Theory Sepref_Translate
section ‹Translation›
theory Sepref_Translate
imports
Sepref_Monadify
Sepref_Constraints
Sepref_Frame
"Lib/Pf_Mono_Prover"
Sepref_Rules
Sepref_Combinator_Setup
"Lib/User_Smashing"
begin
text ‹
This theory defines the translation phase.
The main functionality of the translation phase is to
apply refinement rules. Thereby, the linearity information is
exploited to create copies of parameters that are still required, but
would be destroyed by a synthesized operation.
These \emph{frame-based} rules are in the named theorem collection
‹sepref_fr_rules›, and the collection ‹sepref_copy_rules›
contains rules to handle copying of parameters.
Apart from the frame-based rules described above, there is also a set of
rules for combinators, in the collection ‹sepref_comb_rules›,
where no automatic copying of parameters is applied.
Moreover, this theory contains
\begin{itemize}
\item A setup for the basic monad combinators and recursion.
\item A tool to import parametricity theorems.
\item Some setup to identify pure refinement relations, i.e., those not
involving the heap.
\item A preprocessor that identifies parameters in refinement goals,
and flags them with a special tag, that allows their correct handling.
\end{itemize}
›
text ‹Tag to keep track of abstract bindings.
Required to recover information for side-condition solving.›
definition "bind_ref_tag x m ≡ RETURN x ≤ m"
text ‹Tag to keep track of preconditions in assertions›
definition "vassn_tag Γ ≡ ∃h. h⊨Γ"
lemma vassn_tagI: "h⊨Γ ⟹ vassn_tag Γ"
unfolding vassn_tag_def ..
lemma vassn_dest[dest!]:
"vassn_tag (Γ⇩1 * Γ⇩2) ⟹ vassn_tag Γ⇩1 ∧ vassn_tag Γ⇩2"
"vassn_tag (hn_ctxt R a b) ⟹ a∈rdom R"
unfolding vassn_tag_def rdomp_def[abs_def]
by (auto simp: mod_star_conv hn_ctxt_def)
lemma entails_preI:
assumes "vassn_tag A ⟹ A ⟹⇩A B"
shows "A ⟹⇩A B"
using assms
by (auto simp: entails_def vassn_tag_def)
lemma invalid_assn_const:
"invalid_assn (λ_ _. P) x y = ↑(vassn_tag P) * true"
by (simp_all add: invalid_assn_def vassn_tag_def)
lemma vassn_tag_simps[simp]:
"vassn_tag emp"
"vassn_tag true"
by (sep_auto simp: vassn_tag_def mod_emp)+
definition "GEN_ALGO f Φ ≡ Φ f"
lemma is_GEN_ALGO: "GEN_ALGO f Φ ⟹ GEN_ALGO f Φ" .
text ‹Tag for side-condition solver to discharge by assumption›
definition RPREM :: "bool ⇒ bool" where [simp]: "RPREM P = P"
lemma RPREMI: "P ⟹ RPREM P" by simp
lemma trans_frame_rule:
assumes "RECOVER_PURE Γ Γ'"
assumes "vassn_tag Γ' ⟹ hn_refine Γ' c Γ'' R a"
shows "hn_refine (F*Γ) c (F*Γ'') R a"
apply (rule hn_refine_frame[OF _ entt_refl])
applyF (rule hn_refine_cons_pre)
focus using assms(1) unfolding RECOVER_PURE_def apply assumption solved
apply1 (rule hn_refine_preI)
apply1 (rule assms)
applyS (auto simp add: vassn_tag_def)
solved
done
lemma recover_pure_cons:
assumes "RECOVER_PURE Γ Γ'"
assumes "hn_refine Γ' c Γ'' R a"
shows "hn_refine (Γ) c (Γ'') R a"
using trans_frame_rule[where F=emp, OF assms] by simp
definition CPR_TAG :: "assn ⇒ assn ⇒ bool" where [simp]: "CPR_TAG y x ≡ True"
lemma CPR_TAG_starI:
assumes "CPR_TAG P1 Q1"
assumes "CPR_TAG P2 Q2"
shows "CPR_TAG (P1*P2) (Q1*Q2)"
by simp
lemma CPR_tag_ctxtI: "CPR_TAG (hn_ctxt R x xi) (hn_ctxt R' x xi)" by simp
lemma CPR_tag_fallbackI: "CPR_TAG P Q" by simp
lemmas CPR_TAG_rules = CPR_TAG_starI CPR_tag_ctxtI CPR_tag_fallbackI
lemma cons_pre_rule:
assumes "CPR_TAG P P'"
assumes "P ⟹⇩t P'"
assumes "hn_refine P' c Q R m"
shows "hn_refine P c Q R m"
using assms(2-) by (rule hn_refine_cons_pre)
named_theorems_rev sepref_gen_algo_rules ‹Sepref: Generic algorithm rules›
ML ‹
structure Sepref_Translate = struct
val cfg_debug =
Attrib.setup_config_bool @{binding sepref_debug_translate} (K false)
val dbg_msg_tac = Sepref_Debugging.dbg_msg_tac cfg_debug
fun gen_msg_analyze t ctxt = let
val t = Logic.strip_assums_concl t
in
case t of
@{mpat "Trueprop ?t"} => (case t of
@{mpat "_ ∨⇩A _ ⟹⇩t _"} => "t_merge"
| @{mpat "_ ⟹⇩t _"} => "t_frame"
| @{mpat "INDEP _"} => "t_indep"
| @{mpat "CONSTRAINT _ _"} => "t_constraint"
| @{mpat "mono_Heap _"} => "t_mono"
| @{mpat "PREFER_tag _"} => "t_prefer"
| @{mpat "DEFER_tag _"} => "t_defer"
| @{mpat "RPREM _"} => "t_rprem"
| @{mpat "hn_refine _ _ _ _ ?a"} => Pretty.block [Pretty.str "t_hnr: ",Pretty.brk 1, Syntax.pretty_term ctxt a] |> Pretty.string_of
| _ => "Unknown goal type"
)
| _ => "Non-Trueprop goal"
end
fun msg_analyze msg = Sepref_Debugging.msg_from_subgoal msg gen_msg_analyze
fun check_side_conds thm = let
open Sepref_Basic
fun is_atomic (Const (_,@{typ "assn⇒assn⇒assn"})$_$_) = false
| is_atomic _ = true
val is_atomic_star_list = ("Expected atoms separated by star",forall is_atomic o strip_star)
val is_trueprop = ("Expected Trueprop conclusion",can HOLogic.dest_Trueprop)
fun assert t' (msg,p) t = if p t then () else raise TERM(msg,[t',t])
fun chk_prem t = let
val assert = assert t
fun chk @{mpat "?l ∨⇩A ?r ⟹⇩t ?m"} = (
assert is_atomic_star_list l;
assert is_atomic_star_list r;
assert is_atomic_star_list m
)
| chk (t as @{mpat "_ ⟹⇩A _"}) = raise TERM("Invalid frame side condition (old-style ent)",[t])
| chk @{mpat "?l ⟹⇩t ?r"} = (
assert is_atomic_star_list l;
assert is_atomic_star_list r
)
| chk _ = ()
val t = Logic.strip_assums_concl t
in
assert is_trueprop t;
chk (HOLogic.dest_Trueprop t)
end
in
map chk_prem (Thm.prems_of thm)
end
structure sepref_comb_rules = Named_Sorted_Thms (
val name = @{binding "sepref_comb_rules"}
val description = "Sepref: Combinator rules"
val sort = K I
fun transform _ thm = let
val _ = check_side_conds thm
in
[thm]
end
)
structure sepref_fr_rules = Named_Sorted_Thms (
val name = @{binding "sepref_fr_rules"}
val description = "Sepref: Frame-based rules"
val sort = K I
fun transform context thm = let
val ctxt = Context.proof_of context
val thm = Sepref_Rules.ensure_hnr ctxt thm
|> Conv.fconv_rule (Sepref_Frame.align_rl_conv ctxt)
val _ = check_side_conds thm
val _ = case try (Sepref_Rules.analyze_hnr ctxt) thm of
NONE =>
(Pretty.block [
Pretty.str "hnr-analysis failed",
Pretty.str ":",
Pretty.brk 1,
Thm.pretty_thm ctxt thm])
|> Pretty.string_of |> error
| SOME ana => let
val _ = Sepref_Combinator_Setup.is_valid_abs_op ctxt (fst (#ahead ana))
orelse Pretty.block [
Pretty.str "Invalid abstract head:",
Pretty.brk 1,
Pretty.enclose "(" ")" [Syntax.pretty_term ctxt (fst (#ahead ana))],
Pretty.brk 1,
Pretty.str "in thm",
Pretty.brk 1,
Thm.pretty_thm ctxt thm
]
|> Pretty.string_of |> error
in () end
in
[thm]
end
)
local
open Sepref_Basic
in
fun side_unfold_tac ctxt = let
in
CONVERSION (Id_Op.unprotect_conv ctxt)
THEN' SELECT_GOAL (Local_Defs.unfold0_tac ctxt @{thms bind_ref_tag_def})
end
fun side_fallback_tac ctxt = side_unfold_tac ctxt THEN' TRADE (SELECT_GOAL o auto_tac) ctxt
val side_frame_tac = Sepref_Frame.frame_tac side_fallback_tac
val side_merge_tac = Sepref_Frame.merge_tac side_fallback_tac
fun side_constraint_tac ctxt = Sepref_Constraints.constraint_tac ctxt
fun side_mono_tac ctxt = side_unfold_tac ctxt THEN' TRADE Pf_Mono_Prover.mono_tac ctxt
fun side_gen_algo_tac ctxt =
side_unfold_tac ctxt
THEN' resolve_tac ctxt (Named_Theorems_Rev.get ctxt @{named_theorems_rev sepref_gen_algo_rules})
fun side_pref_def_tac ctxt =
side_unfold_tac ctxt THEN'
TRADE (fn ctxt =>
resolve_tac ctxt @{thms PREFER_tagI DEFER_tagI}
THEN' (Sepref_Debugging.warning_tac' "Obsolete PREFER/DEFER side condition" ctxt THEN' Tagged_Solver.solve_tac ctxt)
) ctxt
fun side_rprem_tac ctxt =
resolve_tac ctxt @{thms RPREMI} THEN' Refine_Util.rprems_tac ctxt
THEN' (K (smash_new_rule ctxt))
fun side_cond_dispatch_tac dbg hnr_tac ctxt = let
fun MK tac = if dbg then CHANGED o tac ctxt else SOLVED' (tac ctxt)
val t_merge = MK side_merge_tac
val t_frame = MK side_frame_tac
val t_indep = MK Indep_Vars.indep_tac
val t_constraint = MK side_constraint_tac
val t_mono = MK side_mono_tac
val t_pref_def = MK side_pref_def_tac
val t_rprem = MK side_rprem_tac
val t_gen_algo = side_gen_algo_tac ctxt
val t_fallback = MK side_fallback_tac
in
WITH_concl
(fn @{mpat "Trueprop ?t"} => (case t of
@{mpat "_ ∨⇩A _ ⟹⇩t _"} => t_merge
| @{mpat "_ ⟹⇩t _"} => t_frame
| @{mpat "_ ⟹⇩A _"} => Sepref_Debugging.warning_tac' "Old-style frame side condition" ctxt THEN' (K no_tac)
| @{mpat "INDEP _"} => t_indep
| @{mpat "CONSTRAINT _ _"} => t_constraint
| @{mpat "mono_Heap _"} => t_mono
| @{mpat "PREFER_tag _"} => t_pref_def
| @{mpat "DEFER_tag _"} => t_pref_def
| @{mpat "RPREM _"} => t_rprem
| @{mpat "GEN_ALGO _ _"} => t_gen_algo
| @{mpat "hn_refine _ _ _ _ _"} => hnr_tac
| _ => t_fallback
)
| _ => K no_tac
)
end
end
local
open Sepref_Basic STactical
in
fun trans_comb_tac ctxt = let
val comb_rl_net = sepref_comb_rules.get ctxt
|> Tactic.build_net
in
DETERM o (
resolve_from_net_tac ctxt comb_rl_net
ORELSE' (
Sepref_Frame.norm_goal_pre_tac ctxt
THEN' resolve_from_net_tac ctxt comb_rl_net
)
)
end
fun gen_trans_op_tac dbg ctxt = let
val fr_rl_net = sepref_fr_rules.get ctxt |> Tactic.build_net
val fr_rl_tac =
resolve_from_net_tac ctxt fr_rl_net
ORELSE' (
Sepref_Frame.norm_goal_pre_tac ctxt
THEN' (
resolve_from_net_tac ctxt fr_rl_net
ORELSE' (
resolve_tac ctxt @{thms cons_pre_rule}
THEN_ALL_NEW_LIST [
SOLVED' (REPEAT_ALL_NEW_FWD (DETERM o resolve_tac ctxt @{thms CPR_TAG_rules})),
K all_tac,
resolve_from_net_tac ctxt fr_rl_net
]
)
)
)
val side_tac = REPEAT_ALL_NEW_FWD (side_cond_dispatch_tac false (K no_tac) ctxt)
val fr_tac =
if dbg then
fr_rl_tac THEN_ALL_NEW_FWD (TRY o side_tac)
else
DETERM o SOLVED' (fr_rl_tac THEN_ALL_NEW_FWD (SOLVED' side_tac))
in
PHASES' [
("Align goal",Sepref_Frame.align_goal_tac, 0),
("Frame rule",fn ctxt => resolve_tac ctxt @{thms trans_frame_rule}, 1),
("Recover pure",Sepref_Frame.recover_pure_tac, ~1),
("Apply rule",K fr_tac,~1)
] (flag_phases_ctrl dbg) ctxt
end
fun gen_trans_step_tac dbg ctxt = side_cond_dispatch_tac dbg
(trans_comb_tac ctxt ORELSE' gen_trans_op_tac dbg ctxt)
ctxt
val trans_step_tac = gen_trans_step_tac false
val trans_step_keep_tac = gen_trans_step_tac true
fun gen_trans_tac dbg ctxt =
PHASES' [
("Translation steps",REPEAT_DETERM' o trans_step_tac,~1),
("Constraint solving",fn ctxt => fn _ => Sepref_Constraints.process_constraint_slot ctxt, 0)
] (flag_phases_ctrl dbg) ctxt
val trans_tac = gen_trans_tac false
val trans_keep_tac = gen_trans_tac true
end
val setup = I
#> sepref_fr_rules.setup
#> sepref_comb_rules.setup
end
›
setup Sepref_Translate.setup
subsubsection ‹Basic Setup›
lemma hn_pass[sepref_fr_rules]:
shows "hn_refine (hn_ctxt P x x') (return x') (hn_invalid P x x') P (PASS$x)"
apply rule apply (sep_auto simp: hn_ctxt_def invalidate_clone')
done
lemma hn_bind[sepref_comb_rules]:
assumes D1: "hn_refine Γ m' Γ1 Rh m"
assumes D2:
"⋀x x'. bind_ref_tag x m ⟹
hn_refine (Γ1 * hn_ctxt Rh x x') (f' x') (Γ2 x x') R (f x)"
assumes IMP: "⋀x x'. Γ2 x x' ⟹⇩t Γ' * hn_ctxt Rx x x'"
shows "hn_refine Γ (m'⤜f') Γ' R (Refine_Basic.bind$m$(λ⇩2x. f x))"
using assms
unfolding APP_def PROTECT2_def bind_ref_tag_def
by (rule hnr_bind)
lemma hn_RECT'[sepref_comb_rules]:
assumes "INDEP Ry" "INDEP Rx" "INDEP Rx'"
assumes FR: "P ⟹⇩t hn_ctxt Rx ax px * F"
assumes S: "⋀cf af ax px. ⟦
⋀ax px. hn_refine (hn_ctxt Rx ax px * F) (cf px) (hn_ctxt Rx' ax px * F) Ry
(RCALL$af$ax)⟧
⟹ hn_refine (hn_ctxt Rx ax px * F) (cB cf px) (F' ax px) Ry
(aB af ax)"
assumes FR': "⋀ax px. F' ax px ⟹⇩t hn_ctxt Rx' ax px * F"
assumes M: "(⋀x. mono_Heap (λf. cB f x))"
shows "hn_refine
(P) (heap.fixp_fun cB px) (hn_ctxt Rx' ax px * F) Ry
(RECT$(λ⇩2D x. aB D x)$ax)"
unfolding APP_def PROTECT2_def
apply (rule hn_refine_cons_pre[OF FR])
apply (rule hnr_RECT)
apply (rule hn_refine_cons_post[OF _ FR'])
apply (rule S[unfolded RCALL_def APP_def])
apply assumption
apply fact+
done
lemma hn_RCALL[sepref_comb_rules]:
assumes "RPREM (hn_refine P' c Q' R (RCALL $ a $ b))"
and "P ⟹⇩t F * P'"
shows "hn_refine P c (F * Q') R (RCALL $ a $ b)"
using assms hn_refine_frame[where m="RCALL$a$b"]
by simp
definition "monadic_WHILEIT I b f s ≡ do {
RECT (λD s. do {
ASSERT (I s);
bv ← b s;
if bv then do {
s ← f s;
D s
} else do {RETURN s}
}) s
}"
definition "heap_WHILET b f s ≡ do {
heap.fixp_fun (λD s. do {
bv ← b s;
if bv then do {
s ← f s;
D s
} else do {return s}
}) s
}"
lemma heap_WHILET_unfold[code]: "heap_WHILET b f s =
do {
bv ← b s;
if bv then do {
s ← f s;
heap_WHILET b f s
} else
return s
}"
unfolding heap_WHILET_def
apply (subst heap.mono_body_fixp)
apply pf_mono
apply simp
done
lemma WHILEIT_to_monadic: "WHILEIT I b f s = monadic_WHILEIT I (λs. RETURN (b s)) f s"
unfolding WHILEIT_def monadic_WHILEIT_def
unfolding WHILEI_body_def bind_ASSERT_eq_if
by (simp cong: if_cong)
lemma WHILEIT_pat[def_pat_rules]:
"WHILEIT$I ≡ UNPROTECT (WHILEIT I)"
"WHILET ≡ PR_CONST (WHILEIT (λ_. True))"
by (simp_all add: WHILET_def)
lemma id_WHILEIT[id_rules]:
"PR_CONST (WHILEIT I) ::⇩i TYPE(('a ⇒ bool) ⇒ ('a ⇒ 'a nres) ⇒ 'a ⇒ 'a nres)"
by simp
lemma WHILE_arities[sepref_monadify_arity]:
"PR_CONST (WHILEIT I) ≡ λ⇩2b f s. SP (PR_CONST (WHILEIT I))$(λ⇩2s. b$s)$(λ⇩2s. f$s)$s"
by (simp_all add: WHILET_def)
lemma WHILEIT_comb[sepref_monadify_comb]:
"PR_CONST (WHILEIT I)$(λ⇩2x. b x)$f$s ≡
Refine_Basic.bind$(EVAL$s)$(λ⇩2s.
SP (PR_CONST (monadic_WHILEIT I))$(λ⇩2x. (EVAL$(b x)))$f$s
)"
by (simp_all add: WHILEIT_to_monadic)
lemma hn_monadic_WHILE_aux:
assumes FR: "P ⟹⇩t Γ * hn_ctxt Rs s' s"
assumes b_ref: "⋀s s'. I s' ⟹ hn_refine
(Γ * hn_ctxt Rs s' s)
(b s)
(Γb s' s)
(pure bool_rel)
(b' s')"
assumes b_fr: "⋀s' s. Γb s' s ⟹⇩t Γ * hn_ctxt Rs s' s"
assumes f_ref: "⋀s' s. ⟦I s'⟧ ⟹ hn_refine
(Γ * hn_ctxt Rs s' s)
(f s)
(Γf s' s)
Rs
(f' s')"
assumes f_fr: "⋀s' s. Γf s' s ⟹⇩t Γ * hn_ctxt (λ_ _. true) s' s"
shows "hn_refine (P) (heap_WHILET b f s) (Γ * hn_invalid Rs s' s) Rs (monadic_WHILEIT I b' f' s')"
unfolding monadic_WHILEIT_def heap_WHILET_def
apply1 (rule hn_refine_cons_pre[OF FR])
apply weaken_hnr_post
focus (rule hn_refine_cons_pre[OF _ hnr_RECT])
applyS (subst mult_ac(2)[of Γ]; rule entt_refl; fail)
apply1 (rule hnr_ASSERT)
focus (rule hnr_bind)
focus (rule hn_refine_cons[OF _ b_ref b_fr entt_refl])
applyS (simp add: star_aci)
applyS assumption
solved
focus (rule hnr_If)
applyS (sep_auto; fail)
focus (rule hnr_bind)
focus (rule hn_refine_cons[OF _ f_ref f_fr entt_refl])
apply (sep_auto simp: hn_ctxt_def pure_def intro!: enttI; fail)
apply assumption
solved
focus (rule hn_refine_frame)
applyS rprems
applyS (rule enttI; solve_entails)
solved
apply (sep_auto intro!: enttI; fail)
solved
applyF (sep_auto,rule hn_refine_frame)
applyS (rule hnr_RETURN_pass)
apply (rule enttI)
apply (fr_rot_rhs 1)
apply (fr_rot 1, rule fr_refl)
apply (rule fr_refl)
apply solve_entails
solved
apply (rule entt_refl)
solved
apply (rule enttI)
applyF (rule ent_disjE)
apply1 (sep_auto simp: hn_ctxt_def pure_def)
apply1 (rule ent_true_drop)
apply1 (rule ent_true_drop)
applyS (rule ent_refl)
applyS (sep_auto simp: hn_ctxt_def pure_def)
solved
solved
apply pf_mono
solved
done
lemma hn_monadic_WHILE_lin[sepref_comb_rules]:
assumes "INDEP Rs"
assumes FR: "P ⟹⇩t Γ * hn_ctxt Rs s' s"
assumes b_ref: "⋀s s'. I s' ⟹ hn_refine
(Γ * hn_ctxt Rs s' s)
(b s)
(Γb s' s)
(pure bool_rel)
(b' s')"
assumes b_fr: "⋀s' s. TERM (monadic_WHILEIT,''cond'') ⟹ Γb s' s ⟹⇩t Γ * hn_ctxt Rs s' s"
assumes f_ref: "⋀s' s. I s' ⟹ hn_refine
(Γ * hn_ctxt Rs s' s)
(f s)
(Γf s' s)
Rs
(f' s')"
assumes f_fr: "⋀s' s. TERM (monadic_WHILEIT,''body'') ⟹ Γf s' s ⟹⇩t Γ * hn_ctxt (λ_ _. true) s' s"
shows "hn_refine
P
(heap_WHILET b f s)
(Γ * hn_invalid Rs s' s)
Rs
(PR_CONST (monadic_WHILEIT I)$(λ⇩2s'. b' s')$(λ⇩2s'. f' s')$(s'))"
using assms(2-)
unfolding APP_def PROTECT2_def CONSTRAINT_def PR_CONST_def
by (rule hn_monadic_WHILE_aux)
lemma monadic_WHILEIT_refine[refine]:
assumes [refine]: "(s',s) ∈ R"
assumes [refine]: "⋀s' s. ⟦ (s',s)∈R; I s ⟧ ⟹ I' s'"
assumes [refine]: "⋀s' s. ⟦ (s',s)∈R; I s; I' s' ⟧ ⟹ b' s' ≤⇓bool_rel (b s)"
assumes [refine]: "⋀s' s. ⟦ (s',s)∈R; I s; I' s'; nofail (b s); inres (b s) True ⟧ ⟹ f' s' ≤⇓R (f s)"
shows "monadic_WHILEIT I' b' f' s' ≤⇓R (monadic_WHILEIT I b f s)"
unfolding monadic_WHILEIT_def
by (refine_rcg bind_refine'; assumption?; auto)
lemma monadic_WHILEIT_refine_WHILEIT[refine]:
assumes [refine]: "(s',s) ∈ R"
assumes [refine]: "⋀s' s. ⟦ (s',s)∈R; I s ⟧ ⟹ I' s'"
assumes [THEN order_trans,refine_vcg]: "⋀s' s. ⟦ (s',s)∈R; I s; I' s' ⟧ ⟹ b' s' ≤ SPEC (λr. r = b s)"
assumes [refine]: "⋀s' s. ⟦ (s',s)∈R; I s; I' s'; b s ⟧ ⟹ f' s' ≤⇓R (f s)"
shows "monadic_WHILEIT I' b' f' s' ≤⇓R (WHILEIT I b f s)"
unfolding WHILEIT_to_monadic
by (refine_vcg; assumption?; auto)
lemma monadic_WHILEIT_refine_WHILET[refine]:
assumes [refine]: "(s',s) ∈ R"
assumes [THEN order_trans,refine_vcg]: "⋀s' s. ⟦ (s',s)∈R ⟧ ⟹ b' s' ≤ SPEC (λr. r = b s)"
assumes [refine]: "⋀s' s. ⟦ (s',s)∈R; b s ⟧ ⟹ f' s' ≤⇓R (f s)"
shows "monadic_WHILEIT (λ_. True) b' f' s' ≤⇓R (WHILET b f s)"
unfolding WHILET_def
by (refine_vcg; assumption?)
lemma monadic_WHILEIT_pat[def_pat_rules]:
"monadic_WHILEIT$I ≡ UNPROTECT (monadic_WHILEIT I)"
by auto
lemma id_monadic_WHILEIT[id_rules]:
"PR_CONST (monadic_WHILEIT I) ::⇩i TYPE(('a ⇒ bool nres) ⇒ ('a ⇒ 'a nres) ⇒ 'a ⇒ 'a nres)"
by simp
lemma monadic_WHILEIT_arities[sepref_monadify_arity]:
"PR_CONST (monadic_WHILEIT I) ≡ λ⇩2b f s. SP (PR_CONST (monadic_WHILEIT I))$(λ⇩2s. b$s)$(λ⇩2s. f$s)$s"
by (simp)
lemma monadic_WHILEIT_comb[sepref_monadify_comb]:
"PR_CONST (monadic_WHILEIT I)$b$f$s ≡
Refine_Basic.bind$(EVAL$s)$(λ⇩2s.
SP (PR_CONST (monadic_WHILEIT I))$b$f$s
)"
by (simp)
definition [simp]: "op_ASSERT_bind I m ≡ Refine_Basic.bind (ASSERT I) (λ_. m)"
lemma pat_ASSERT_bind[def_pat_rules]:
"Refine_Basic.bind$(ASSERT$I)$(λ⇩2_. m) ≡ UNPROTECT (op_ASSERT_bind I)$m"
by simp
term "PR_CONST (op_ASSERT_bind I)"
lemma id_op_ASSERT_bind[id_rules]:
"PR_CONST (op_ASSERT_bind I) ::⇩i TYPE('a nres ⇒ 'a nres)"
by simp
lemma arity_ASSERT_bind[sepref_monadify_arity]:
"PR_CONST (op_ASSERT_bind I) ≡ λ⇩2m. SP (PR_CONST (op_ASSERT_bind I))$m"
apply (rule eq_reflection)
by auto
lemma hn_ASSERT_bind[sepref_comb_rules]:
assumes "I ⟹ hn_refine Γ c Γ' R m"
shows "hn_refine Γ c Γ' R (PR_CONST (op_ASSERT_bind I)$m)"
using assms
apply (cases I)
apply auto
done
definition [simp]: "op_ASSUME_bind I m ≡ Refine_Basic.bind (ASSUME I) (λ_. m)"
lemma pat_ASSUME_bind[def_pat_rules]:
"Refine_Basic.bind$(ASSUME$I)$(λ⇩2_. m) ≡ UNPROTECT (op_ASSUME_bind I)$m"
by simp
lemma id_op_ASSUME_bind[id_rules]:
"PR_CONST (op_ASSUME_bind I) ::⇩i TYPE('a nres ⇒ 'a nres)"
by simp
lemma arity_ASSUME_bind[sepref_monadify_arity]:
"PR_CONST (op_ASSUME_bind I) ≡ λ⇩2m. SP (PR_CONST (op_ASSUME_bind I))$m"
apply (rule eq_reflection)
by auto
lemma hn_ASSUME_bind[sepref_comb_rules]:
assumes "vassn_tag Γ ⟹ I"
assumes "I ⟹ hn_refine Γ c Γ' R m"
shows "hn_refine Γ c Γ' R (PR_CONST (op_ASSUME_bind I)$m)"
apply (rule hn_refine_preI)
using assms
apply (cases I)
apply (auto simp: vassn_tag_def)
done
subsection "Import of Parametricity Theorems"
lemma pure_hn_refineI:
assumes "Q ⟶ (c,a)∈R"
shows "hn_refine (↑Q) (return c) (↑Q) (pure R) (RETURN a)"
unfolding hn_refine_def using assms
by (sep_auto simp: pure_def)
lemma pure_hn_refineI_no_asm:
assumes "(c,a)∈R"
shows "hn_refine emp (return c) emp (pure R) (RETURN a)"
unfolding hn_refine_def using assms
by (sep_auto simp: pure_def)
lemma import_param_0:
"(P⟹Q) ≡ Trueprop (PROTECT P ⟶ Q)"
apply (rule, simp+)+
done
lemma import_param_1:
"(P⟹Q) ≡ Trueprop (P⟶Q)"
"(P⟶Q⟶R) ⟷ (P∧Q ⟶ R)"
"PROTECT (P ∧ Q) ≡ PROTECT P ∧ PROTECT Q"
"(P ∧ Q) ∧ R ≡ P ∧ Q ∧ R"
"(a,c)∈Rel ∧ PROTECT P ⟷ PROTECT P ∧ (a,c)∈Rel"
apply (rule, simp+)+
done
lemma import_param_2:
"Trueprop (PROTECT P ∧ Q ⟶ R) ≡ (P ⟹ Q⟶R)"
apply (rule, simp+)+
done
lemma import_param_3:
"↑(P ∧ Q) = ↑P*↑Q"
"↑((c,a)∈R) = hn_val R a c"
by (simp_all add: hn_ctxt_def pure_def)
named_theorems_rev sepref_import_rewrite ‹Rewrite rules on importing parametricity theorems›
lemma to_import_frefD:
assumes "(f,g)∈fref P R S"
shows "⟦PROTECT (P y); (x,y)∈R⟧ ⟹ (f x, g y)∈S"
using assms
unfolding fref_def
by auto
lemma add_PR_CONST: "(c,a)∈R ⟹ (c,PR_CONST a)∈R" by simp
ML ‹
structure Sepref_Import_Param = struct
fun to_import_fo ctxt thm = let
val unf_thms = @{thms
split_tupled_all prod_rel_simp uncurry_apply cnv_conj_to_meta Product_Type.split}
in
case Thm.concl_of thm of
@{mpat "Trueprop ((_,_) ∈ fref _ _ _)"} =>
(@{thm to_import_frefD} OF [thm])
|> Thm.forall_intr_vars
|> Local_Defs.unfold0 ctxt unf_thms
|> Variable.gen_all ctxt
| @{mpat "Trueprop ((_,_) ∈ _)"} =>
Parametricity.fo_rule thm
| _ => raise THM("Expected parametricity or fref theorem",~1,[thm])
end
fun add_PR_CONST thm = case Thm.concl_of thm of
@{mpat "Trueprop ((_,_) ∈ fref _ _ _)"} => thm
| @{mpat "Trueprop ((_,PR_CONST _) ∈ _)"} => thm
| @{mpat "Trueprop ((_,?a) ∈ _)"} => if is_Const a orelse is_Free a orelse is_Var a then
thm
else
thm RS @{thm add_PR_CONST}
| _ => thm
fun import ctxt thm = let
open Sepref_Basic
val thm = thm
|> Conv.fconv_rule Thm.eta_conversion
|> add_PR_CONST
|> Local_Defs.unfold0 ctxt @{thms import_param_0}
|> Local_Defs.unfold0 ctxt @{thms imp_to_meta}
|> to_import_fo ctxt
|> Local_Defs.unfold0 ctxt @{thms import_param_1}
|> Local_Defs.unfold0 ctxt @{thms import_param_2}
val thm = case Thm.concl_of thm of
@{mpat "Trueprop (_⟶_)"} => thm RS @{thm pure_hn_refineI}
| _ => thm RS @{thm pure_hn_refineI_no_asm}
val thm = Local_Defs.unfold0 ctxt @{thms import_param_3} thm
|> Conv.fconv_rule (hn_refine_concl_conv_a (K (Id_Op.protect_conv ctxt)) ctxt)
val thm = Local_Defs.unfold0 ctxt (Named_Theorems_Rev.get ctxt @{named_theorems_rev sepref_import_rewrite}) thm
val thm = Sepref_Rules.add_pure_constraints_rule ctxt thm
in
thm
end
val import_attr = Scan.succeed (Thm.mixed_attribute (fn (context,thm) =>
let
val thm = import (Context.proof_of context) thm
val context = Sepref_Translate.sepref_fr_rules.add_thm thm context
in (context,thm) end
))
val import_attr_rl = Scan.succeed (Thm.rule_attribute [] (fn context =>
import (Context.proof_of context) #> Sepref_Rules.ensure_hfref (Context.proof_of context)
))
val setup = I
#> Attrib.setup @{binding sepref_import_param} import_attr
"Sepref: Import parametricity rule"
#> Attrib.setup @{binding sepref_param} import_attr_rl
"Sepref: Transform parametricity rule to sepref rule"
#> Attrib.setup @{binding sepref_dbg_import_rl_only}
(Scan.succeed (Thm.rule_attribute [] (import o Context.proof_of)))
"Sepref: Parametricity to hnr-rule, no conversion to hfref"
end
›
setup Sepref_Import_Param.setup
subsection "Purity"
definition "import_rel1 R ≡ λA c ci. ↑(is_pure A ∧ (ci,c)∈⟨the_pure A⟩R)"
definition "import_rel2 R ≡ λA B c ci. ↑(is_pure A ∧ is_pure B ∧ (ci,c)∈⟨the_pure A, the_pure B⟩R)"
lemma import_rel1_pure_conv: "import_rel1 R (pure A) = pure (⟨A⟩R)"
unfolding import_rel1_def
apply simp
apply (simp add: pure_def)
done
lemma import_rel2_pure_conv: "import_rel2 R (pure A) (pure B) = pure (⟨A,B⟩R)"
unfolding import_rel2_def
apply simp
apply (simp add: pure_def)
done
lemma precise_pure[constraint_rules]: "single_valued R ⟹ precise (pure R)"
unfolding precise_def pure_def
by (auto dest: single_valuedD)
lemma precise_pure_iff_sv: "precise (pure R) ⟷ single_valued R"
apply (auto simp: precise_pure)
using preciseD[where R="pure R" and F=emp and F'=emp]
by (sep_auto simp: mod_and_dist intro: single_valuedI)
lemma pure_precise_iff_sv: "⟦is_pure R⟧
⟹ precise R ⟷ single_valued (the_pure R)"
by (auto simp: is_pure_conv precise_pure_iff_sv)
lemmas [safe_constraint_rules] = single_valued_Id br_sv
end