A x y ⟹⇩t hn_ctxt A' x y"
assumes "⟦vassn_tag (hn_ctxt A x y)⟧ ⟹ P' x"
shows "hn_ctxt A x y ⟹⇩t hn_ctxt (b_assn A' P') x y"
using assms
unfolding hn_ctxt_def b_assn_def entailst_def entails_def
by (fastforce simp: vassn_tag_def mod_star_conv)
lemma b_assn_subtyping_match_eqA_tR[sepref_frame_match_rules]:
"hn_ctxt (b_assn A P) x y ⟹⇩t hn_ctxt A x y"
unfolding hn_ctxt_def b_assn_def
by (sep_auto intro!: enttI)
lemma b_assn_subtyping_match_eqA_tL[sepref_frame_match_rules]:
assumes "⟦vassn_tag (hn_ctxt A x y)⟧ ⟹ P' x"
shows "hn_ctxt A x y ⟹⇩t hn_ctxt (b_assn A P') x y"
using assms
unfolding hn_ctxt_def b_assn_def entailst_def entails_def
by (fastforce simp: vassn_tag_def mod_star_conv)
lemma b_rel_subtyping_merge[sepref_frame_merge_rules]:
assumes "hn_ctxt A x y ∨⇩A hn_ctxt A' x y ⟹⇩t hn_ctxt Am x y"
shows "hn_ctxt (b_assn A P) x y ∨⇩A hn_ctxt (b_assn A' P') x y ⟹⇩t hn_ctxt (b_assn Am (λx. P x ∨ P' x)) x y"
using assms
unfolding hn_ctxt_def b_assn_def entailst_def entails_def
by (fastforce simp: vassn_tag_def)
lemma b_rel_subtyping_merge_eqA[sepref_frame_merge_rules]:
shows "hn_ctxt (b_assn A P) x y ∨⇩A hn_ctxt (b_assn A P') x y ⟹⇩t hn_ctxt (b_assn A (λx. P x ∨ P' x)) x y"
apply (rule b_rel_subtyping_merge)
by simp
lemma b_rel_subtyping_merge_tL[sepref_frame_merge_rules]:
assumes "hn_ctxt A x y ∨⇩A hn_ctxt A' x y ⟹⇩t hn_ctxt Am x y"
shows "hn_ctxt A x y ∨⇩A hn_ctxt (b_assn A' P') x y ⟹⇩t hn_ctxt Am x y"
using b_rel_subtyping_merge[of A x y A' Am "λ_. True" P', simplified] assms .
lemma b_rel_subtyping_merge_tR[sepref_frame_merge_rules]:
assumes "hn_ctxt A x y ∨⇩A hn_ctxt A' x y ⟹⇩t hn_ctxt Am x y"
shows "hn_ctxt (b_assn A P) x y ∨⇩A hn_ctxt A' x y ⟹⇩t hn_ctxt Am x y"
using b_rel_subtyping_merge[of A x y A' Am P "λ_. True", simplified] assms .
lemma b_rel_subtyping_merge_eqA_tL[sepref_frame_merge_rules]:
shows "hn_ctxt A x y ∨⇩A hn_ctxt (b_assn A P') x y ⟹⇩t hn_ctxt A x y"
using b_rel_subtyping_merge_eqA[of A "λ_. True" x y P', simplified] .
lemma b_rel_subtyping_merge_eqA_tR[sepref_frame_merge_rules]:
shows "hn_ctxt (b_assn A P) x y ∨⇩A hn_ctxt A x y ⟹⇩t hn_ctxt A x y"
using b_rel_subtyping_merge_eqA[of A P x y "λ_. True", simplified] .
lemma b_assn_invalid_merge1: "hn_invalid (b_assn A P) x y ∨⇩A hn_invalid (b_assn A P') x y
⟹⇩t hn_invalid (b_assn A (λx. P x ∨ P' x)) x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemma b_assn_invalid_merge2: "hn_invalid (b_assn A P) x y ∨⇩A hn_invalid A x y
⟹⇩t hn_invalid A x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemma b_assn_invalid_merge3: "hn_invalid A x y ∨⇩A hn_invalid (b_assn A P) x y
⟹⇩t hn_invalid A x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemma b_assn_invalid_merge4: "hn_invalid (b_assn A P) x y ∨⇩A hn_ctxt (b_assn A P') x y
⟹⇩t hn_invalid (b_assn A (λx. P x ∨ P' x)) x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemma b_assn_invalid_merge5: "hn_ctxt (b_assn A P') x y ∨⇩A hn_invalid (b_assn A P) x y
⟹⇩t hn_invalid (b_assn A (λx. P x ∨ P' x)) x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemma b_assn_invalid_merge6: "hn_invalid (b_assn A P) x y ∨⇩A hn_ctxt A x y
⟹⇩t hn_invalid A x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemma b_assn_invalid_merge7: "hn_ctxt A x y ∨⇩A hn_invalid (b_assn A P) x y
⟹⇩t hn_invalid A x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemma b_assn_invalid_merge8: "hn_ctxt (b_assn A P) x y ∨⇩A hn_invalid A x y
⟹⇩t hn_invalid A x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemma b_assn_invalid_merge9: "hn_invalid A x y ∨⇩A hn_ctxt (b_assn A P) x y
⟹⇩t hn_invalid A x y"
by (sep_auto simp: hn_ctxt_def invalid_assn_def entailst_def)
lemmas b_assn_invalid_merge[sepref_frame_merge_rules] =
b_assn_invalid_merge1
b_assn_invalid_merge2
b_assn_invalid_merge3
b_assn_invalid_merge4
b_assn_invalid_merge5
b_assn_invalid_merge6
b_assn_invalid_merge7
b_assn_invalid_merge8
b_assn_invalid_merge9
abbreviation nbn_rel :: "nat ⇒ (nat × nat) set"
where "nbn_rel n ≡ b_rel nat_rel (λx::nat. x<n)"
abbreviation nbn_assn :: "nat ⇒ nat ⇒ nat ⇒ assn"
where "nbn_assn n ≡ b_assn nat_assn (λx::nat. x<n)"
subsection ‹Tool Setup›
lemmas [sepref_relprops] =
sepref_relpropI[of IS_LEFT_UNIQUE]
sepref_relpropI[of IS_RIGHT_UNIQUE]
sepref_relpropI[of IS_LEFT_TOTAL]
sepref_relpropI[of IS_RIGHT_TOTAL]
sepref_relpropI[of is_pure]
sepref_relpropI[of "IS_PURE Φ" for Φ]
sepref_relpropI[of IS_ID]
sepref_relpropI[of IS_BELOW_ID]
lemma [sepref_relprops_simps]:
"CONSTRAINT (IS_PURE IS_ID) A ⟹ CONSTRAINT (IS_PURE IS_BELOW_ID) A"
"CONSTRAINT (IS_PURE IS_ID) A ⟹ CONSTRAINT (IS_PURE IS_LEFT_TOTAL) A"
"CONSTRAINT (IS_PURE IS_ID) A ⟹ CONSTRAINT (IS_PURE IS_RIGHT_TOTAL) A"
"CONSTRAINT (IS_PURE IS_BELOW_ID) A ⟹ CONSTRAINT (IS_PURE IS_LEFT_UNIQUE) A"
"CONSTRAINT (IS_PURE IS_BELOW_ID) A ⟹ CONSTRAINT (IS_PURE IS_RIGHT_UNIQUE) A"
by (auto
simp: IS_ID_def IS_BELOW_ID_def IS_PURE_def IS_LEFT_UNIQUE_def
simp: IS_LEFT_TOTAL_def IS_RIGHT_TOTAL_def
simp: single_valued_below_Id)
declare True_implies_equals[sepref_relprops_simps]
lemma [sepref_relprops_transform]: "single_valued (R¯) = IS_LEFT_UNIQUE R"
by (auto simp: IS_LEFT_UNIQUE_def)
subsection ‹HOL Combinators›
lemma hn_if[sepref_comb_rules]:
assumes P: "Γ ⟹⇩t Γ1 * hn_val bool_rel a a'"
assumes RT: "a ⟹ hn_refine (Γ1 * hn_val bool_rel a a') b' Γ2b R b"
assumes RE: "¬a ⟹ hn_refine (Γ1 * hn_val bool_rel a a') c' Γ2c R c"
assumes IMP: "TERM If ⟹ Γ2b ∨⇩A Γ2c ⟹⇩t Γ'"
shows "hn_refine Γ (if a' then b' else c') Γ' R (If$a$b$c)"
using P RT RE IMP[OF TERMI]
unfolding APP_def PROTECT2_def
by (rule hnr_If)
lemmas [sepref_opt_simps] = if_True if_False
lemma hn_let[sepref_comb_rules]:
assumes P: "Γ ⟹⇩t Γ1 * hn_ctxt R v v'"
assumes R: "⋀x x'. x=v ⟹ hn_refine (Γ1 * hn_ctxt R x x') (f' x')
(Γ' x x') R2 (f x)"
assumes F: "⋀x x'. Γ' x x' ⟹⇩t Γ2 * hn_ctxt R' x x'"
shows
"hn_refine Γ (Let v' f') (Γ2 * hn_ctxt R' v v') R2 (Let$v$(λ⇩2x. f x))"
apply (rule hn_refine_cons[OF P _ F entt_refl])
apply (simp)
apply (rule R)
by simp
subsection ‹Basic HOL types›
lemma hnr_default[sepref_import_param]: "(default,default)∈Id" by simp
lemma unit_hnr[sepref_import_param]: "((),())∈unit_rel" by auto
lemmas [sepref_import_param] =
param_bool
param_nat1
param_int
lemmas [id_rules] =
itypeI[Pure.of 0 "TYPE (nat)"]
itypeI[Pure.of 0 "TYPE (int)"]
itypeI[Pure.of 1 "TYPE (nat)"]
itypeI[Pure.of 1 "TYPE (int)"]
itypeI[Pure.of numeral "TYPE (num ⇒ nat)"]
itypeI[Pure.of numeral "TYPE (num ⇒ int)"]
itype_self[of num.One]
itype_self[of num.Bit0]
itype_self[of num.Bit1]
lemma param_min_nat[param,sepref_import_param]: "(min,min)∈nat_rel → nat_rel → nat_rel" by auto
lemma param_max_nat[param,sepref_import_param]: "(max,max)∈nat_rel → nat_rel → nat_rel" by auto
lemma param_min_int[param,sepref_import_param]: "(min,min)∈int_rel → int_rel → int_rel" by auto
lemma param_max_int[param,sepref_import_param]: "(max,max)∈int_rel → int_rel → int_rel" by auto
lemma uminus_hnr[sepref_import_param]: "(uminus,uminus)∈int_rel → int_rel" by auto
lemma nat_param[param,sepref_import_param]: "(nat,nat) ∈ int_rel → nat_rel" by auto
lemma int_param[param,sepref_import_param]: "(int,int) ∈ nat_rel → int_rel" by auto
subsection "Product"
lemmas [sepref_import_rewrite, sepref_frame_normrel_eqs, fcomp_norm_unfold] = prod_assn_pure_conv[symmetric]
lemma prod_assn_precise[constraint_rules]:
"precise P1 ⟹ precise P2 ⟹ precise (prod_assn P1 P2)"
apply rule
apply (clarsimp simp: prod_assn_def star_assoc)
apply safe
apply (erule (1) prec_frame) apply frame_inference+
apply (erule (1) prec_frame) apply frame_inference+
done
lemma
"precise P1 ⟹ precise P2 ⟹ precise (prod_assn P1 P2)"
apply rule
apply (clarsimp simp: prod_assn_def)
proof (rule conjI)
fix F F' h as a b a' b' ap bp
assume P1: "precise P1" and P2: "precise P2"
assume F: "(h, as) ⊨ P1 a ap * P2 b bp * F ∧⇩A P1 a' ap * P2 b' bp * F'"
from F have "(h, as) ⊨ P1 a ap * (P2 b bp * F) ∧⇩A P1 a' ap * (P2 b' bp * F')"
by (simp only: mult.assoc)
with preciseD[OF P1] show "a=a'" .
from F have "(h, as) ⊨ P2 b bp * (P1 a ap * F) ∧⇩A P2 b' bp * (P1 a' ap * F')"
by (simp only: mult.assoc[where 'a=assn] mult.commute[where 'a=assn] mult.left_commute[where 'a=assn])
with preciseD[OF P2] show "b=b'" .
qed
lemma intf_of_prod_assn[intf_of_assn]:
assumes "intf_of_assn A TYPE('a)" "intf_of_assn B TYPE('b)"
shows "intf_of_assn (prod_assn A B) TYPE('a * 'b)"
by simp
lemma pure_prod[constraint_rules]:
assumes P1: "is_pure P1" and P2: "is_pure P2"
shows "is_pure (prod_assn P1 P2)"
proof -
from P1 obtain P1' where P1': "⋀x x'. P1 x x' = ↑(P1' x x')"
using is_pureE by blast
from P2 obtain P2' where P2': "⋀x x'. P2 x x' = ↑(P2' x x')"
using is_pureE by blast
show ?thesis proof
fix x x'
show "prod_assn P1 P2 x x' =
↑ (case (x, x') of ((a1, a2), c1, c2) ⇒ P1' a1 c1 ∧ P2' a2 c2)"
unfolding prod_assn_def
apply (simp add: P1' P2' split: prod.split)
done
qed
qed
lemma prod_frame_match[sepref_frame_match_rules]:
assumes "hn_ctxt A (fst x) (fst y) ⟹⇩t hn_ctxt A' (fst x) (fst y)"
assumes "hn_ctxt B (snd x) (snd y) ⟹⇩t hn_ctxt B' (snd x) (snd y)"
shows "hn_ctxt (prod_assn A B) x y ⟹⇩t hn_ctxt (prod_assn A' B') x y"
apply (cases x; cases y; simp)
apply (simp add: hn_ctxt_def)
apply (rule entt_star_mono)
using assms apply (auto simp: hn_ctxt_def)
done
lemma prod_frame_merge[sepref_frame_merge_rules]:
assumes "hn_ctxt A (fst x) (fst y) ∨⇩A hn_ctxt A' (fst x) (fst y) ⟹⇩t hn_ctxt Am (fst x) (fst y)"
assumes "hn_ctxt B (snd x) (snd y) ∨⇩A hn_ctxt B' (snd x) (snd y) ⟹⇩t hn_ctxt Bm (snd x) (snd y)"
shows "hn_ctxt (prod_assn A B) x y ∨⇩A hn_ctxt (prod_assn A' B') x y ⟹⇩t hn_ctxt (prod_assn Am Bm) x y"
by (blast intro: entt_disjE prod_frame_match
entt_disjD1[OF assms(1)] entt_disjD2[OF assms(1)]
entt_disjD1[OF assms(2)] entt_disjD2[OF assms(2)])
lemma entt_invalid_prod: "hn_invalid (prod_assn A B) p p' ⟹⇩t hn_ctxt (prod_assn (invalid_assn A) (invalid_assn B)) p p'"
apply (simp add: hn_ctxt_def invalid_assn_def[abs_def])
apply (rule enttI)
apply clarsimp
apply (cases p; cases p'; auto simp: mod_star_conv pure_def)
done
lemmas invalid_prod_merge[sepref_frame_merge_rules] = gen_merge_cons[OF entt_invalid_prod]
lemma prod_assn_ctxt: "prod_assn A1 A2 x y = z ⟹ hn_ctxt (prod_assn A1 A2) x y = z"
by (simp add: hn_ctxt_def)
lemma hn_case_prod'[sepref_prep_comb_rule,sepref_comb_rules]:
assumes FR: "Γ⟹⇩thn_ctxt (prod_assn P1 P2) p' p * Γ1"
assumes Pair: "⋀a1 a2 a1' a2'. ⟦p'=(a1',a2')⟧
⟹ hn_refine (hn_ctxt P1 a1' a1 * hn_ctxt P2 a2' a2 * Γ1 * hn_invalid (prod_assn P1 P2) p' p) (f a1 a2)
(hn_ctxt P1' a1' a1 * hn_ctxt P2' a2' a2 * hn_ctxt XX1 p' p * Γ1') R (f' a1' a2')"
shows "hn_refine Γ (case_prod f p) (hn_ctxt (prod_assn P1' P2') p' p * Γ1')
R (case_prod$(λ⇩2a b. f' a b)$p')" (is "?G Γ")
apply1 (rule hn_refine_cons_pre[OF FR])
apply1 extract_hnr_invalids
apply1 (cases p; cases p'; simp add: prod_assn_pair_conv[THEN prod_assn_ctxt])
apply (rule hn_refine_cons[OF _ Pair _ entt_refl])
applyS (simp add: hn_ctxt_def)
applyS simp
applyS (simp add: hn_ctxt_def entt_fr_refl entt_fr_drop)
done
lemma hn_case_prod_old:
assumes P: "Γ⟹⇩tΓ1 * hn_ctxt (prod_assn P1 P2) p' p"
assumes R: "⋀a1 a2 a1' a2'. ⟦p'=(a1',a2')⟧
⟹ hn_refine (Γ1 * hn_ctxt P1 a1' a1 * hn_ctxt P2 a2' a2 * hn_invalid (prod_assn P1 P2) p' p) (f a1 a2)
(Γh a1 a1' a2 a2') R (f' a1' a2')"
assumes M: "⋀a1 a1' a2 a2'. Γh a1 a1' a2 a2'
⟹⇩t Γ' * hn_ctxt P1' a1' a1 * hn_ctxt P2' a2' a2 * hn_ctxt Pxx p' p"
shows "hn_refine Γ (case_prod f p) (Γ' * hn_ctxt (prod_assn P1' P2') p' p)
R (case_prod$(λ⇩2a b. f' a b)$p')"
apply1 (cases p; cases p'; simp)
apply1 (rule hn_refine_cons_pre[OF P])
apply (rule hn_refine_preI)
apply (simp add: hn_ctxt_def assn_aci)
apply (rule hn_refine_cons[OF _ R])
apply1 (rule enttI)
applyS (sep_auto simp add: hn_ctxt_def invalid_assn_def mod_star_conv)
applyS simp
apply1 (rule entt_trans[OF M])
applyS (sep_auto intro!: enttI simp: hn_ctxt_def)
applyS simp
done
lemma hn_Pair[sepref_fr_rules]: "hn_refine
(hn_ctxt P1 x1 x1' * hn_ctxt P2 x2 x2')
(return (x1',x2'))
(hn_invalid P1 x1 x1' * hn_invalid P2 x2 x2')
(prod_assn P1 P2)
(RETURN$(Pair$x1$x2))"
unfolding hn_refine_def
apply (sep_auto simp: hn_ctxt_def prod_assn_def)
apply (rule ent_frame_fwd[OF invalidate_clone'[of P1]], frame_inference)
apply (rule ent_frame_fwd[OF invalidate_clone'[of P2]], frame_inference)
apply sep_auto
done
lemma fst_hnr[sepref_fr_rules]: "(return o fst,RETURN o fst) ∈ (prod_assn A B)⇧d →⇩a A"
by sepref_to_hoare sep_auto
lemma snd_hnr[sepref_fr_rules]: "(return o snd,RETURN o snd) ∈ (prod_assn A B)⇧d →⇩a B"
by sepref_to_hoare sep_auto
lemmas [constraint_simps] = prod_assn_pure_conv
lemmas [sepref_import_param] = param_prod_swap
lemma rdomp_prodD[dest!]: "rdomp (prod_assn A B) (a,b) ⟹ rdomp A a ∧ rdomp B b"
unfolding rdomp_def prod_assn_def
by (sep_auto simp: mod_star_conv)
subsection "Option"
fun option_assn :: "('a ⇒ 'c ⇒ assn) ⇒ 'a option ⇒ 'c option ⇒ assn" where
"option_assn P None None = emp"
| "option_assn P (Some a) (Some c) = P a c"
| "option_assn _ _ _ = false"
lemma option_assn_simps[simp]:
"option_assn P None v' = ↑(v'=None)"
"option_assn P v None = ↑(v=None)"
apply (cases v', simp_all)
apply (cases v, simp_all)
done
lemma option_assn_alt_def: "option_assn R a b =
(case (a,b) of (Some x, Some y) ⇒ R x y
| (None,None) ⇒ emp
| _ ⇒ false)"
by (auto split: option.split)
lemma option_assn_pure_conv[constraint_simps]: "option_assn (pure R) = pure (⟨R⟩option_rel)"
apply (intro ext)
apply (rename_tac a c)
apply (case_tac "(pure R,a,c)" rule: option_assn.cases)
by (auto simp: pure_def)
lemmas [sepref_import_rewrite, sepref_frame_normrel_eqs, fcomp_norm_unfold] = option_assn_pure_conv[symmetric]
lemma hr_comp_option_conv[simp, fcomp_norm_unfold]: "
hr_comp (option_assn R) (⟨R'⟩option_rel)
= option_assn (hr_comp R R')"
unfolding hr_comp_def[abs_def]
apply (intro ext ent_iffI)
apply solve_entails
apply (case_tac "(R,b,c)" rule: option_assn.cases)
apply clarsimp_all
apply (sep_auto simp: option_assn_alt_def split: option.splits)
apply (clarsimp simp: option_assn_alt_def split: option.splits; safe)
apply (sep_auto split: option.splits)
apply (intro ent_ex_preI)
apply (rule ent_ex_postI)
apply (sep_auto split: option.splits)
done
lemma option_assn_precise[safe_constraint_rules]:
assumes "precise P"
shows "precise (option_assn P)"
proof
fix a a' p h F F'
assume A: "h ⊨ option_assn P a p * F ∧⇩A option_assn P a' p * F'"
thus "a=a'" proof (cases "(P,a,p)" rule: option_assn.cases)
case (2 _ av pv) hence [simp]: "a=Some av" "p=Some pv" by simp_all
from A obtain av' where [simp]: "a'=Some av'" by (cases a', simp_all)
from A have "h ⊨ P av pv * F ∧⇩A P av' pv * F'" by simp
with ‹precise P› have "av=av'" by (rule preciseD)
thus ?thesis by simp
qed simp_all
qed
lemma pure_option[safe_constraint_rules]:
assumes P: "is_pure P"
shows "is_pure (option_assn P)"
proof -
from P obtain P' where P': "⋀x x'. P x x' = ↑(P' x x')"
using is_pureE by blast
show ?thesis proof
fix x x'
show "option_assn P x x' =
↑ (case (x, x') of
(None,None) ⇒ True | (Some v, Some v') ⇒ P' v v' | _ ⇒ False
)"
apply (simp add: P' split: prod.split option.split)
done
qed
qed
lemma hn_ctxt_option: "option_assn A x y = z ⟹ hn_ctxt (option_assn A) x y = z"
by (simp add: hn_ctxt_def)
lemma hn_case_option[sepref_prep_comb_rule, sepref_comb_rules]:
fixes p p' P
defines [simp]: "INVE ≡ hn_invalid (option_assn P) p p'"
assumes FR: "Γ ⟹⇩t hn_ctxt (option_assn P) p p' * F"
assumes Rn: "p=None ⟹ hn_refine (hn_ctxt (option_assn P) p p' * F) f1' (hn_ctxt XX1 p p' * Γ1') R f1"
assumes Rs: "⋀x x'. ⟦ p=Some x; p'=Some x' ⟧ ⟹
hn_refine (hn_ctxt P x x' * INVE * F) (f2' x') (hn_ctxt P' x x' * hn_ctxt XX2 p p' * Γ2') R (f2 x)"
assumes MERGE1: "Γ1' ∨⇩A Γ2' ⟹⇩t Γ'"
shows "hn_refine Γ (case_option f1' f2' p') (hn_ctxt (option_assn P') p p' * Γ') R (case_option$f1$(λ⇩2x. f2 x)$p)"
apply (rule hn_refine_cons_pre[OF FR])
apply1 extract_hnr_invalids
apply (cases p; cases p'; simp add: option_assn.simps[THEN hn_ctxt_option])
subgoal
apply (rule hn_refine_cons[OF _ Rn _ entt_refl]; assumption?)
applyS (simp add: hn_ctxt_def)
apply (subst mult.commute, rule entt_fr_drop)
apply (rule entt_trans[OF _ MERGE1])
apply (simp add: ent_disjI1' ent_disjI2')
done
subgoal
apply (rule hn_refine_cons[OF _ Rs _ entt_refl]; assumption?)
applyS (simp add: hn_ctxt_def)
apply (rule entt_star_mono)
apply1 (rule entt_fr_drop)
applyS (simp add: hn_ctxt_def)
apply1 (rule entt_trans[OF _ MERGE1])
applyS (simp add: hn_ctxt_def)
done
done
lemma hn_None[sepref_fr_rules]:
"hn_refine emp (return None) emp (option_assn P) (RETURN$None)"
by rule sep_auto
lemma hn_Some[sepref_fr_rules]: "hn_refine
(hn_ctxt P v v')
(return (Some v'))
(hn_invalid P v v')
(option_assn P)
(RETURN$(Some$v))"
by rule (sep_auto simp: hn_ctxt_def invalidate_clone')
definition "imp_option_eq eq a b ≡ case (a,b) of
(None,None) ⇒ return True
| (Some a, Some b) ⇒ eq a b
| _ ⇒ return False"
lemma option_assn_eq[sepref_comb_rules]:
fixes a b :: "'a option"
assumes F1: "Γ ⟹⇩t hn_ctxt (option_assn P) a a' * hn_ctxt (option_assn P) b b' * Γ1"
assumes EQ: "⋀va va' vb vb'. hn_refine
(hn_ctxt P va va' * hn_ctxt P vb vb' * Γ1)
(eq' va' vb')
(Γ' va va' vb vb')
bool_assn
(RETURN$((=) $va$vb))"
assumes F2:
"⋀va va' vb vb'.
Γ' va va' vb vb' ⟹⇩t hn_ctxt P va va' * hn_ctxt P vb vb' * Γ1"
shows "hn_refine
Γ
(imp_option_eq eq' a' b')
(hn_ctxt (option_assn P) a a' * hn_ctxt (option_assn P) b b' * Γ1)
bool_assn
(RETURN$((=) $a$b))"
apply (rule hn_refine_cons_pre[OF F1])
unfolding imp_option_eq_def
apply rule
apply (simp split: option.split add: hn_ctxt_def, intro impI conjI)
apply (sep_auto split: option.split simp: hn_ctxt_def pure_def)
apply (cases a, (sep_auto split: option.split simp: hn_ctxt_def pure_def)+)[]
apply (cases a, (sep_auto split: option.split simp: hn_ctxt_def pure_def)+)[]
apply (cases b, (sep_auto split: option.split simp: hn_ctxt_def pure_def)+)[]
apply (rule cons_post_rule)
apply (rule hn_refineD[OF EQ[unfolded hn_ctxt_def]])
apply simp
apply (rule ent_frame_fwd[OF F2[THEN enttD,unfolded hn_ctxt_def]])
apply (fr_rot 2)
apply (fr_rot_rhs 1)
apply (rule fr_refl)
apply (rule ent_refl)
apply (sep_auto simp: pure_def)
done
lemma [pat_rules]:
"(=) $a$None ≡ is_None$a"
"(=) $None$a ≡ is_None$a"
apply (rule eq_reflection, simp split: option.split)+
done
lemma hn_is_None[sepref_fr_rules]: "hn_refine
(hn_ctxt (option_assn P) a a')
(return (is_None a'))
(hn_ctxt (option_assn P) a a')
bool_assn
(RETURN$(is_None$a))"
apply rule
apply (sep_auto split: option.split simp: hn_ctxt_def pure_def)
done
lemma (in -) sepref_the_complete[sepref_fr_rules]:
assumes "x≠None"
shows "hn_refine
(hn_ctxt (option_assn R) x xi)
(return (the xi))
(hn_invalid (option_assn R) x xi)
(R)
(RETURN$(the$x))"
using assms
apply (cases x)
apply simp
apply (cases xi)
apply (simp add: hn_ctxt_def)
apply rule
apply (sep_auto simp: hn_ctxt_def invalidate_clone' vassn_tagI invalid_assn_const)
done
lemma (in -) sepref_the_id:
assumes "CONSTRAINT (IS_PURE IS_ID) R"
shows "hn_refine
(hn_ctxt (option_assn R) x xi)
(return (the xi))
(hn_ctxt (option_assn R) x xi)
(R)
(RETURN$(the$x))"
using assms
apply (clarsimp simp: IS_PURE_def IS_ID_def hn_ctxt_def is_pure_conv)
apply (cases x)
apply simp
apply (cases xi)
apply (simp add: hn_ctxt_def invalid_assn_def)
apply rule apply (sep_auto simp: pure_def)
apply rule apply (sep_auto)
apply (simp add: option_assn_pure_conv)
apply rule apply (sep_auto simp: pure_def invalid_assn_def)
done
subsection "Lists"
fun list_assn :: "('a ⇒ 'c ⇒ assn) ⇒ 'a list ⇒ 'c list ⇒ assn" where
"list_assn P [] [] = emp"
| "list_assn P (a#as) (c#cs) = P a c * list_assn P as cs"
| "list_assn _ _ _ = false"
lemma list_assn_aux_simps[simp]:
"list_assn P [] l' = (↑(l'=[]))"
"list_assn P l [] = (↑(l=[]))"
unfolding hn_ctxt_def
apply (cases l')
apply simp
apply simp
apply (cases l)
apply simp
apply simp
done
lemma list_assn_aux_append[simp]:
"length l1=length l1' ⟹
list_assn P (l1@l2) (l1'@l2')
= list_assn P l1 l1' * list_assn P l2 l2'"
apply (induct rule: list_induct2)
apply simp
apply (simp add: star_assoc)
done
lemma list_assn_aux_ineq_len: "length l ≠ length li ⟹ list_assn A l li = false"
proof (induction l arbitrary: li)
case (Cons x l li) thus ?case by (cases li; auto)
qed simp
lemma list_assn_aux_append2[simp]:
assumes "length l2=length l2'"
shows "list_assn P (l1@l2) (l1'@l2')
= list_assn P l1 l1' * list_assn P l2 l2'"
apply (cases "length l1 = length l1'")
apply (erule list_assn_aux_append)
apply (simp add: list_assn_aux_ineq_len assms)
done
lemma list_assn_pure_conv[constraint_simps]: "list_assn (pure R) = pure (⟨R⟩list_rel)"
proof (intro ext)
fix l li
show "list_assn (pure R) l li = pure (⟨R⟩list_rel) l li"
apply (induction "pure R" l li rule: list_assn.induct)
by (auto simp: pure_def)
qed
lemmas [sepref_import_rewrite, sepref_frame_normrel_eqs, fcomp_norm_unfold] = list_assn_pure_conv[symmetric]
lemma list_assn_simps[simp]:
"hn_ctxt (list_assn P) [] l' = (↑(l'=[]))"
"hn_ctxt (list_assn P) l [] = (↑(l=[]))"
"hn_ctxt (list_assn P) [] [] = emp"
"hn_ctxt (list_assn P) (a#as) (c#cs) = hn_ctxt P a c * hn_ctxt (list_assn P) as cs"
"hn_ctxt (list_assn P) (a#as) [] = false"
"hn_ctxt (list_assn P) [] (c#cs) = false"
unfolding hn_ctxt_def
apply (cases l')
apply simp
apply simp
apply (cases l)
apply simp
apply simp
apply simp_all
done
lemma list_assn_precise[constraint_rules]: "precise P ⟹ precise (list_assn P)"
proof
fix l1 l2 l h F1 F2
assume P: "precise P"
assume "h⊨list_assn P l1 l * F1 ∧⇩A list_assn P l2 l * F2"
thus "l1=l2"
proof (induct l arbitrary: l1 l2 F1 F2)
case Nil thus ?case by simp
next
case (Cons a ls)
from Cons obtain a1 ls1 where [simp]: "l1=a1#ls1"
by (cases l1, simp)
from Cons obtain a2 ls2 where [simp]: "l2=a2#ls2"
by (cases l2, simp)
from Cons.prems have M:
"h ⊨ P a1 a * list_assn P ls1 ls * F1
∧⇩A P a2 a * list_assn P ls2 ls * F2" by simp
have "a1=a2"
apply (rule preciseD[OF P, where a=a1 and a'=a2 and p=a
and F= "list_assn P ls1 ls * F1"
and F'="list_assn P ls2 ls * F2"
])
using M
by (simp add: star_assoc)
moreover have "ls1=ls2"
apply (rule Cons.hyps[where ?F1.0="P a1 a * F1" and ?F2.0="P a2 a * F2"])
using M
by (simp only: star_aci)
ultimately show ?case by simp
qed
qed
lemma list_assn_pure[constraint_rules]:
assumes P: "is_pure P"
shows "is_pure (list_assn P)"
proof -
from P obtain P' where P_eq: "⋀x x'. P x x' = ↑(P' x x')"
by (rule is_pureE) blast
{
fix l l'
have "list_assn P l l' = ↑(list_all2 P' l l')"
by (induct P≡P l l' rule: list_assn.induct)
(simp_all add: P_eq)
} thus ?thesis by rule
qed
lemma list_assn_mono:
"⟦⋀x x'. P x x'⟹⇩AP' x x'⟧ ⟹ list_assn P l l' ⟹⇩A list_assn P' l l'"
unfolding hn_ctxt_def
apply (induct P l l' rule: list_assn.induct)
by (auto intro: ent_star_mono)
lemma list_assn_monot:
"⟦⋀x x'. P x x'⟹⇩tP' x x'⟧ ⟹ list_assn P l l' ⟹⇩t list_assn P' l l'"
unfolding hn_ctxt_def
apply (induct P l l' rule: list_assn.induct)
by (auto intro: entt_star_mono)
lemma list_match_cong[sepref_frame_match_rules]:
"⟦⋀x x'. ⟦x∈set l; x'∈set l'⟧ ⟹ hn_ctxt A x x' ⟹⇩t hn_ctxt A' x x' ⟧ ⟹ hn_ctxt (list_assn A) l l' ⟹⇩t hn_ctxt (list_assn A') l l'"
unfolding hn_ctxt_def
by (induct A l l' rule: list_assn.induct) (simp_all add: entt_star_mono)
lemma list_merge_cong[sepref_frame_merge_rules]:
assumes "⋀x x'. ⟦x∈set l; x'∈set l'⟧ ⟹ hn_ctxt A x x' ∨⇩A hn_ctxt A' x x' ⟹⇩t hn_ctxt Am x x'"
shows "hn_ctxt (list_assn A) l l' ∨⇩A hn_ctxt (list_assn A') l l' ⟹⇩t hn_ctxt (list_assn Am) l l'"
apply (blast intro: entt_disjE list_match_cong entt_disjD1[OF assms] entt_disjD2[OF assms])
done
lemma invalid_list_split:
"invalid_assn (list_assn A) (x#xs) (y#ys) ⟹⇩t invalid_assn A x y * invalid_assn (list_assn A) xs ys"
by (fastforce simp: invalid_assn_def intro!: enttI simp: mod_star_conv)
lemma entt_invalid_list: "hn_invalid (list_assn A) l l' ⟹⇩t hn_ctxt (list_assn (invalid_assn A)) l l'"
apply (induct A l l' rule: list_assn.induct)
applyS simp
subgoal
apply1 (simp add: hn_ctxt_def cong del: invalid_assn_cong)
apply1 (rule entt_trans[OF invalid_list_split])
apply (rule entt_star_mono)
applyS simp
apply (rule entt_trans)
applyS assumption
applyS simp
done
applyS (simp add: hn_ctxt_def invalid_assn_def)
applyS (simp add: hn_ctxt_def invalid_assn_def)
done
lemmas invalid_list_merge[sepref_frame_merge_rules] = gen_merge_cons[OF entt_invalid_list]
lemma list_assn_comp[fcomp_norm_unfold]: "hr_comp (list_assn A) (⟨B⟩list_rel) = list_assn (hr_comp A B)"
proof (intro ext)
{ fix x l y m
have "hr_comp (list_assn A) (⟨B⟩list_rel) (x # l) (y # m) =
hr_comp A B x y * hr_comp (list_assn A) (⟨B⟩list_rel) l m"
by (sep_auto
simp: hr_comp_def list_rel_split_left_iff
intro!: ent_ex_preI ent_iffI)
} note aux = this
fix l li
show "hr_comp (list_assn A) (⟨B⟩list_rel) l li = list_assn (hr_comp A B) l li"
apply (induction l arbitrary: li; case_tac li; intro ent_iffI)
apply (sep_auto simp: hr_comp_def; fail)+
by (simp_all add: aux)
qed
lemma hn_ctxt_eq: "A x y = z ⟹ hn_ctxt A x y = z" by (simp add: hn_ctxt_def)
lemmas hn_ctxt_list = hn_ctxt_eq[of "list_assn A" for A]
lemma hn_case_list[sepref_prep_comb_rule, sepref_comb_rules]:
fixes p p' P
defines [simp]: "INVE ≡ hn_invalid (list_assn P) p p'"
assumes FR: "Γ ⟹⇩t hn_ctxt (list_assn P) p p' * F"
assumes Rn: "p=[] ⟹ hn_refine (hn_ctxt (list_assn P) p p' * F) f1' (hn_ctxt XX1 p p' * Γ1') R f1"
assumes Rs: "⋀x l x' l'. ⟦ p=x#l; p'=x'#l' ⟧ ⟹
hn_refine (hn_ctxt P x x' * hn_ctxt (list_assn P) l l' * INVE * F) (f2' x' l') (hn_ctxt P1' x x' * hn_ctxt (list_assn P2') l l' * hn_ctxt XX2 p p' * Γ2') R (f2 x l)"
assumes MERGE1[unfolded hn_ctxt_def]: "⋀x x'. hn_ctxt P1' x x' ∨⇩A hn_ctxt P2' x x' ⟹⇩t hn_ctxt P' x x'"
assumes MERGE2: "Γ1' ∨⇩A Γ2' ⟹⇩t Γ'"
shows "hn_refine Γ (case_list f1' f2' p') (hn_ctxt (list_assn P') p p' * Γ') R (case_list$f1$(λ⇩2x l. f2 x l)$p)"
apply (rule hn_refine_cons_pre[OF FR])
apply1 extract_hnr_invalids
apply (cases p; cases p'; simp add: list_assn.simps[THEN hn_ctxt_list])
subgoal
apply (rule hn_refine_cons[OF _ Rn _ entt_refl]; assumption?)
applyS (simp add: hn_ctxt_def)
apply (subst mult.commute, rule entt_fr_drop)
apply (rule entt_trans[OF _ MERGE2])
apply (simp add: ent_disjI1' ent_disjI2')
done
subgoal
apply (rule hn_refine_cons[OF _ Rs _ entt_refl]; assumption?)
applyS (simp add: hn_ctxt_def)
apply (rule entt_star_mono)
apply1 (rule entt_fr_drop)
apply (rule entt_star_mono)
apply1 (simp add: hn_ctxt_def)
apply1 (rule entt_trans[OF _ MERGE1])
applyS (simp)
apply1 (simp add: hn_ctxt_def)
apply (rule list_assn_monot)
apply1 (rule entt_trans[OF _ MERGE1])
applyS (simp)
apply1 (rule entt_trans[OF _ MERGE2])
applyS (simp)
done
done
lemma hn_Nil[sepref_fr_rules]:
"hn_refine emp (return []) emp (list_assn P) (RETURN$[])"
unfolding hn_refine_def
by sep_auto
lemma hn_Cons[sepref_fr_rules]: "hn_refine (hn_ctxt P x x' * hn_ctxt (list_assn P) xs xs')
(return (x'#xs')) (hn_invalid P x x' * hn_invalid (list_assn P) xs xs') (list_assn P)
(RETURN$((#) $x$xs))"
unfolding hn_refine_def
apply (sep_auto simp: hn_ctxt_def)
apply (rule ent_frame_fwd[OF invalidate_clone'[of P]], frame_inference)
apply (rule ent_frame_fwd[OF invalidate_clone'[of "list_assn P"]], frame_inference)
apply solve_entails
done
lemma list_assn_aux_len:
"list_assn P l l' = list_assn P l l' * ↑(length l = length l')"
apply (induct P≡P l l' rule: list_assn.induct)
apply simp_all
subgoal for a as c cs
by (erule_tac t="list_assn P as cs" in subst[OF sym]) simp
done
lemma list_assn_aux_eqlen_simp:
"vassn_tag (list_assn P l l') ⟹ length l' = length l"
"h ⊨ (list_assn P l l') ⟹ length l' = length l"
apply (subst (asm) list_assn_aux_len; auto simp: vassn_tag_def)+
done
lemma hn_append[sepref_fr_rules]: "hn_refine (hn_ctxt (list_assn P) l1 l1' * hn_ctxt (list_assn P) l2 l2')
(return (l1'@l2')) (hn_invalid (list_assn P) l1 l1' * hn_invalid (list_assn P) l2 l2') (list_assn P)
(RETURN$((@) $l1$l2))"
apply rule
apply (sep_auto simp: hn_ctxt_def)
apply (subst list_assn_aux_len)
apply (sep_auto)
apply (rule ent_frame_fwd[OF invalidate_clone'[of "list_assn P"]], frame_inference)
apply (rule ent_frame_fwd[OF invalidate_clone'[of "list_assn P"]], frame_inference)
apply solve_entails
done
lemma list_assn_aux_cons_conv1:
"list_assn R (a#l) m = (∃⇩Ab m'. R a b * list_assn R l m' * ↑(m=b#m'))"
apply (cases m)
apply sep_auto
apply (sep_auto intro!: ent_iffI)
done
lemma list_assn_aux_cons_conv2:
"list_assn R l (b#m) = (∃⇩Aa l'. R a b * list_assn R l' m * ↑(l=a#l'))"
apply (cases l)
apply sep_auto
apply (sep_auto intro!: ent_iffI)
done
lemmas list_assn_aux_cons_conv = list_assn_aux_cons_conv1 list_assn_aux_cons_conv2
lemma list_assn_aux_append_conv1:
"list_assn R (l1@l2) m = (∃⇩Am1 m2. list_assn R l1 m1 * list_assn R l2 m2 * ↑(m=m1@m2))"
apply (induction l1 arbitrary: m)
apply (sep_auto intro!: ent_iffI)
apply (sep_auto intro!: ent_iffI simp: list_assn_aux_cons_conv)
done
lemma list_assn_aux_append_conv2:
"list_assn R l (m1@m2) = (∃⇩Al1 l2. list_assn R l1 m1 * list_assn R l2 m2 * ↑(l=l1@l2))"
apply (induction m1 arbitrary: l)
apply (sep_auto intro!: ent_iffI)
apply (sep_auto intro!: ent_iffI simp: list_assn_aux_cons_conv)
done
lemmas list_assn_aux_append_conv = list_assn_aux_append_conv1 list_assn_aux_append_conv2
declare param_upt[sepref_import_param]
subsection ‹Sum-Type›
fun sum_assn :: "('ai ⇒ 'a ⇒ assn) ⇒ ('bi ⇒ 'b ⇒ assn) ⇒ ('ai+'bi) ⇒ ('a+'b) ⇒ assn" where
"sum_assn A B (Inl ai) (Inl a) = A ai a"
| "sum_assn A B (Inr bi) (Inr b) = B bi b"
| "sum_assn A B _ _ = false"
notation sum_assn (infixr "+⇩a" 67)
lemma sum_assn_pure[safe_constraint_rules]: "⟦is_pure A; is_pure B⟧ ⟹ is_pure (sum_assn A B)"
apply (auto simp: is_pure_iff_pure_assn)
apply (rename_tac x x')
apply (case_tac x; case_tac x'; simp add: pure_def)
done
lemma sum_assn_id[simp]: "sum_assn id_assn id_assn = id_assn"
apply (intro ext)
subgoal for x y by (cases x; cases y; simp add: pure_def)
done
lemma sum_assn_pure_conv[simp]: "sum_assn (pure A) (pure B) = pure (⟨A,B⟩sum_rel)"
apply (intro ext)
subgoal for a b by (cases a; cases b; auto simp: pure_def)
done
lemma sum_match_cong[sepref_frame_match_rules]:
"⟦
⋀x y. ⟦e = Inl x; e'=Inl y⟧ ⟹ hn_ctxt A x y ⟹⇩t hn_ctxt A' x y;
⋀x y. ⟦e = Inr x; e'=Inr y⟧ ⟹ hn_ctxt B x y ⟹⇩t hn_ctxt B' x y
⟧ ⟹ hn_ctxt (sum_assn A B) e e' ⟹⇩t hn_ctxt (sum_assn A' B') e e'"
by (cases e; cases e'; simp add: hn_ctxt_def entt_star_mono)
lemma enum_merge_cong[sepref_frame_merge_rules]:
assumes "⋀x y. ⟦e=Inl x; e'=Inl y⟧ ⟹ hn_ctxt A x y ∨⇩A hn_ctxt A' x y ⟹⇩t hn_ctxt Am x y"
assumes "⋀x y. ⟦e=Inr x; e'=Inr y⟧ ⟹ hn_ctxt B x y ∨⇩A hn_ctxt B' x y ⟹⇩t hn_ctxt Bm x y"
shows "hn_ctxt (sum_assn A B) e e' ∨⇩A hn_ctxt (sum_assn A' B') e e' ⟹⇩t hn_ctxt (sum_assn Am Bm) e e'"
apply (rule entt_disjE)
apply (rule sum_match_cong)
apply (rule entt_disjD1[OF assms(1)]; simp)
apply (rule entt_disjD1[OF assms(2)]; simp)
apply (rule sum_match_cong)
apply (rule entt_disjD2[OF assms(1)]; simp)
apply (rule entt_disjD2[OF assms(2)]; simp)
done
lemma entt_invalid_sum: "hn_invalid (sum_assn A B) e e' ⟹⇩t hn_ctxt (sum_assn (invalid_assn A) (invalid_assn B)) e e'"
apply (simp add: hn_ctxt_def invalid_assn_def[abs_def])
apply (rule enttI)
apply clarsimp
apply (cases e; cases e'; auto simp: mod_star_conv pure_def)
done
lemmas invalid_sum_merge[sepref_frame_merge_rules] = gen_merge_cons[OF entt_invalid_sum]
sepref_register Inr Inl
lemma [sepref_fr_rules]: "(return o Inl,RETURN o Inl) ∈ A⇧d →⇩a sum_assn A B"
by sepref_to_hoare sep_auto
lemma [sepref_fr_rules]: "(return o Inr,RETURN o Inr) ∈ B⇧d →⇩a sum_assn A B"
by sepref_to_hoare sep_auto
sepref_register case_sum
text ‹In the monadify phase, this eta-expands to make visible all required arguments›
lemma [sepref_monadify_arity]: "case_sum ≡ λ⇩2f1 f2 x. SP case_sum$(λ⇩2x. f1$x)$(λ⇩2x. f2$x)$x"
by simp
text ‹This determines an evaluation order for the first-order operands›
lemma [sepref_monadify_comb]: "case_sum$f1$f2$x ≡ (⤜) $(EVAL$x)$(λ⇩2x. SP case_sum$f1$f2$x)" by simp
text ‹This enables translation of the case-distinction in a non-monadic context.›
lemma [sepref_monadify_comb]: "EVAL$(case_sum$(λ⇩2x. f1 x)$(λ⇩2x. f2 x)$x)
≡ (⤜) $(EVAL$x)$(λ⇩2x. SP case_sum$(λ⇩2x. EVAL $ f1 x)$(λ⇩2x. EVAL $ f2 x)$x)"
apply (rule eq_reflection)
by (simp split: sum.splits)
text ‹Auxiliary lemma, to lift simp-rule over ‹hn_ctxt››
lemma sum_assn_ctxt: "sum_assn A B x y = z ⟹ hn_ctxt (sum_assn A B) x y = z"
by (simp add: hn_ctxt_def)
text ‹The cases lemma first extracts the refinement for the datatype from the precondition.
Next, it generate proof obligations to refine the functions for every case.
Finally the postconditions of the refinement are merged.
Note that we handle the
destructed values separately, to allow reconstruction of the original datatype after the case-expression.
Moreover, we provide (invalidated) versions of the original compound value to the cases,
which allows access to pure compound values from inside the case.
›
lemma sum_cases_hnr:
fixes A B e e'
defines [simp]: "INVe ≡ hn_invalid (sum_assn A B) e e'"
assumes FR: "Γ ⟹⇩t hn_ctxt (sum_assn A B) e e' * F"
assumes E1: "⋀x1 x1a. ⟦e = Inl x1; e' = Inl x1a⟧ ⟹ hn_refine (hn_ctxt A x1 x1a * INVe * F) (f1' x1a) (hn_ctxt A' x1 x1a * hn_ctxt XX1 e e' * Γ1') R (f1 x1)"
assumes E2: "⋀x2 x2a. ⟦e = Inr x2; e' = Inr x2a⟧ ⟹ hn_refine (hn_ctxt B x2 x2a * INVe * F) (f2' x2a) (hn_ctxt B' x2 x2a * hn_ctxt XX2 e e' * Γ2') R (f2 x2)"
assumes MERGE[unfolded hn_ctxt_def]: "Γ1' ∨⇩A Γ2' ⟹⇩t Γ'"
shows "hn_refine Γ (case_sum f1' f2' e') (hn_ctxt (sum_assn A' B') e e' * Γ') R (case_sum$(λ⇩2x. f1 x)$(λ⇩2x. f2 x)$e)"
apply (rule hn_refine_cons_pre[OF FR])
apply1 extract_hnr_invalids
apply (cases e; cases e'; simp add: sum_assn.simps[THEN sum_assn_ctxt])
subgoal
apply (rule hn_refine_cons[OF _ E1 _ entt_refl]; assumption?)
applyS (simp add: hn_ctxt_def)
apply (rule entt_star_mono)
apply1 (rule entt_fr_drop)
applyS (simp add: hn_ctxt_def entt_disjI1' entt_disjI2')
apply1 (rule entt_trans[OF _ MERGE])
applyS (simp add: entt_disjI1' entt_disjI2')
done
subgoal
apply (rule hn_refine_cons[OF _ E2 _ entt_refl]; assumption?)
applyS (simp add: hn_ctxt_def)
apply (rule entt_star_mono)
apply1 (rule entt_fr_drop)
applyS (simp add: hn_ctxt_def entt_disjI1' entt_disjI2')
apply1 (rule entt_trans[OF _ MERGE])
applyS (simp add: entt_disjI1' entt_disjI2')
done
done
text ‹After some more preprocessing (adding extra frame-rules for non-atomic postconditions,
and splitting the merge-terms into binary merges), this rule can be registered›
lemmas [sepref_comb_rules] = sum_cases_hnr[sepref_prep_comb_rule]
sepref_register isl projl projr
lemma isl_hnr[sepref_fr_rules]: "(return o isl,RETURN o isl) ∈ (sum_assn A B)⇧k →⇩a bool_assn"
apply sepref_to_hoare
subgoal for a b by (cases a; cases b; sep_auto)
done
lemma projl_hnr[sepref_fr_rules]: "(return o projl,RETURN o projl) ∈ [isl]⇩a (sum_assn A B)⇧d → A"
apply sepref_to_hoare
subgoal for a b by (cases a; cases b; sep_auto)
done
lemma projr_hnr[sepref_fr_rules]: "(return o projr,RETURN o projr) ∈ [Not o isl]⇩a (sum_assn A B)⇧d → B"
apply sepref_to_hoare
subgoal for a b by (cases a; cases b; sep_auto)
done
subsection ‹String Literals›
sepref_register "PR_CONST String.empty_literal"
lemma empty_literal_hnr [sepref_import_param]:
"(String.empty_literal, PR_CONST String.empty_literal) ∈ Id"
by simp
lemma empty_literal_pat [def_pat_rules]:
"String.empty_literal ≡ UNPROTECT String.empty_literal"
by simp
context
fixes b0 b1 b2 b3 b4 b5 b6 :: bool
and s :: String.literal
begin
sepref_register "PR_CONST (String.Literal b0 b1 b2 b3 b4 b5 b6 s)"
lemma Literal_hnr [sepref_import_param]:
"(String.Literal b0 b1 b2 b3 b4 b5 b6 s,
PR_CONST (String.Literal b0 b1 b2 b3 b4 b5 b6 s)) ∈ Id"
by simp
end
lemma Literal_pat [def_pat_rules]:
"String.Literal $ b0 $ b1 $ b2 $ b3 $ b4 $ b5 $ b6 $ s ≡
UNPROTECT (String.Literal $ b0 $ b1 $ b2 $ b3 $ b4 $ b5 $ b6 $ s)"
by simp
end