Theory Paraconsistency_Validity_Infinite
theory Paraconsistency_Validity_Infinite imports Paraconsistency
abbrevs
"Truth" = "❙⊤"
and
"Falsity" = "❙⊥"
and
"Neg'" = "❙¬"
and
"Con'" = "❙∧"
and
"Eql" = "❙⇔"
and
"Eql'" = "❙↔"
and
"Dis'" = "❙∨"
and
"Imp" = "❙⇒"
and
"Imp'" = "❙→"
and
"Box" = "❙□"
and
"Neg" = "❙⇁❙⇁"
and
"Con" = "❙∧❙∧"
and
"Dis" = "❙∨❙∨"
and
"Cla" = "❙Δ"
and
"Nab" = "❙∇"
and
"CON" = "[❙∧❙∧]"
and
"DIS" = "[❙∨❙∨]"
and
"NAB" = "[❙∇]"
and
"ExiEql" = "[❙∃❙=]"
begin
text
‹
The details about the definitions, lemmas and theorems are described in an article in the
Post-proceedings of the 24th International Conference on Types for Proofs and Programs (TYPES 2018).
›
section ‹Notation›
notation Pro ("⟨_⟩" [39] 39)
notation Truth ("❙⊤")
notation Neg' ("❙¬ _" [40] 40)
notation Con' (infixr "❙∧" 35)
notation Eql (infixr "❙⇔" 25)
notation Eql' (infixr "❙↔" 25)
notation Falsity ("❙⊥")
notation Dis' (infixr "❙∨" 30)
notation Imp (infixr "❙⇒" 25)
notation Imp' (infixr "❙→" 25)
notation Box ("❙□ _" [40] 40)
notation Neg ("❙⇁❙⇁ _" [40] 40)
notation Con (infixr "❙∧❙∧" 35)
notation Dis (infixr "❙∨❙∨" 30)
notation Cla ("❙Δ _" [40] 40)
notation Nab ("❙∇ _" [40] 40)
abbreviation DetTrue :: tv ("∙") where "∙ ≡ Det True"
abbreviation DetFalse :: tv ("∘") where "∘ ≡ Det False"
notation Indet ("⌊_⌋" [39] 39)
text
‹
Strategy: We define a formula that is valid in the sets {0..<1}, {0..<2}, ..., {0..<n-1} but is
not valid in the set {0..<n}
›
section ‹Injections From Sets to Sets›
text
‹
We define the notion of an injection from a set X to a set Y
›
definition inj_from_to :: "('a ⇒ 'b) ⇒ 'a set ⇒ 'b set ⇒ bool" where
"inj_from_to f X Y ≡ inj_on f X ∧ f ` X ⊆ Y"
lemma bij_betw_inj_from_to: "bij_betw f X Y ⟹ inj_from_to f X Y"
unfolding bij_betw_def inj_from_to_def by simp
text
‹
Special lemma for finite cardinality only
›
lemma inj_from_to_if_card:
assumes "card X ≤ card Y"
assumes "finite X"
shows "∃f. inj_from_to f X Y"
unfolding inj_from_to_def
by (metis assms card_image card_le_inj card_subset_eq obtain_subset_with_card_n order_refl)
section ‹Extension of Paraconsistency Theory›
text
‹
The Paraconsistency theory is extended with abbreviation ‹is_det› and a number of lemmas that are
or generalizations of previous lemmas
›
abbreviation is_det :: "tv ⇒ bool" where "is_det tv ≡ ¬ is_indet tv"
theorem valid_iff_valid_in:
assumes "card U ≥ card (props p)"
shows "valid p ⟷ valid_in U p"
using assms valid_in_valid valid_valid_in by blast
text
‹
Generalization of ‹change_tv_injection›
›
lemma change_tv_injection_on:
assumes "inj_on f U"
shows "inj_on (change_tv f) (domain U)"
proof
fix x y
assume "x ∈ domain U" "y ∈ domain U" "change_tv f x = change_tv f y"
then show "x = y"
unfolding domain_def using assms inj_onD by (cases x; cases y) auto
qed
text
‹
Similar to ‹change_tv_injection_on›
›
lemma change_tv_injection_from_to:
assumes "inj_from_to f U W"
shows "inj_from_to (change_tv f) (domain U) (domain W)"
unfolding inj_from_to_def
proof
show "inj_on (change_tv f) (domain U)"
using assms change_tv_injection_on unfolding inj_from_to_def by blast
next
show "change_tv f ` domain U ⊆ domain W"
proof
fix x
assume "x ∈ change_tv f ` domain U"
then show "x ∈ domain W"
unfolding domain_def image_def
using assms inj_from_to_def[of f U W]
by (cases x) auto
qed
qed
text
‹
Similar to ‹eval_change_inj_on›
›
lemma change_tv_surj_on:
assumes "f ` U = W"
shows "(change_tv f) ` (domain U) = (domain W)"
proof
show "change_tv f ` domain U ⊆ domain W"
proof
fix x
assume "x ∈ change_tv f ` domain U"
then show "x ∈ domain W"
proof
fix x'
assume "x = change_tv f x'" "x' ∈ domain U"
then show "x ∈ domain W"
unfolding domain_def using assms by fastforce
qed
qed
next
show "domain W ⊆ change_tv f ` domain U"
proof
fix x
assume "x ∈ domain W"
then show "x ∈ change_tv f ` domain U"
unfolding domain_def using assms image_iff by fastforce
qed
qed
text
‹
Similar to ‹eval_change_inj_on›
›
lemma change_tv_bij_betw:
assumes "bij_betw f U W"
shows "bij_betw (change_tv f) (domain U) (domain W)"
using assms change_tv_injection_on change_tv_surj_on unfolding bij_betw_def by simp
text
‹
Generalization of ‹eval_change›
›
lemma eval_change_inj_on:
assumes "inj_on f U"
assumes "range i ⊆ domain U"
shows "eval (change_int f i) p = change_tv f (eval i p)"
proof (induct p)
fix p
assume "eval (change_int f i) p = change_tv f (eval i p)"
then have "eval_neg (eval (change_int f i) p) = eval_neg (change_tv f (eval i p))"
by simp
then have "eval_neg (eval (change_int f i) p) = change_tv f (eval_neg (eval i p))"
by (cases "eval i p") (simp_all add: case_bool_if)
then show "eval (change_int f i) (❙¬ p) = change_tv f (eval i (❙¬ p))"
by simp
next
fix p1 p2
assume ih1: "eval (change_int f i) p1 = change_tv f (eval i p1)"
assume ih2: "eval (change_int f i) p2 = change_tv f (eval i p2)"
show "eval (change_int f i) (p1 ❙∧ p2) = change_tv f (eval i (p1 ❙∧ p2))"
using assms ih1 ih2 change_tv.simps(1) change_tv_injection_on eval.simps(2) eval.simps(4)
inj_onD ranges by metis
next
fix p1 p2
assume ih1: "eval (change_int f i) p1 = change_tv f (eval i p1)"
assume ih2: "eval (change_int f i) p2 = change_tv f (eval i p2)"
have "Det (eval (change_int f i) p1 = eval (change_int f i) p2) =
Det (change_tv f (eval i p1) = change_tv f (eval i p2))"
using ih1 ih2 by simp
also have "... = Det ((eval i p1) = (eval i p2))"
proof -
have "inj_on (change_tv f) (domain U)"
using assms(1) change_tv_injection_on by simp
then show ?thesis
using assms(2) ranges by (simp add: inj_on_eq_iff)
qed
also have "... = change_tv f (Det (eval i p1 = eval i p2))"
by simp
finally show "eval (change_int f i) (p1 ❙⇔ p2) = change_tv f (eval i (p1 ❙⇔ p2))"
by simp
next
fix p1 p2
assume ih1: "eval (change_int f i) p1 = change_tv f (eval i p1)"
assume ih2: "eval (change_int f i) p2 = change_tv f (eval i p2)"
show "eval (change_int f i) (p1 ❙↔ p2) = change_tv f (eval i (p1 ❙↔ p2))"
using assms ih1 ih2 inj_on_eq_iff change_tv.simps(1) change_tv_injection_on eval_equality
eval_negation ranges by smt
qed (simp_all add: change_int_def)
section ‹Logics of Equal Cardinality Are Equal›
text
‹
We prove that validity in a set depends only on the cardinality of the set
›
lemma inj_from_to_valid_in:
assumes "inj_from_to f W U"
assumes "valid_in U p"
shows "valid_in W p"
unfolding valid_in_def proof (rule, rule)
fix i :: "char list ⇒ tv"
assume a: "range i ⊆ domain W"
from assms have valid_p: "∀i. range i ⊆ domain U ⟶ eval i p = ∙"
unfolding valid_in_def by simp
have "range (change_int f i) ⊆ domain U"
proof
fix x
assume "x ∈ range (change_int f i)"
then obtain xa where xa: "change_int f i xa = x"
by blast
have "inj_from_to (change_tv f) (domain W) (domain U)"
using change_tv_injection_from_to assms by simp
then have "(change_tv f) (i xa) ∈ domain U"
using a by (metis inj_from_to_def image_eqI range_eqI subsetCE)
then show "x ∈ domain U"
using xa change_int_def by simp
qed
then have "eval (change_int f i) p = ∙"
using valid_p by simp
then have "eval (change_int f i) p = ∙"
by simp
then have "change_tv f (eval i p) = ∙"
using a assms(1) eval_change_inj_on unfolding inj_from_to_def by metis
then show "eval i p = ∙"
using change_tv.elims tv.distinct(1) by fast
qed
corollary
assumes "inj_from_to f U W"
assumes "inj_from_to g W U"
shows "valid_in U p ⟷ valid_in W p"
using assms inj_from_to_valid_in by fast
lemma bij_betw_valid_in:
assumes "bij_betw f U W"
shows "valid_in U p ⟷ valid_in W p"
using assms inj_from_to_valid_in bij_betw_inv bij_betw_inj_from_to by metis
theorem eql_finite_eql_card_valid_in:
assumes "finite U ⟷ finite W"
assumes "card U = card W"
shows "valid_in U p ⟷ valid_in W p"
proof (cases "finite U")
case True
then show ?thesis
using assms bij_betw_iff_card bij_betw_valid_in by metis
next
case False
then have "(∃f :: nat ⇒ nat. bij_betw f U UNIV) ∧ (∃g :: nat ⇒ nat. bij_betw g W UNIV)"
using assms Schroeder_Bernstein infinite_iff_countable_subset inj_Suc top_greatest by metis
with bij_betw_valid_in show ?thesis
by metis
qed
corollary
assumes "U ≠ {}"
assumes "W ≠ {}"
assumes "card U = card W"
shows "valid_in U p ⟷ valid_in W p"
using assms eql_finite_eql_card_valid_in card_gt_0_iff by metis
theorem finite_eql_card_valid_in:
assumes "finite U"
assumes "finite W"
assumes "card U = card W"
shows "valid_in U p ⟷ valid_in W p"
using eql_finite_eql_card_valid_in by (simp add: assms)
theorem infinite_valid_in:
assumes "infinite U"
assumes "infinite W"
shows "valid_in U p ⟷ valid_in W p"
using eql_finite_eql_card_valid_in by (simp add: assms)
section ‹Conversions Between Nats and Strings›
definition nat_of_digit :: "char ⇒ nat" where
"nat_of_digit c =
(if c = (CHR ''1'') then 1 else if c = (CHR ''2'') then 2 else if c = (CHR ''3'') then 3 else
if c = (CHR ''4'') then 4 else if c = (CHR ''5'') then 5 else if c = (CHR ''6'') then 6 else
if c = (CHR ''7'') then 7 else if c = (CHR ''8'') then 8 else if c = (CHR ''9'') then 9 else 0)"
proposition "range nat_of_digit = {0..<10}"
proof
show "range nat_of_digit ⊆ {0..<10}"
unfolding nat_of_digit_def by auto
next
show "{0..<10} ⊆ range nat_of_digit"
proof
fix x :: nat
assume a: "x ∈ {0..<10}"
show "x ∈ range nat_of_digit"
proof (cases "x = 0")
case True
then show ?thesis
unfolding nat_of_digit_def by auto
next
case False
with a show ?thesis
unfolding nat_of_digit_def by auto
qed
qed
qed
lemma nat_of_digit_of_nat[simp]: "n < 10 ⟹ nat_of_digit (digit_of_nat n) = n"
unfolding digit_of_nat_def nat_of_digit_def
by simp presburger
function nat_of_string :: "string ⇒ nat"
where
"nat_of_string n = (if length n ≤ 1 then nat_of_digit (last n) else
(nat_of_string (butlast n)) * 10 + (nat_of_digit (last n)))"
by simp_all
termination
by (relation "measure length") simp_all
lemma nat_of_string_step:
"nat_of_string (string_of_nat (m div 10)) * 10 + m mod 10 = nat_of_string (string_of_nat m)"
by simp
lemma nat_of_string_of_nat: "nat_of_string (string_of_nat n) = n"
proof (induct rule: string_of_nat.induct)
case (1 m)
then show ?case
proof (cases "m < 10")
case True
then show ?thesis
by simp
next
case False
then have "nat_of_string (string_of_nat (m div 10)) = m div 10"
using 1 by simp
then have "nat_of_string (string_of_nat (m div 10)) * 10 = (m div 10) * 10"
by simp
then have "nat_of_string (string_of_nat (m div 10)) * 10 + (m mod 10) =
(m div 10) * 10 + (m mod 10)"
by simp
also have "... = m"
by simp
finally show ?thesis
using nat_of_string_step by simp
qed
qed
lemma "inj string_of_nat"
using inj_on_inverseI nat_of_string_of_nat by metis
section ‹Derived Formula Constructors›
definition PRO :: "id list ⇒ fm list" where
"PRO ids ≡ map Pro ids"
definition Pro_nat :: "nat ⇒ fm" ("⟨_⟩⇩1" [40] 40) where
"⟨n⟩⇩1 ≡ ⟨string_of_nat n⟩"
definition PRO_nat :: "nat list ⇒ fm list" ("⟨_⟩⇩1⇩2⇩3" [40] 40) where
"⟨ns⟩⇩1⇩2⇩3 ≡ map Pro_nat ns"
definition CON :: "fm list ⇒ fm" ("[❙∧❙∧] _" [40] 40) where
"[❙∧❙∧] ps ≡ foldr Con ps ❙⊤"
definition DIS :: "fm list ⇒ fm" ("[❙∨❙∨] _" [40] 40) where
"[❙∨❙∨] ps ≡ foldr Dis ps ❙⊥"
definition NAB :: "fm list ⇒ fm" ("[❙∇] _" [40] 40) where
"[❙∇] ps ≡ [❙∧❙∧] (map Nab ps)"
definition off_diagonal_product :: "'a set ⇒ 'a set ⇒ ('a × 'a) set" where
"off_diagonal_product xs ys ≡ {(x,y). (x,y) ∈ (xs × ys) ∧ x ≠ y }"
definition List_off_diagonal_product :: "'a list ⇒ 'a list ⇒ ('a × 'a) list" where
"List_off_diagonal_product xs ys ≡ filter (λ(x,y). not_equal x y) (List.product xs ys)"
definition ExiEql :: "fm list ⇒ fm" ("[❙∃❙=] _" [40] 40) where
"[❙∃❙=] ps ≡ [❙∨❙∨] (map (λ(x,y). x ❙⇔ y) (List_off_diagonal_product ps ps))"
lemma cla_false_Imp:
assumes "eval i a = ∙"
assumes "eval i b = ∘"
shows "eval i (a ❙⇒ b) = ∘"
using assms by simp
lemma eval_CON:
"eval i ([❙∧❙∧] ps) = Det (∀p ∈ set ps. eval i p = ∙)"
unfolding CON_def
by (induct ps) simp_all
lemma eval_DIS:
"eval i ([❙∨❙∨] ps) = Det (∃p ∈ set ps. eval i p = ∙)"
unfolding DIS_def
proof (induct ps)
case Nil
then show ?case
by simp
next
case Cons
with eval.simps eval_negation foldr.simps list.set_intros o_apply set_ConsD show ?case by smt
qed
lemma eval_Nab: "eval i (❙∇ p) = Det (is_indet (eval i p))"
proof (induct p)
case (Pro x)
then show ?case
using string_tv.cases tv.simps(5) tv.simps(6) eval_negation
eval.simps(2) eval.simps(4) eval.simps(5) by smt
next
case (Neg' p)
then show ?case
using eval_negation by fastforce
next
case (Eql' p1 p2)
then show ?case
using string_tv.cases tv.simps(5) tv.simps(6) eval_negation
eval.simps(2) eval.simps(4) eval.simps(5) by smt
qed auto
lemma eval_NAB:
"eval i ([❙∇] ps) = Det (∀p ∈ set ps. is_indet (eval i p))"
proof (cases "∀p∈set ps. is_indet (eval i p)")
case True
then have "eval i ([❙∇] ps) = ∙"
unfolding NAB_def using eval_CON by fastforce
then show ?thesis
using True by simp
next
case False
then have "¬ (∀p∈set ps. eval i (❙∇ p) = ∙)"
using eval_Nab by simp
then have "¬ (∀p∈set (map Nab ps). eval i p = ∙)"
by simp
then have "eval i ([❙∇] ps) = ∘"
unfolding NAB_def using eval_CON[of i "(map Nab ps)"] by simp
then show ?thesis
using False by simp
qed
lemma eval_ExiEql:
"eval i ([❙∃❙=] ps) =
Det (∃(p1, p2)∈(off_diagonal_product (set ps) (set ps)). eval i p1 = eval i p2)"
using eval_DIS[of i "(map (λ(x, y). x ❙⇔ y) (List_off_diagonal_product ps ps))"]
unfolding off_diagonal_product_def ExiEql_def List_off_diagonal_product_def
by auto
section ‹Pigeon Hole Formula›
definition pigeonhole_fm :: "nat ⇒ fm" where
"pigeonhole_fm n ≡ [❙∇] ⟨[0..<n]⟩⇩1⇩2⇩3 ❙⇒ [❙∃❙=] ⟨[0..<n]⟩⇩1⇩2⇩3"
definition interp_of_id :: "nat ⇒ id ⇒ tv" where
"interp_of_id maxi i ≡ if (nat_of_string i) < maxi then ⌊nat_of_string i⌋ else ∙"
lemma interp_of_id_pigeonhole_fm_False: "eval (interp_of_id n) (pigeonhole_fm n) = ∘"
proof -
have all_indet: "∀p ∈ set (⟨[0..<n]⟩⇩1⇩2⇩3). is_indet (eval (interp_of_id n) p)"
proof
fix p
assume a: "p ∈ set (⟨[0..<n]⟩⇩1⇩2⇩3)"
show "is_indet (eval (interp_of_id n) p)"
proof -
from a have "p ∈ Pro_nat ` {..<n}"
unfolding PRO_nat_def using atLeast_upt set_map by metis
then have "∃m<n. p = (⟨m⟩⇩1)"
unfolding Pro_nat_def by fast
then show ?thesis
unfolding interp_of_id_def Pro_nat_def using nat_of_string_of_nat by fastforce
qed
qed
then have "eval (interp_of_id n) ([❙∇] (⟨[0..<n]⟩⇩1⇩2⇩3)) = ∙"
using eval_NAB by simp
moreover
have "∀a b. a ∈ set (map (λn. ⟨n⟩⇩1) [0..<n]) ⟶
b ∈ set (map (λn. ⟨n⟩⇩1) [0..<n]) ⟶ a ≠ b ⟶
eval (interp_of_id n) a = eval (interp_of_id n) b ⟶ False"
using all_indet in_set_conv_nth length_map nat_of_string_of_nat nth_map tv.inject tv.simps(5)
eval.simps(1)
unfolding interp_of_id_def PRO_def PRO_nat_def Pro_nat_def
by smt
then have "∀(p1, p2)∈off_diagonal_product (set (⟨[0..<n]⟩⇩1⇩2⇩3)) (set (⟨[0..<n]⟩⇩1⇩2⇩3)).
eval (interp_of_id n) p1 ≠ eval (interp_of_id n) p2"
unfolding off_diagonal_product_def PRO_nat_def Pro_nat_def by blast
then have "¬ (∃(p1, p2)∈off_diagonal_product (set (⟨[0..<n]⟩⇩1⇩2⇩3)) (set (⟨[0..<n]⟩⇩1⇩2⇩3)).
eval (interp_of_id n) p1 = eval (interp_of_id n) p2)"
by blast
then have "eval (interp_of_id n) ([❙∃❙=] (⟨[0..<n]⟩⇩1⇩2⇩3)) = ∘"
using eval_ExiEql[of "interp_of_id n" "⟨[0..<n]⟩⇩1⇩2⇩3"] by simp
ultimately
show ?thesis
unfolding pigeonhole_fm_def using cla_false_Imp[of "interp_of_id n"] by blast
qed
lemma range_interp_of_id: "range (interp_of_id n) ⊆ domain {0..<n}"
unfolding interp_of_id_def domain_def by (simp add: image_subset_iff)
theorem not_valid_in_n_pigeonhole_fm: "¬ (valid_in {0..<n} (pigeonhole_fm n))"
unfolding valid_in_def using interp_of_id_pigeonhole_fm_False[of n] range_interp_of_id[of n]
by fastforce
theorem not_valid_pigeonhole_fm: "¬ (valid (pigeonhole_fm n))"
unfolding valid_def using interp_of_id_pigeonhole_fm_False[of n]
by fastforce
lemma cla_imp_I:
assumes "is_det (eval i a)"
assumes "is_det (eval i b)"
assumes "eval i a = ∙ ⟹ eval i b = ∙"
shows "eval i (a ❙⇒ b) = ∙"
proof -
have "is_det tv = (case tv of Det _ ⇒ True | ⌊_⌋ ⇒ False)" for tv
by (metis (full_types) tv.exhaust tv.simps(5) tv.simps(6))
then show ?thesis
using assms
by (metis (full_types) eval.simps(4) eval.simps(5) tv.exhaust tv.simps(6))
qed
lemma is_det_NAB: "is_det (eval i ([❙∇] ps))"
unfolding eval_NAB by auto
lemma is_det_ExiEql: "is_det (eval i ([❙∃❙=] ps))"
using eval_ExiEql by auto
lemma pigeonhole_nat:
assumes "finite n"
assumes "finite m"
assumes "card n > card m"
assumes "f ` n ⊆ m"
shows "∃x∈n. ∃y∈n. x ≠ y ∧ f x = f y"
using assms not_le inj_on_iff_card_le unfolding inj_on_def
by metis
lemma pigeonhole_nat_set:
assumes "f ` {0..<n} ⊆ {0..<m}"
assumes "m < (n :: nat)"
shows "∃j1∈{0..<n}. ∃j2∈{0..<n}. j1 ≠ j2 ∧ f j1 = f j2"
using assms pigeonhole_nat[of "({0..<n})" "{0..<m}" f]
by simp
lemma inj_Pro_nat: "(⟨p1⟩⇩1) = (⟨p2⟩⇩1) ⟹ p1 = p2"
unfolding Pro_nat_def using fm.inject(1) nat_of_string_of_nat
by metis
lemma eval_true_in_lt_n_pigeonhole_fm:
assumes "m < n"
assumes "range i ⊆ domain {0..<m}"
shows "eval i (pigeonhole_fm n) = ∙"
proof -
{
assume "eval i ([❙∇] (⟨[0..<n]⟩⇩1⇩2⇩3)) = ∙"
then have "∀p ∈ set (⟨[0..<n]⟩⇩1⇩2⇩3). is_indet (eval i p)"
using eval_NAB by auto
then have *: "∀j<n. is_indet (eval i (⟨j⟩⇩1))"
unfolding PRO_nat_def by auto
have **: "∀j<n. ∃k<m. eval i (⟨j⟩⇩1) = (⌊k⌋)"
proof -
have "∀j<n. is_indet (eval i (⟨j⟩⇩1)) ⟹ j < n ⟹ ∃k<m. eval i (⟨j⟩⇩1) = (⌊k⌋)" for j
proof (rule_tac x="get_indet (i (string_of_nat j))" in exI)
show "∀j<n. is_indet (eval i (⟨j⟩⇩1)) ⟹ j < n ⟹ get_indet (i (string_of_nat j)) < m ∧
eval i (⟨j⟩⇩1) = (⌊get_indet (i (string_of_nat j))⌋)"
proof (induct "i (string_of_nat j)")
case (Det x)
then show ?case
unfolding Pro_nat_def using eval.simps(1) tv.simps(5) by metis
next
case (Indet x)
then show ?case
proof (subgoal_tac "x<m")
show "(⌊x⌋) = i (string_of_nat j) ⟹ ∀j<n. is_indet (eval i (⟨j⟩⇩1)) ⟹ j < n ⟹
x < m ⟹ get_indet (i (string_of_nat j)) < m ∧
eval i (⟨j⟩⇩1) = (⌊get_indet (i (string_of_nat j))⌋)"
unfolding Pro_nat_def using eval.simps(1) tv.simps(6) by metis
next
show "(⌊x⌋) = i (string_of_nat j) ⟹ ∀j<n. is_indet (eval i (⟨j⟩⇩1)) ⟹ j < n ⟹ x < m"
using assms(2) atLeast0LessThan unfolding domain_def by fast
qed
qed
qed
then show ?thesis
using * by simp
qed
then have "∀j<n. ∃k<m. get_indet (eval i (⟨j⟩⇩1)) = k"
by fastforce
then have "(λj. get_indet (eval i (⟨j⟩⇩1))) ` {0..<n} ⊆ {0..<m}"
by fastforce
then have "∃j1 ∈ {0..<n}. ∃j2 ∈ {0..<n}. j1 ≠ j2 ∧ get_indet (eval i (⟨j1⟩⇩1)) =
get_indet (eval i (⟨j2⟩⇩1))"
using assms(1) pigeonhole_nat_set by simp
then have "∃j1 < n. ∃j2 < n. j1 ≠ j2 ∧ get_indet (eval i (⟨j1⟩⇩1)) =
get_indet (eval i (⟨j2⟩⇩1))"
using atLeastLessThan_iff by blast
then have "∃j1 < n. ∃j2 < n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1)"
using ** tv.simps(6) by metis
then have "∃(p1, p2)∈off_diagonal_product (set (⟨[0..<n]⟩⇩1⇩2⇩3)) (set (⟨[0..<n]⟩⇩1⇩2⇩3)).
eval i p1 = eval i p2"
proof (rule_tac P="λj1. j1<n ∧ (∃j2<n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) =
eval i (⟨j2⟩⇩1))" in exE)
show "∃j1<n. ∃j2<n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1) ⟹
∃x<n. ∃j2<n. x ≠ j2 ∧ eval i (⟨x⟩⇩1) = eval i (⟨j2⟩⇩1)"
by simp
next
show "∃j1<n. ∃j2<n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1) ⟹
j1 < n ∧ (∃j2<n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1)) ⟹
∃(p1, p2)∈off_diagonal_product (set (⟨[0..<n]⟩⇩1⇩2⇩3)) (set (⟨[0..<n]⟩⇩1⇩2⇩3)).
eval i p1 = eval i p2" for j1
proof (rule_tac P="λj2. j2<n ∧ j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1)" in exE)
show "∃j1<n. ∃j2<n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1) ⟹
j1 < n ∧ (∃j2<n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1)) ⟹
∃x<n. j1 ≠ x ∧ eval i (⟨j1⟩⇩1) = eval i (⟨x⟩⇩1)"
by simp
next
show "∃j1<n. ∃j2<n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1) ⟹
j1 < n ∧ (∃j2<n. j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1)) ⟹
j2 < n ∧ j1 ≠ j2 ∧ eval i (⟨j1⟩⇩1) = eval i (⟨j2⟩⇩1) ⟹
∃(p1, p2)∈off_diagonal_product (set (⟨[0..<n]⟩⇩1⇩2⇩3)) (set (⟨[0..<n]⟩⇩1⇩2⇩3)).
eval i p1 = eval i p2" for j2
unfolding off_diagonal_product_def PRO_nat_def using inj_Pro_nat
by (rule_tac x="(⟨j1⟩⇩1, ⟨j2⟩⇩1)" in bexI) auto
qed
qed
then have "eval i ([❙∃❙=] (⟨[0..<n]⟩⇩1⇩2⇩3)) = ∙"
using eval_ExiEql by simp
}
then show ?thesis
unfolding pigeonhole_fm_def using cla_imp_I is_det_ExiEql is_det_NAB by simp
qed
theorem valid_in_lt_n_pigeonhole_fm:
assumes "m<n"
shows "valid_in {0..<m} (pigeonhole_fm n)"
using assms
unfolding valid_in_def
using interp_of_id_pigeonhole_fm_False[of n]
using range_interp_of_id[of n]
using eval_true_in_lt_n_pigeonhole_fm
by simp
theorem not_valid_in_pigeonhole_fm_card:
assumes "finite U"
shows "¬ valid_in U (pigeonhole_fm (card U))"
using assms ex_bij_betw_nat_finite not_valid_in_n_pigeonhole_fm bij_betw_valid_in by metis
theorem not_valid_in_pigeonhole_fm_lt_card:
assumes "finite (U::nat set)"
assumes "inj_from_to f U W"
shows "¬ valid_in W (pigeonhole_fm (card U))"
proof -
have "¬ valid_in U (pigeonhole_fm (card U))"
using not_valid_in_pigeonhole_fm_card assms by simp
then show ?thesis
using assms inj_from_to_valid_in by metis
qed
theorem valid_in_pigeonhole_fm_n_gt_card:
assumes "finite U"
assumes "card U < n"
shows "valid_in U (pigeonhole_fm n)"
using assms ex_bij_betw_finite_nat bij_betw_valid_in valid_in_lt_n_pigeonhole_fm by metis
section ‹Validity Is the Intersection of the Finite Logics›
lemma "valid p ⟷ (∀U. finite U ⟶ valid_in U p)"
proof
assume "valid p"
then show "∀U. finite U ⟶ valid_in U p"
using transfer by blast
next
assume "∀U. finite U ⟶ valid_in U p"
then have "valid_in {1..card (props p)} p"
by simp
then show "valid p"
using reduce by simp
qed
section ‹Logics of Different Cardinalities Are Different›
lemma finite_card_lt_valid_in_not_valid_in:
assumes "finite U"
assumes "card U < card W"
shows "valid_in U ≠ valid_in W"
proof -
have finite_W: "finite W"
using assms(2) card.infinite by fastforce
have "valid_in U (pigeonhole_fm (card W))"
using valid_in_pigeonhole_fm_n_gt_card assms by simp
moreover
have "¬ valid_in W (pigeonhole_fm (card W))"
using not_valid_in_pigeonhole_fm_card assms finite_W by simp
ultimately show ?thesis
by fastforce
qed
lemma valid_in_UNIV_p_valid: "valid_in UNIV p = valid p"
using universal_domain valid_def valid_in_def by simp
theorem infinite_valid_in_valid:
assumes "infinite U"
shows "valid_in U p ⟷ valid p"
using assms infinite_valid_in[of U UNIV p] valid_in_UNIV_p_valid by simp
lemma finite_not_finite_valid_in_not_valid_in:
assumes "finite U ≠ finite W"
shows "valid_in U ≠ valid_in W"
proof -
{
fix U W :: "nat set"
assume inf: "infinite U"
assume fin: "finite W"
then have valid_in_W_pigeonhole_fm: "valid_in W (pigeonhole_fm (Suc (card W)))"
using valid_in_pigeonhole_fm_n_gt_card[of W] by simp
have "¬ valid (pigeonhole_fm (Suc (card W)))"
using not_valid_pigeonhole_fm by simp
then have "¬ valid_in U (pigeonhole_fm (Suc (card W)))"
using inf fin infinite_valid_in_valid by simp
then have "valid_in U ≠ valid_in W"
using valid_in_W_pigeonhole_fm by fastforce
}
then show ?thesis
using assms by metis
qed
lemma card_not_card_valid_in_not_valid_in:
assumes "card U ≠ card W"
shows "valid_in U ≠ valid_in W"
using assms
proof -
{
fix U W :: "nat set"
assume a: "card U < card W"
then have "finite W"
using card.infinite gr_implies_not0 by blast
then have valid_in_W_pigeonhole_fm: "valid_in W (pigeonhole_fm (Suc (card W)))"
using valid_in_pigeonhole_fm_n_gt_card[of W] by simp
have "valid_in U ≠ valid_in W"
proof (cases "finite U")
case True
then show ?thesis
using a finite_card_lt_valid_in_not_valid_in by simp
next
case False
have "¬ valid (pigeonhole_fm (Suc (card W)))"
using not_valid_pigeonhole_fm by simp
then have "¬ valid_in U (pigeonhole_fm (Suc (card W)))"
using False infinite_valid_in_valid by simp
then show ?thesis
using valid_in_W_pigeonhole_fm by fastforce
qed
}
then show ?thesis
using assms neqE by metis
qed
section ‹Finite Logics Are Different from Infinite Logics›
theorem extend: "valid ≠ valid_in U" if "finite U"
using that not_valid_pigeonhole_fm valid_in_pigeonhole_fm_n_gt_card by fastforce
corollary "¬ (∃n. ∀p. valid p ⟷ valid_in {0..n} p)"
using extend by fast
corollary "∀n. ∃p. ¬ (valid p ⟷ valid_in {0..n} p)"
using extend by fast
corollary "¬ (∀p. valid p ⟷ valid_in {0..n} p)"
using extend by fast
corollary "valid ≠ valid_in {0..n}"
using extend by simp
proposition "valid = valid_in {0..}"
unfolding valid_def valid_in_def
using universal_domain
by simp
corollary "valid = valid_in {n..}"
using infinite_valid_in[of UNIV "{n..}"] universal_domain
unfolding valid_def valid_in_def
by (simp add: infinite_Ici)
corollary "¬ (∃n m. ∀p. valid p ⟷ valid_in {m..n} p)"
using extend by fast
end