Theory Strong_Early_Bisim_SC

(* 
   Title: The pi-calculus   
   Author/Maintainer: Jesper Bengtson (jebe.dk), 2012
*)
theory Strong_Early_Bisim_SC
  imports Strong_Early_Bisim Strong_Late_Bisim_SC Strong_Early_Late_Comp
begin

(******** Structural Congruence **********)

(******** The ν-operator *****************)

lemma resComm:
  fixes P :: pi
  
  shows "a>b>P e b>a>P"
proof -
  have "a>b>P l b>a>P" by(rule Strong_Late_Bisim_SC.resComm)
  thus ?thesis by(rule lateEarlyBisim)
qed

(******** Match *********)

lemma matchId:
  fixes a :: name
  and   P :: pi

  shows "[aa]P e P"
proof -
  have "[aa]P l P" by(rule Strong_Late_Bisim_SC.matchId)
  thus ?thesis by(rule lateEarlyBisim)
qed

(******** Mismatch *********)

lemma mismatchId:
  fixes a :: name
  and   b :: name
  and   P :: pi

  assumes "a  b"

  shows "[ab]P e P"
proof -
  from assms have "[ab]P l P" by(rule Strong_Late_Bisim_SC.mismatchId)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma mismatchNil:
  fixes a :: name
  and   P :: pi
  
  shows "[aa]P e 𝟬"
proof -
  have "[aa]P l 𝟬" by(rule Strong_Late_Bisim_SC.mismatchNil)
  thus ?thesis by(rule lateEarlyBisim)
qed

(******** The +-operator *********)

lemma sumSym:
  fixes P :: pi
  and   Q :: pi
  
  shows "P  Q e Q  P"
proof -
  have "P  Q l Q  P" by(rule Strong_Late_Bisim_SC.sumSym)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma sumAssoc:
  fixes P :: pi
  and   Q :: pi
  and   R :: pi
  
  shows "(P  Q)  R e P  (Q  R)"
proof -
  have "(P  Q)  R l P  (Q  R)" by(rule Strong_Late_Bisim_SC.sumAssoc)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma sumZero:
  fixes P :: pi
  
  shows "P  𝟬 e P"
proof -
  have "P  𝟬 l P" by(rule Strong_Late_Bisim_SC.sumZero)
  thus ?thesis by(rule lateEarlyBisim)
qed

(******** The |-operator *********)

lemma parZero:
  fixes P :: pi

  shows "P  𝟬 e P"
proof -
  have "P  𝟬 l P" by(rule Strong_Late_Bisim_SC.parZero)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma parSym:
  fixes P :: pi
  and   Q :: pi

  shows "P  Q e Q  P"
proof -
  have "P  Q l Q  P" by(rule Strong_Late_Bisim_SC.parSym)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma scopeExtPar:
  fixes P :: pi
  and   Q :: pi
  and   x :: name

  assumes "x  P"

  shows "x>(P  Q) e P  x>Q"
proof -
  from assms have "x>(P  Q) l P  x>Q" by(rule Strong_Late_Bisim_SC.scopeExtPar)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma scopeExtPar':
  fixes P :: pi
  and   Q :: pi
  and   x :: name

  assumes xFreshQ: "x  Q"

  shows "x>(P  Q) e (x>P)  Q"
proof -
  from assms have "x>(P  Q) l (x>P)  Q" by(rule Strong_Late_Bisim_SC.scopeExtPar')
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma parAssoc:
  fixes P :: pi
  and   Q :: pi
  and   R :: pi

  shows "(P  Q)  R e P  (Q  R)"
proof -
  have "(P  Q)  R l P  (Q  R)" by(rule Strong_Late_Bisim_SC.parAssoc)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma freshRes:
  fixes P :: pi
  and   a :: name

  assumes aFreshP: "a  P"

  shows "a>P e P"
proof -
  from aFreshP have "a>P l P" by(rule Strong_Late_Bisim_SC.scopeFresh)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma scopeExtSum:
  fixes P :: pi
  and   Q :: pi
  and   x :: name
  
  assumes "x  P"

  shows "x>(P  Q) e P  x>Q"
proof -
  from x  P  have "x>(P  Q) l P  x>Q" by(rule Strong_Late_Bisim_SC.scopeExtSum)
  thus ?thesis by(rule lateEarlyBisim)
qed

lemma bangSC:
  fixes P

  shows "!P e P  !P"
proof -
  have "!P l P  !P" by(rule Strong_Late_Bisim_SC.bangSC)
  thus ?thesis by(rule lateEarlyBisim)
qed

end