Theory Approximate_Model_Counting.ApproxMCAnalysis

section ‹ ApproxMC definition and analysis ›

text ‹
  This section puts together preceding results to formalize the
  PAC guarantee of ApproxMC.
›

theory ApproxMCAnalysis imports
  ApproxMCCoreAnalysis
  RandomXORHashFamily
  Median_Method.Median
begin

lemma replicate_pmf_Pi_pmf:
  assumes "distinct ls"
  shows "replicate_pmf (length ls) P =
    map_pmf (λf. map f ls)
      (Pi_pmf (set ls) def (λ_. P))"
  using assms
proof (induction ls)
  case Nil
  then show ?case
  by auto
next
  case (Cons x xs)
  then show ?case
    by (auto intro!: bind_pmf_cong simp add: Pi_pmf_insert' map_bind_pmf bind_map_pmf)
qed

lemma replicate_pmf_Pi_pmf':
  assumes "finite V"
  shows "replicate_pmf (card V) P =
    map_pmf (λf. map f (sorted_list_of_set V))
      (Pi_pmf V def (λ_. P))"
proof -
  have *:"card V = length (sorted_list_of_set V)"
    using assms by auto
  show ?thesis
    unfolding *
    apply (subst replicate_pmf_Pi_pmf)
    using assms by auto
qed

definition map_of_default::"('a × 'b) list  'b  'a  'b"
where "map_of_default ls def =
  (let m = map_of ls in
  (λx. case m x of None  def | Some v  v))"

lemma Pi_pmf_replicate_pmf:
  assumes "finite V"
  shows
    "(Pi_pmf V def (λ_. p)) =
    map_pmf (λbs.
      map_of_default (zip (sorted_list_of_set V) bs) def)
      (replicate_pmf (card V) p)"
proof -
  show ?thesis
   apply (subst replicate_pmf_Pi_pmf'[OF assms, where def="def"])
  unfolding map_pmf_comp
   apply (intro map_pmf_idI[symmetric])
   unfolding map_of_default_def Let_def fun_eq_iff map_of_zip_map
   by (smt (verit, del_insts) assms option.case(1) option.case(2) pmf_Pi pmf_eq_0_set_pmf sorted_list_of_set.set_sorted_key_list_of_set)
qed

lemma proj_inter_neutral:
  assumes "w. w  B  restr S w  C"
  shows "proj S (A  B) = proj S A  C"
  unfolding ApproxMCCore.proj_def
  using assms by auto

text ‹
  An abstract spec of ApproxMC for any Boolean theory.
  This locale must be instantiated with a theory implementing the two
  the functions below (and satisfying the assumption linking them).
›
locale ApproxMC =
  fixes sols :: "'fml  ('a  bool) set"
  fixes enc_xor :: "'a set × bool  'fml  'fml"
  assumes sols_enc_xor:
    "F xor. finite (fst xor) 
      sols (enc_xor xor F) =
      sols F  {ω. satisfies_xor xor {x. ω x}}"
begin

definition compute_thresh :: "real  nat"
  where "compute_thresh ε =
  nat 1 + 9.84 * (1 + ε / (1 + ε)) * (1 + 1 / ε)^2"

definition fix_t :: "real  nat"
  where "fix_t δ =
  nat ln (1 / δ) /(2 * (0.5-0.36)^2)"

definition raw_median_bound :: "real  nat  real"
  where "raw_median_bound α t =
  (i = 0..t div 2.
    (t choose i) * (1 / 2 + α) ^ i * (1 / 2 - α) ^ (t - i))"

definition compute_t :: "real  nat  nat"
  where "compute_t δ n =
  (if raw_median_bound 0.14 n < δ then n
  else fix_t δ)"

(* The size of the projected solution set after adding i XORs*)
definition size_xor ::"
  'fml  'a set 
  (nat  ('a set × bool) option) 
  nat  nat"
  where "size_xor F S xorsf i = (
    let xors = map (the  xorsf) [0..<i] in
    let Fenc = fold enc_xor xors F in
      card (proj S (sols Fenc))
    )"

definition check_xor ::"
  'fml  'a set 
  nat 
  (nat  ('a set × bool) option) 
  nat  bool"
  where "check_xor F S thresh xorsf i =
  (size_xor F S xorsf i < thresh)"

definition approxcore_xors :: "
  'fml  'a set 
  nat 
  (nat  ('a set × bool) option) 
  nat"
  where "
    approxcore_xors F S thresh xorsf =
    (case List.find
      (check_xor F S thresh xorsf) [1..<card S] of
      None  2 ^ card S
    | Some m 
      (2 ^ m * size_xor F S xorsf m))"

definition approxmccore :: "'fml  'a set  nat  nat pmf"
where "approxmccore F S thresh =
  map_pmf (approxcore_xors F S thresh) (random_xors S (card S - 1))"

definition approxmc :: "'fml  'a set  real  real  nat  nat pmf"
  where "approxmc F S ε δ n = (
    let thresh = compute_thresh ε in
    if card (proj S (sols F)) < thresh then
      return_pmf (card (proj S (sols F)))
    else
      let t = compute_t δ n in
      map_pmf (median t)
        (prod_pmf {0..<t::nat} (λi. approxmccore F S thresh))
  )"

lemma median_commute:
  assumes "t  1"
  shows "(real  median t) = (λw::nat  nat. median t (real  w))"
  unfolding median_def map_map[symmetric]
  apply (subst Median.map_sort[where f = "λx. real x"])
  subgoal by (clarsimp simp add:mono_def)
  apply (subst nth_map)
  using assms by auto

lemma median_default:
  shows "median t y = median t (λx. if x < t then y x else def)"
  unfolding median_def
  by (auto intro!: arg_cong[where f = "λls. sort ls ! (t div 2)"])

definition default_α::"'a set  nat assg"
  where "default_α S i = (if i < card S - 1 then Some True else None)"

lemma dom_default_α:
  "dom (default_α S) = {0..<card S -1}"
  by (auto simp add:default_α_def split: if_splits)

lemma compute_thresh_bound_4:
  assumes "ε > 0"
  shows"4 < compute_thresh ε"
proof -
  have 1: "(1 + ε / (1 + ε)) > 1"
    using assms
    by simp
  have 2: "(1 + 1 / ε)^2 > 1"
    using assms by simp

  define a where "a = (1 + ε / (1 + ε)) * (1 + 1 / ε)2"
  have "a > 1" unfolding a_def
    using 1 2
    using less_1_mult by blast
  then have "(984 / 102) * a  4"
    by auto

  thus ?thesis
    unfolding compute_thresh_def
    by (smt (verit) a_def arith_special(2) arithmetic_simps(1) more_arith_simps(11) nat_less_real_le numeral_Bit0 of_nat_numeral real_nat_ceiling_ge)
qed

lemma satisfies_xor_with_domain:
  assumes "fst x  S"
  shows "satisfies_xor x {x. w x} 
    satisfies_xor x ({x. w x}  S)"
  using assms
  apply (cases x)
  by (simp add: Int_assoc inf.absorb_iff2)

(* The main step, where we instantiate the ApproxMCCore locale *)
lemma approxcore_xors_eq:
  assumes thresh:
    "thresh = compute_thresh ε"
    "thresh  card (proj S (sols F))"
  assumes ε: "ε > (0::real)" "ε  1"
  assumes S: "finite S"
  shows "measure_pmf.prob (random_xors S (card S - 1))
       {xors. real (approxcore_xors F S thresh xors) 
        {real (card (proj S (sols F))) / (1 + ε)..
        (1 + ε) * real (card (proj S (sols F)))}}  0.64"
proof -

  have "ApproxMCCore (sols F) S ε (default_α S) thresh"
    apply unfold_locales
    subgoal using dom_default_α by simp
    subgoal using ε by simp
    subgoal using thresh assms(3) compute_thresh_bound_4 by blast
    using thresh S by auto
  then interpret amc: ApproxMCCore "sols F" _ _ "(default_α S)" .

  have "
    m < card S 
    {0..<m}  dom xors 
    (i. i < m  fst (the (xors i))  S) 
    (proj S
       (sols (fold enc_xor (map (the  xors) [0..<m]) F))) =
     proj S (sols F) 
        {w. hslice m (λω. xor_hash ω xors) w =
          aslice m (default_α S)}" for m xors
  proof (induction m)
    case 0
    then show ?case
      unfolding hslice_def aslice_def
      by auto
  next
    case (Suc m)
    have m: "m  dom xors"
      by (meson Set.basic_monos(7) Suc(3) atLeastLessThan_iff le0 lessI)
    have sp: "fst (the (xors m))  S"
      by (simp add: Suc(4))

    then obtain xor where x: "xors m = Some xor"
      using m by blast

    have eq: "{w. xor_hash w xors m = Some True} =
        {ω. satisfies_xor xor {x. ω x = Some True}}"
      unfolding xor_hash_def
      by (clarsimp simp add: x)

    have neut: "w.
      w  {ω. satisfies_xor xor {x. ω x}} 
      restr S w  {ω. satisfies_xor xor {x. ω x = Some True}}"
      using sp unfolding restr_def
      by (smt (verit, ccfv_SIG) Collect_cong Int_def mem_Collect_eq option.sel satisfies_xor_with_domain x)

    have lhs: "
      proj S
       (sols (fold enc_xor (map (the  xors) [0..<Suc m]) F)) =
      proj S (sols (fold enc_xor (map (the  xors) [0..<m]) F)) 
        {w. xor_hash w xors m = Some True}"
      apply clarsimp
      apply (subst sols_enc_xor)
      subgoal using assms(5) rev_finite_subset sp by blast
      apply (subst proj_inter_neutral)
      using eq neut x by auto

    have rhs1:" hslice (Suc m) (λω. xor_hash ω xors) w = aslice (Suc m) (default_α S) 
      hslice m (λω. xor_hash ω xors) w = aslice m (default_α S)" for w
      unfolding hslice_def aslice_def fun_eq_iff
      by (auto simp add:lessThan_Suc restrict_map_def split: if_splits)

    have rhs2:"hslice (Suc m) (λω. xor_hash ω xors) w = aslice (Suc m) (default_α S) 
      xor_hash w xors m = Some True" for w
      unfolding hslice_def aslice_def fun_eq_iff
      apply (clarsimp simp add:lessThan_Suc restrict_map_def )
      by (metis default_α_def domIff m xor_hash_eq_dom)

    have rhs3: "hslice m (λω. xor_hash ω xors) w = aslice m (default_α S) 
      xor_hash w xors m = Some True 
      hslice (Suc m) (λω. xor_hash ω xors) w = aslice (Suc m) (default_α S)" for w
      unfolding hslice_def aslice_def fun_eq_iff
      apply (clarsimp simp add:lessThan_Suc restrict_map_def )
      by (metis One_nat_def Suc.prems(1) Suc_lessD Suc_less_eq Suc_pred default_α_def gr_zeroI zero_less_diff)

    have rhs: "{w. hslice (Suc m) (λω. xor_hash ω xors) w = aslice (Suc m) (default_α S)} =
      {w. hslice m (λω. xor_hash ω xors) w = aslice m (default_α S)} 
      {w. xor_hash w xors m = Some True}"
      by (auto simp add: rhs1 rhs2 rhs3)

    have ih: "proj S (sols (fold enc_xor (map (the  xors) [0..<m]) F)) =
      proj S (sols F) 
      {w. hslice m (λω. xor_hash ω xors) w = aslice m (default_α S)}"
      apply (intro Suc(1))
      using Suc(2) Suc_lessD apply blast
      using Suc(3) atLeast0_lessThan_Suc apply blast
      using Suc(4) less_SucI by blast

    show ?case
      unfolding lhs rhs
      by (simp add: Int_ac(1) ih)
  qed
  then have *: "
    m < card S 
    {0..<m}  dom xors 
    (i. i < m  fst (the (xors i))  S) 
     size_xor F S xors m =
     amc.card_slice (λω. xor_hash ω xors) m" for m xors
    unfolding size_xor_def amc.card_slice_def
    by auto

  have **: "
   {0..<card S - 1}  dom xors 
   (i. i < card S - 1  fst (the (xors i))  S) 
   find (check_xor F S thresh xors) [1..<card S] =
   find (λi. (λω. xor_hash ω xors)  amc.T i) [1..<card S]" for xors
    apply (intro find_cong)
    unfolding check_xor_def amc.T_def
    subgoal by simp
    apply (subst *)
      subgoal by clarsimp
      subgoal by (clarsimp simp add: domIff subset_iff)
    by auto

  have rw: "
    {0..<card S - 1}  dom xors 
    (i. i < card S - 1  fst (the (xors i))  S) 
    approxcore_xors F S thresh xors =
      (λ(a,b). a*b) (amc.approxcore (λω. xor_hash ω xors))" for  xors
    apply (subst amc.approxcore_def)
    unfolding approxcore_xors_def
    apply (subst **)
      subgoal by clarsimp
      subgoal by clarsimp
    apply (clarsimp split: option.split)
    apply (subst *)
    subgoal by (auto simp add: find_Some_iff domIff subset_iff)
    subgoal by (auto simp add: find_Some_iff domIff subset_iff)
    subgoal
      using x2. {0..<card S - Suc 0}  dom xors; i. i < card S - Suc 0  fst (the (xors i))  S; find (λi. (λω. xor_hash ω xors)  amc.T i) [Suc 0..<card S] = Some x2  x2 < card S by auto 
    by auto

  from xor_hash_family_2_universal[OF S]
  have univ:"prob_space.k_universal (measure_pmf (random_xors S (card S - 1))) 2
   xor_hash {α. dom α = S} {α. dom α = {0..<card S - 1}}" .

  have "measure_pmf.prob
   (map_pmf (λs w. xor_hash w s) (random_xors S (card S - 1)))
   amc.approxcore_fail  0.36"
    apply (intro amc.analysis_3[OF _ _ univ])
    apply (smt (verit, ccfv_SIG) Groups.mult_ac(3) amc.pivot_def assms(1) compute_thresh_def more_arith_simps(11) real_nat_ceiling_ge)
    using S finite_random_xors_set_pmf apply blast
    using ε by auto

  then have b: "measure_pmf.prob
    (random_xors S (card S - 1))
    {xors.
      (real ((λ(a,b). a*b) (amc.approxcore (λω. xor_hash ω xors))))
      
      {real (card (proj S (sols F))) / (1 + ε)..
        (1 + ε) * real (card (proj S (sols F)))}}  0.36"
    unfolding amc.approxcore_fail_def
    by (auto simp add: case_prod_unfold Let_def)

  have 1: "x  set_pmf (random_xors S (card S - Suc 0)) 
    {0..<card S - 1}  dom x" for x
    by (auto simp add:random_xors_set_pmf[OF S])
  have 2: "x  set_pmf (random_xors S (card S - Suc 0)) 
    (i. i < card S - 1  fst (the (x i))  S)" for x
  proof -
    assume x: "x  set_pmf (random_xors S (card S - Suc 0))"
    moreover {
      fix i
      assume i: "i < card S - 1"
      from random_xors_set_pmf[OF S]
      have xx: "dom x = {..<(card S - Suc 0)}" "ran x  Pow S × UNIV"
        using x by auto
      obtain xi where xi: "x i = Some xi"
        using xx i apply clarsimp
        by (metis atLeast0LessThan atLeastLessThan_iff bot_nat_0.extremum domIff option.exhaust surj_pair)
      then have "fst xi  S" using xx(2)
        unfolding ran_def apply (clarsimp simp add: subset_iff)
        by (metis prod.collapse)
      then have "fst (the (x i))  S" by (simp add: xi)
    }
    thus "(i. i < card S - 1  fst (the (x i))  S)" by auto
  qed

  have "measure_pmf.prob (random_xors S (card S - 1))
       {xors. real (approxcore_xors F S thresh xors) 
        {real (card (proj S (sols F))) / (1 + ε)..
        (1 + ε) * real (card (proj S (sols F)))}} =
    measure_pmf.prob
    (random_xors S (card S - 1))
    {xors.
      (real ((λ(a,b). a*b) (amc.approxcore (λω. xor_hash ω xors))))
      
      {real (card (proj S (sols F))) / (1 + ε)..
        (1 + ε) * real (card (proj S (sols F)))}}"
    apply (intro measure_pmf.measure_pmf_eq[where p = "(random_xors S (card S - 1))"])
    subgoal by auto
    apply clarsimp
    apply (frule 1)
    apply (drule 2)
    apply (frule rw)
    by auto

  moreover have "... =
     1 - measure_pmf.prob
      (random_xors S (card S - 1))
      {xors.
        (real ((λ(a,b). a*b) (amc.approxcore (λω. xor_hash ω xors))))
        
        {real (card (proj S (sols F))) / (1 + ε)..
          (1 + ε) * real (card (proj S (sols F)))}}"
    apply (subst measure_pmf.prob_compl[symmetric])
    by (auto intro!: measure_pmf.measure_pmf_eq)
  moreover have "...  0.64"
    using b
    by auto
  ultimately show ?thesis by auto
qed

lemma compute_t_ge1:
  assumes "0 < δ" "δ < 1"
  shows"compute_t δ n  1"
proof -
  have "ln (1 / δ) > 0"
    by (simp add: assms)
  then have fix_t: "1  fix_t δ"
    unfolding fix_t_def
    by (simp add: Suc_leI)

  show ?thesis
  unfolding compute_t_def
  using fix_t
  apply (cases n)
  unfolding raw_median_bound_def
  using assms by auto
qed

lemma success_arith_bound:
  assumes "s  (f ::nat)"
  assumes "p  (1::real)" "q  p" "1 /2  q"
  shows "p ^ s * (1 - p) ^ f  q ^ s * (1 - q) ^ f"
proof -
  have ple: "p * (1-p)  q * (1-q)"
    using assms(2-4)
    by (sos "(((A<0 * R<1) + ((R<1 * (R<1 * [p + ~1*q]^2)) + ((A<=1 * (A<=2 * R<1)) * (R<2 * [1]^2)))))")

  have feq:"f = (f-s)+s"
    using Nat.le_imp_diff_is_add assms(1) by blast
  then have "(1-p)^f = (1-p)^s * (1-p)^(f-s)"
    by (metis add.commute power_add)
  then have "p ^ s * (1 - p) ^ f =
    (p * (1-p)) ^ s * (1 - p) ^ (f-s)"
    by (simp add: power_mult_distrib)
  moreover have "... 
    (q * (1-q)) ^ s * (1 - p) ^ (f-s)"
    by (smt (verit) assms(1) assms(2) assms(3) assms(4) diff_self_eq_0 divide_nonneg_nonneg mult_nonneg_nonneg mult_right_mono order_le_less ple power_0 power_eq_0_iff power_mono zero_less_diff zero_less_power)
  moreover have "... 
    (q * (1-q)) ^ s * (1 - q) ^ (f-s)"
    by (smt (verit, ccfv_SIG) assms(2) assms(3) assms(4) divide_eq_0_iff divide_nonneg_nonneg mult_left_mono mult_pos_pos power_mono zero_less_power)
  moreover have "... = q ^ s * (1 - q) ^ f"
    by (smt (verit) feq mult.assoc mult.commute power_add power_mult_distrib)
  ultimately show ?thesis by auto
qed

lemma prob_binomial_pmf_upto_mono:
  assumes "1/2  q" "q  p" "p  1"
  shows "
  measure_pmf.prob (binomial_pmf n p) {..n div 2} 
  measure_pmf.prob (binomial_pmf n q) {..n div 2}"
proof -
  have i: "i  n div 2 
    p ^ i * (1 - p) ^ (n - i)  q ^ i * (1 - q) ^ (n - i)" for i
    using assms by(auto intro!: success_arith_bound)

  show ?thesis
    apply (subst prob_binomial_pmf_upto)
    subgoal using assms by auto
    subgoal using assms by auto
    apply (subst prob_binomial_pmf_upto)
    subgoal using assms by auto
    subgoal using assms by auto
    by (auto intro!: sum_mono simp add: i ab_semigroup_mult_class.mult_ac(1) mult_left_mono)
qed

(* The main result *)
theorem approxmc_sound:
  assumes δ: "δ > 0" "δ < 1"
  assumes ε: "ε > 0" "ε  1"
  assumes S: "finite S"
  shows "measure_pmf.prob (approxmc F S ε δ n)
      {c. real c 
        {real (card (proj S (sols F))) / (1 + ε)..
          (1 + ε) * real (card (proj S (sols F)))}}
       1 - δ"
proof -
  define thresh where "thresh = compute_thresh ε"
  define t where "t = compute_t δ n"
  then have t1: "1  t"
    using compute_t_ge1[OF δ] by auto

  have "card (proj S (sols F)) < thresh 
      card (proj S (sols F))  thresh" by auto
  moreover {
    assume "card (proj S (sols F)) < thresh"
    then have "approxmc F S ε δ n =
      return_pmf (card (proj S (sols F)))"
      unfolding approxmc_def Let_def thresh_def
      by auto
    then have "?thesis"
      unfolding indicator_def of_bool_def
      using assms ε
      by (auto simp add: mult_le_cancel_left1 mult_le_cancel_right1 divide_le_eq)
  }
  moreover {
    assume a: "card (proj S (sols F))  thresh"
    define Xf where "Xf = (λ(i::nat) xs.
      approxcore_xors F S thresh (xs i))"

    then have *: "approxmc F S ε δ n =
      map_pmf (median t)
      (prod_pmf {0..<t} (λi. approxmccore F S thresh))"
      using a
      unfolding approxmc_def Let_def thresh_def t_def
      by auto

    have **: "map_pmf (real  median t)
      (Pi_pmf {0..<t} (approxcore_xors F S thresh undefined)
       (λi. approxmccore F S thresh)) =
       map_pmf (λω. median t (λi. real (Xf i ω)))
      (prod_pmf {0..<t} (λi. random_xors S (card S - 1)))"
      apply (subst median_commute)
      subgoal using t1 by simp
      unfolding approxmccore_def
       apply (subst Pi_pmf_map)
      unfolding Xf_def by (auto simp add: pmf.map_comp o_def)

    define α where "α = (0.14 ::real)"
    then have α: "α > 0" by auto

    have indep:"prob_space.indep_vars
     (measure_pmf
       (prod_pmf {0..<t} (λi. random_xors S (card S - 1))))
      (λ_. borel) (λx xa. real (Xf x xa)) {0..<t}"
      unfolding Xf_def
      apply (intro indep_vars_restrict_intro')
      by (auto simp add: restrict_dfl_def)

    have d: "δ  {0<..<1}" using δ by auto

    from approxcore_xors_eq[OF thresh_def a ε S]
    have b1: "1 / 2 + α 
     measure_pmf.prob (random_xors S (card S - 1))
      {xors.
       real (approxcore_xors F S thresh xors)
        {real (card (proj S (sols F))) /
           (1 + ε)..(1 + ε) * real (card (proj S (sols F)))}}"
      unfolding α_def by auto
    then have b2: "i < t 
      1 / 2 + α 
      measure_pmf.prob
         (prod_pmf {0..<t}
           (λi. random_xors S (card S - 1)))
         {ω  space
                (measure_pmf
                  (prod_pmf {0..<t}
                    (λi. random_xors S (card S - 1)))).
          real (Xf i ω)
           {real (card (proj S (sols F))) /(1 + ε)..
              (1 + ε) *real (card (proj S (sols F)))}}" for i
    unfolding Xf_def apply clarsimp
    apply (subst prob_prod_pmf_slice)
    by auto

    have ***: "1 - δ
       measure_pmf.prob (prod_pmf {0..<t} (λi. random_xors S (card S - 1)))
      {ω.
       median t (λi. real (Xf i ω))
        {real (card (proj S (sols F))) /
           (1 + ε)..(1 + ε) * real (card (proj S (sols F)))}}"
    proof -
      have "t = fix_t δ  t = n  raw_median_bound α n < δ"
      unfolding t_def compute_t_def α_def by auto
      moreover {
        assume "t = fix_t δ"
        then have tb:"- ln δ / (2 * α2)  real t"
        unfolding fix_t_def α_def
        apply clarsimp
        by (metis assms(1) divide_minus_left inverse_eq_divide ln_inverse real_nat_ceiling_ge)

        from measure_pmf.median_bound_1[OF α d indep tb]
        have ?thesis using b2 by auto
      }
      moreover {
        assume *: "t = n" "raw_median_bound α n < δ"
        have s: "1 / 2 - α = 1 - (1 /2 + α)"
          by auto

        have d1: "0 < t" using t1 by linarith
        have d2: "1 / 2 + α  0" using α by auto
        have d3: "interval{x..y::real}" for x y
          unfolding interval_def by auto

        from prob_space.median_bound_raw[OF _ d1 d2 d3 indep b2]
        have "1 -
          measure_pmf.prob (binomial_pmf t (1 / 2 + α)) {..t div 2}
           measure_pmf.prob
              (prod_pmf {0..<t}
                (λi. random_xors S (card S - 1)))
              {ω.
               median t (λi. real (Xf i ω))
                {real (card (proj S (sols F))) /
                   (1 + ε)..(1 + ε) * real (card (proj S (sols F)))}}"
          by (auto simp add: prob_space_measure_pmf)

        moreover have "measure_pmf.prob (binomial_pmf t (1 / 2 + α)) {..t div 2}  δ"
          by (smt (verit, ccfv_SIG) * b1 d2 measure_pmf.prob_le_1 prob_binomial_pmf_upto raw_median_bound_def s sum.cong)

        ultimately have ?thesis by auto
      }
      ultimately show ?thesis by auto
    qed

    have "measure_pmf.prob (approxmc F S ε δ n)
        {c. real c
             {real (card (proj S (sols F))) /
                (1 + ε)..(1 + ε) * real (card (proj S (sols F)))}} =
      measure_pmf.prob (map_pmf (real  median t)
        (prod_pmf {0..<t}
         (λi. approxmccore F S thresh)))
          {c. c  {real (card (proj S (sols F))) /
                  (1 + ε)..(1 + ε) * real (card (proj S (sols F)))}}"
      using * by auto
    moreover have "... =
      measure_pmf.prob (map_pmf (real  median t)
      (map_pmf (λf x. if x  {0..<t} then f x else undefined) (Pi_pmf {0..<t} (approxcore_xors F S thresh undefined)
       (λi. approxmccore F S thresh))))
      {c. c  {real (card (proj S (sols F))) /
                (1 + ε)..(1 + ε) * real (card (proj S (sols F)))}}"
      apply (subst Pi_pmf_default_swap)
      by auto
    moreover have "... =
      measure_pmf.prob (map_pmf (real  median t)
      (Pi_pmf {0..<t} (approxcore_xors F S thresh undefined)
       (λi. approxmccore F S thresh)))
      {c. c  {real (card (proj S (sols F))) /
                (1 + ε)..(1 + ε) * real (card (proj S (sols F)))}}"
      by (clarsimp simp add: median_default[symmetric])
    moreover have "...  1 - δ"
      unfolding **
      using ***
      by auto
    ultimately have ?thesis by auto
  }
  ultimately show ?thesis by auto
qed

text ‹ To simplify further analyses, we can remove the (required) upper bound on epsilon. ›

definition mk_eps :: "real  real"
  where "mk_eps ε = (if ε > 1 then 1 else ε)"

definition approxmc'::"
  'fml  'a set 
  real  real  nat  nat pmf"
  where "approxmc' F S ε δ n =
    approxmc F S (mk_eps ε) δ n"

corollary approxmc'_sound:
  assumes δ: "δ > 0" "δ < 1"
  assumes ε: "ε > 0"
  assumes S: "finite S"
  shows "prob_space.prob (approxmc' F S ε δ n)
      {c. real c 
        {real (card (proj S (sols F))) / (1 + ε)..
          (1 + ε) * real (card (proj S (sols F)))}}
       1 - δ"
proof -
  define ε' where "ε' = (if ε > 1 then 1 else ε)"
  have ε': "0 < ε'" "ε'  1"
    unfolding ε'_def using ε by auto

  from approxmc_sound[OF δ ε' S]
  have *: "prob_space.prob (approxmc F S ε' δ n)
      {c. real c 
        {real (card (proj S (sols F))) / (1 + ε')..
          (1 + ε') * real (card (proj S (sols F)))}}
       1 - δ" .

  have **: "
    {c. real c 
        {real (card (proj S (sols F))) / (1 + ε')..
          (1 + ε') * real (card (proj S (sols F)))}}
    
    {c. real c 
        {real (card (proj S (sols F))) / (1 + ε)..
          (1 + ε) * real (card (proj S (sols F)))}}"
    unfolding ε'_def
    apply clarsimp
    apply (rule conjI)
    apply (smt (verit) field_sum_of_halves frac_less2 zero_less_divide_iff)
    by (metis (no_types, opaque_lifting) add_le_cancel_left arith_special(3) dual_order.trans less_eq_real_def mult_right_mono of_nat_0_le_iff)

  show ?thesis
    apply (intro order.trans[OF *])
    unfolding approxmc'_def ε'_def mk_eps_def
    apply (intro measure_pmf.finite_measure_mono)
    using **[unfolded  ε'_def]
    by auto
qed

text ‹ This shows we can lift all randomness to the top-level (i.e., eagerly sample it). ›

definition approxmc_map::"
  'fml  'a set 
  real  real  nat 
  (nat  nat  ('a set × bool) option) 
  nat"
  where "approxmc_map F S ε δ n xorsFs = (
    let ε = mk_eps ε in
    let thresh = compute_thresh ε in
    if card (proj S (sols F)) < thresh then
      card (proj S (sols F))
    else
      let t = compute_t δ n in
      median t (approxcore_xors F S thresh  xorsFs))"

lemma approxmc_map_eq:
  shows "
    map_pmf (approxmc_map F S ε δ n)
      (Pi_pmf {0..<compute_t δ n} def
         (λi. random_xors S (card S - 1))) =
    approxmc' F S ε δ n"
proof -
  define def' where "def' = approxcore_xors F S (compute_thresh (mk_eps ε)) def"

  have *: "
     map_pmf (median (compute_t δ n))
     (prod_pmf {0..<compute_t δ n}
       (λi. map_pmf
              (approxcore_xors F S
                (compute_thresh (mk_eps ε)))
              (random_xors S (card S - Suc 0)))) =
     map_pmf (median (compute_t δ n))
     (Pi_pmf {0..<compute_t δ n} def'
       (λi. map_pmf
              (approxcore_xors F S
                (compute_thresh (mk_eps ε)))
              (random_xors S (card S - Suc 0))))"
    apply (subst Pi_pmf_default_swap[symmetric, where dflt ="undefined", where dflt'="def'"])
    by (auto simp add: map_pmf_comp median_default[symmetric])

  show ?thesis
  unfolding approxmc'_def approxmc_map_def approxmc_def Let_def approxmccore_def
  using def'_def
  by (auto simp add: map_pmf_comp  Pi_pmf_map[of _ _ def] *)
qed

end

end