Theory ODE_Auxiliarities
section ‹Auxiliary Lemmas›
theory ODE_Auxiliarities
imports
"HOL-Analysis.Analysis"
"HOL-Library.Float"
"List-Index.List_Index"
Affine_Arithmetic.Affine_Arithmetic_Auxiliarities
Affine_Arithmetic.Executable_Euclidean_Space
begin
instantiation prod :: (zero_neq_one, zero_neq_one) zero_neq_one
begin
definition "1 = (1, 1)"
instance by standard (simp add: zero_prod_def one_prod_def)
end
subsection ‹there is no inner product for type @{typ "'a ⇒⇩L 'b"}›
lemma (in real_inner) parallelogram_law: "(norm (x + y))⇧2 + (norm (x - y))⇧2 = 2 * (norm x)⇧2 + 2 * (norm y)⇧2"
proof -
have "(norm (x + y))⇧2 + (norm (x - y))⇧2 = inner (x + y) (x + y) + inner (x - y) (x - y)"
by (simp add: norm_eq_sqrt_inner)
also have "… = 2 * (norm x)⇧2 + 2 * (norm y)⇧2"
by (simp add: algebra_simps norm_eq_sqrt_inner)
finally show ?thesis .
qed
locale no_real_inner
begin
lift_definition fstzero::"(real*real) ⇒⇩L (real*real)" is "λ(x, y). (x, 0)"
by (auto intro!: bounded_linearI')
lemma [simp]: "fstzero (a, b) = (a, 0)"
by transfer simp
lift_definition zerosnd::"(real*real) ⇒⇩L (real*real)" is "λ(x, y). (0, y)"
by (auto intro!: bounded_linearI')
lemma [simp]: "zerosnd (a, b) = (0, b)"
by transfer simp
lemma fstzero_add_zerosnd: "fstzero + zerosnd = id_blinfun"
by transfer auto
lemma norm_fstzero_zerosnd: "norm fstzero = 1" "norm zerosnd = 1" "norm (fstzero - zerosnd) = 1"
by (rule norm_blinfun_eqI[where x="(1, 0)"]) (auto simp: norm_Pair blinfun.bilinear_simps
intro: norm_blinfun_eqI[where x="(0, 1)"] norm_blinfun_eqI[where x="(1, 0)"])
text ‹compare with @{thm parallelogram_law}›
lemma "(norm (fstzero + zerosnd))⇧2 + (norm (fstzero - zerosnd))⇧2 ≠
2 * (norm fstzero)⇧2 + 2 * (norm zerosnd)⇧2"
by (simp add: fstzero_add_zerosnd norm_fstzero_zerosnd)
end
subsection ‹Topology›
subsection ‹Vector Spaces›
lemma ex_norm_eq_1: "∃x. norm (x::'a::{real_normed_vector, perfect_space}) = 1"
by (metis vector_choose_size zero_le_one)
subsection ‹Reals›
subsection ‹Balls›
text ‹sometimes @{thm mem_ball} etc. are not good ‹[simp]› rules (although they are often useful):
not sure that inequalities are ``simpler'' than set membership (distorts automatic reasoning
when only sets are involved)›
lemmas [simp del] = mem_ball mem_cball mem_sphere mem_ball_0 mem_cball_0
subsection ‹Boundedness›
lemma bounded_subset_cboxE:
assumes "⋀i. i ∈ Basis ⟹ bounded ((λx. x ∙ i) ` X)"
obtains a b where "X ⊆ cbox a b"
proof -
have "⋀i. i ∈ Basis ⟹ ∃a b. ((λx. x ∙ i) ` X) ⊆ {a..b}"
by (metis box_real(2) box_subset_cbox subset_trans bounded_subset_box_symmetric[OF assms] )
then obtain a b where bnds: "⋀i. i ∈ Basis ⟹ ((λx. x ∙ i) ` X) ⊆ {a i .. b i}"
by metis
then have "X ⊆ {x. ∀i∈Basis. x ∙ i ∈ {a i .. b i}}"
by force
also have "… = cbox (∑i∈Basis. a i *⇩R i) (∑i∈Basis. b i *⇩R i)"
by (auto simp: cbox_def)
finally show ?thesis ..
qed
lemma
bounded_euclideanI:
assumes "⋀i. i ∈ Basis ⟹ bounded ((λx. x ∙ i) ` X)"
shows "bounded X"
proof -
from bounded_subset_cboxE[OF assms] obtain a b where "X ⊆ cbox a b" .
with bounded_cbox show ?thesis by (rule bounded_subset)
qed
subsection ‹Intervals›
notation closed_segment ("(1{_--_})")
notation open_segment ("(1{_<--<_})")
lemma min_zero_mult_nonneg_le: "0 ≤ h' ⟹ h' ≤ h ⟹ min 0 (h * k::real) ≤ h' * k"
by (metis dual_order.antisym le_cases min_le_iff_disj mult_eq_0_iff mult_le_0_iff
mult_right_mono_neg)
lemma max_zero_mult_nonneg_le: "0 ≤ h' ⟹ h' ≤ h ⟹ h' * k ≤ max 0 (h * k::real)"
by (metis dual_order.antisym le_cases le_max_iff_disj mult_eq_0_iff mult_right_mono
zero_le_mult_iff)
lemmas closed_segment_eq_real_ivl = closed_segment_eq_real_ivl
lemma bdd_above_is_intervalI: "bdd_above I" if "is_interval I" "a ≤ b" "a ∈ I" "b ∉ I" for I::"real set"
by (meson bdd_above_def is_interval_1 le_cases that)
lemma bdd_below_is_intervalI: "bdd_below I" if "is_interval I" "a ≤ b" "a ∉ I" "b ∈ I" for I::"real set"
by (meson bdd_below_def is_interval_1 le_cases that)
subsection ‹Extended Real Intervals›
subsection ‹Euclidean Components›
subsection ‹Operator Norm›
subsection ‹Limits›
lemma eventually_open_cball:
assumes "open X"
assumes "x ∈ X"
shows "eventually (λe. cball x e ⊆ X) (at_right 0)"
proof -
from open_contains_cball_eq[OF assms(1)] assms(2)
obtain e where "e > 0" "cball x e ⊆ X" by auto
thus ?thesis
by (auto simp: eventually_at dist_real_def mem_cball intro!: exI[where x=e])
qed
subsection ‹Continuity›
subsection ‹Derivatives›
lemma
if_eventually_has_derivative:
assumes "(f has_derivative F') (at x within S)"
assumes "∀⇩F x in at x within S. P x" "P x" "x ∈ S"
shows "((λx. if P x then f x else g x) has_derivative F') (at x within S)"
using assms(1)
apply (rule has_derivative_transform_eventually)
subgoal using assms(2) by eventually_elim auto
by (auto simp: assms)
lemma norm_le_in_cubeI: "norm x ≤ norm y"
if "⋀i. i ∈ Basis ⟹ abs (x ∙ i) ≤ abs (y ∙ i)" for x y
unfolding norm_eq_sqrt_inner
apply (subst euclidean_inner)
apply (subst (3) euclidean_inner)
using that
by (auto intro!: sum_mono simp: abs_le_square_iff power2_eq_square[symmetric])
lemma has_derivative_partials_euclidean_convexI:
fixes f::"'a::euclidean_space ⇒ 'b::real_normed_vector"
assumes f': "⋀i x xi. i ∈ Basis ⟹ (∀j∈Basis. x ∙ j ∈ X j) ⟹ xi = x ∙ i ⟹
((λp. f (x + (p - x ∙ i) *⇩R i)) has_vector_derivative f' i x) (at xi within X i)"
assumes df_cont: "⋀i. i ∈ Basis ⟹ (f' i ⤏ (f' i x)) (at x within {x. ∀j∈Basis. x ∙ j ∈ X j})"
assumes "⋀i. i ∈ Basis ⟹ x ∙ i ∈ X i"
assumes "⋀i. i ∈ Basis ⟹ convex (X i)"
shows "(f has_derivative (λh. ∑j∈Basis. (h ∙ j) *⇩R f' j x)) (at x within {x. ∀j∈Basis. x ∙ j ∈ X j})"
(is "_ (at x within ?S)")
proof (rule has_derivativeI)
show "bounded_linear (λh. ∑j∈Basis. (h ∙ j) *⇩R f' j x)"
by (auto intro!: bounded_linear_intros)
obtain E where [simp]: "set E = (Basis::'a set)" "distinct E"
using finite_distinct_list[OF finite_Basis] by blast
have [simp]: "length E = DIM('a)"
using ‹distinct E› distinct_card by fastforce
have [simp]: "E ! j ∈ Basis" if "j < DIM('a)" for j
by (metis ‹length E = DIM('a)› ‹set E = Basis› nth_mem that)
have "convex ?S"
by (rule convex_prod) (use assms in auto)
have sum_Basis_E: "sum g Basis = (∑j<DIM('a). g (E ! j))" for g
apply (rule sum.reindex_cong[OF _ _ refl])
apply (auto simp: inj_on_nth)
by (metis ‹distinct E› ‹length E = DIM('a)› ‹set E = Basis› bij_betw_def bij_betw_nth)
have segment: "∀⇩F x' in at x within ?S. x' ∈ ?S" "∀⇩F x' in at x within ?S. x' ≠ x"
unfolding eventually_at_filter by auto
show "((λy. (f y - f x - (∑j∈Basis. ((y - x) ∙ j) *⇩R f' j x)) /⇩R norm (y - x)) ⤏ 0) (at x within {x. ∀j∈Basis. x ∙ j ∈ X j})"
apply (rule tendstoI)
unfolding norm_conv_dist[symmetric]
proof -
fix e::real
assume "e > 0"
define B where "B = e / norm (2*DIM('a) + 1)"
with ‹e > 0› have B_thms: "B > 0" "2 * DIM('a) * B < e" "B ≥ 0"
by (auto simp: divide_simps algebra_simps B_def)
define B' where "B' = B / 2"
have "B' > 0" by (simp add: B'_def ‹0 < B›)
have "∀i ∈ Basis. ∀⇩F xa in at x within {x. ∀j∈Basis. x ∙ j ∈ X j}. dist (f' i xa) (f' i x) < B'"
apply (rule ballI)
subgoal premises prems using df_cont[OF prems, THEN tendstoD, OF ‹0 < B'›] .
done
from eventually_ball_finite[OF finite_Basis this]
have "∀⇩F x' in at x within {x. ∀j∈Basis. x ∙ j ∈ X j}. ∀j∈Basis. dist (f' j x') (f' j x) < B'" .
then obtain d where "d > 0"
and "⋀x' j. x' ∈ {x. ∀j∈Basis. x ∙ j ∈ X j} ⟹ x' ≠ x ⟹ dist x' x < d ⟹ j ∈ Basis ⟹ dist (f' j x') (f' j x) < B'"
using ‹0 < B'›
by (auto simp: eventually_at)
then have B': "x' ∈ {x. ∀j∈Basis. x ∙ j ∈ X j} ⟹ dist x' x < d ⟹ j ∈ Basis ⟹ dist (f' j x') (f' j x) < B'" for x' j
by (cases "x' = x", auto simp add: ‹0 < B'›)
then have B: "norm (f' j x' - f' j y) < B" if
"(⋀j. j ∈ Basis ⟹ x' ∙ j ∈ X j)"
"(⋀j. j ∈ Basis ⟹ y ∙ j ∈ X j)"
"dist x' x < d"
"dist y x < d"
"j ∈ Basis"
for x' y j
proof -
have "dist (f' j x') (f' j x) < B'" "dist (f' j y) (f' j x) < B'"
using that
by (auto intro!: B')
then have "dist (f' j x') (f' j y) < B' + B'" by norm
also have "… = B" by (simp add: B'_def)
finally show ?thesis by (simp add: dist_norm)
qed
have "∀⇩F x' in at x within {x. ∀j∈Basis. x ∙ j ∈ X j}. dist x' x < d"
by (rule tendstoD[OF tendsto_ident_at ‹d > 0›])
with segment
show "∀⇩F x' in at x within {x. ∀j∈Basis. x ∙ j ∈ X j}.
norm ((f x' - f x - (∑j∈Basis. ((x' - x) ∙ j) *⇩R f' j x)) /⇩R norm (x' - x)) < e"
proof eventually_elim
case (elim x')
then have os_subset: "open_segment x x' ⊆ ?S"
using ‹convex ?S› assms(3)
unfolding convex_contains_open_segment
by auto
then have cs_subset: "closed_segment x x' ⊆ ?S"
using elim assms(3) by (auto simp add: open_segment_def)
have csc_subset: "closed_segment (x' ∙ i) (x ∙ i) ⊆ X i" if i: "i ∈ Basis" for i
apply (rule closed_segment_subset)
using cs_subset elim assms(3,4) that
by (auto )
have osc_subset: "open_segment (x' ∙ i) (x ∙ i) ⊆ X i" if i: "i ∈ Basis" for i
using segment_open_subset_closed csc_subset[OF i]
by (rule order_trans)
define h where "h = x' - x"
define z where "z j = (∑k<j. (h ∙ E ! k) *⇩R (E ! k))" for j
define g where "g j t = (f (x + z j + (t - x ∙ E ! j) *⇩R E ! j))" for j t
have z: "z j ∙ E ! j = 0" if "j < DIM('a)" for j
using that
by (auto simp: z_def h_def algebra_simps inner_sum_left inner_Basis if_distrib
nth_eq_iff_index_eq
sum.delta
intro!: euclidean_eqI[where 'a='a]
cong: if_cong)
from distinct_Ex1[OF ‹distinct E›, unfolded ‹set E = Basis› Ex1_def ‹length E = _›]
obtain index where
index: "⋀i. i ∈ Basis ⟹ i = E ! index i" "⋀i. i ∈ Basis ⟹ index i < DIM('a)"
and unique: "⋀i j. i ∈ Basis ⟹ j < DIM('a) ⟹ E ! j = i ⟹ j = index i"
by metis
have nth_eq_iff_index: "E ! k = i ⟷ index i = k" if "i ∈ Basis" "k < DIM('a)" for k i
using unique[OF that] index[OF ‹i ∈ Basis›]
by auto
have z_inner: "z j ∙ i = (if j ≤ index i then 0 else h ∙ i)" if "j < DIM('a)" "i ∈ Basis" for j i
using that index[of i]
by (auto simp: z_def h_def algebra_simps inner_sum_left inner_Basis if_distrib
sum.delta nth_eq_iff_index
intro!: euclidean_eqI[where 'a='a]
cong: if_cong)
have z_mem: "j < DIM('a) ⟹ ja ∈ Basis ⟹ x ∙ ja + z j ∙ ja ∈ X ja" for j ja
using csc_subset
by (auto simp: z_inner h_def algebra_simps)
have "norm (x' - x) < d"
using elim by (simp add: dist_norm)
have norm_z': "y ∈ closed_segment (x ∙ E ! j) (x' ∙ E ! j) ⟹ norm (z j + y *⇩R E ! j - (x ∙ E ! j) *⇩R E ! j) < d"
if "j < DIM('a)"
for j y
apply (rule le_less_trans[OF _ ‹norm (x' - x) < d›])
apply (rule norm_le_in_cubeI)
apply (auto simp: inner_diff_left inner_add_left inner_Basis that z)
subgoal by (auto simp: closed_segment_eq_real_ivl split: if_splits)
subgoal for i
using that
by (auto simp: z_inner h_def algebra_simps)
done
have norm_z: "norm (z j) < d" if "j < DIM('a)" for j
using norm_z'[OF that ends_in_segment(1)]
by (auto simp: z_def)
{
fix j
assume j: "j < DIM('a)"
have eq: "(x + z j + ((y - (x + z j)) ∙ E ! j) *⇩R E ! j +
(p - (x + z j + ((y - (x + z j)) ∙ E ! j) *⇩R E ! j) ∙ E ! j) *⇩R
E ! j) = (x + z j + (p - (x ∙ E ! j)) *⇩R E ! j)" for y p
by (auto simp: algebra_simps j z)
have f_has_derivative: "((λp. f (x + z j + (p - x ∙ E ! j) *⇩R E ! j)) has_derivative (λxa. xa *⇩R f' (E ! j) (x + z j + ((y *⇩R E ! j - (x + z j)) ∙ E ! j) *⇩R E ! j)))
(at y within closed_segment (x ∙ E ! j) (x' ∙ E ! j))"
if "y ∈ closed_segment (x ∙ E ! j) (x' ∙ E ! j)"
for y
apply (rule has_derivative_subset)
apply (rule f'[unfolded has_vector_derivative_def,
where x= "x + z j + ((y *⇩R E!j - (x + z j))∙ E!j) *⇩R E ! j" and i="E ! j", unfolded eq])
subgoal by (simp add: j)
subgoal
using that
apply (auto simp: algebra_simps z j inner_Basis)
using closed_segment_commute ‹E ! j ∈ Basis› csc_subset apply blast
by (simp add: z_mem j)
subgoal by (auto simp: algebra_simps z j inner_Basis)
subgoal
apply (auto simp: algebra_simps z j inner_Basis)
using closed_segment_commute ‹⋀j. j < DIM('a) ⟹ E ! j ∈ Basis› csc_subset j apply blast
done
done
have *: "((xa *⇩R E ! j - (x + z j)) ∙ E ! j) = xa - x ∙ E ! j" for xa
by (auto simp: algebra_simps z j)
have g': "(g j has_vector_derivative (f' (E ! j) (x + z j + (xa - x ∙ E ! j) *⇩R E ! j)))
(at xa within (closed_segment (x∙E!j) (x'∙E!j)))"
(is "(_ has_vector_derivative ?g' j xa) _")
if "xa ∈ closed_segment (x∙E!j) (x'∙E!j)" for xa
using that
by (auto simp: has_vector_derivative_def g_def[abs_def] *
intro!: derivative_eq_intros f_has_derivative[THEN has_derivative_eq_rhs])
define g' where "g' j = ?g' j" for j
with g' have g': "(g j has_vector_derivative g' j t) (at t within closed_segment (x∙E!j) (x'∙E!j))"
if "t ∈ closed_segment (x∙E!j) (x'∙E!j)"
for t
by (simp add: that)
have cont_bound: "⋀y. y∈closed_segment (x ∙ E ! j) (x' ∙ E ! j) ⟹ norm (g' j y - g' j (x ∙ E ! j)) ≤ B"
apply (auto simp add: g'_def j algebra_simps inner_Basis z dist_norm
intro!: less_imp_le B z_mem norm_z norm_z')
using closed_segment_commute ‹⋀j. j < DIM('a) ⟹ E ! j ∈ Basis› csc_subset j apply blast
done
from vector_differentiable_bound_linearization[OF g' order_refl cont_bound ends_in_segment(1)]
have n: "norm (g j (x' ∙ E ! j) - g j (x ∙ E ! j) - (x' ∙ E ! j - x ∙ E ! j) *⇩R g' j (x ∙ E ! j)) ≤ norm (x' ∙ E ! j - x ∙ E ! j) * B"
.
have "z (Suc j) = z j + (x' ∙ E ! j - x ∙ E ! j) *⇩R E ! j"
by (auto simp: z_def h_def algebra_simps)
then have "f (x + z (Suc j)) = f (x + z j + (x' ∙ E ! j - x ∙ E ! j) *⇩R E ! j) "
by (simp add: ac_simps)
with n have "norm (f (x + z (Suc j)) - f (x + z j) - (x' ∙ E ! j - x ∙ E ! j) *⇩R f' (E ! j) (x + z j)) ≤ ¦x' ∙ E ! j - x ∙ E ! j¦ * B"
by (simp add: g_def g'_def)
} note B_le = this
have B': "norm (f' (E ! j) (x + z j) - f' (E ! j) x) ≤ B" if "j < DIM('a)" for j
using that assms(3)
by (auto simp add: algebra_simps inner_Basis z dist_norm ‹0 < d›
intro!: less_imp_le B z_mem norm_z)
have "(∑j≤DIM('a) - 1. f (x + z j) - f (x + z (Suc j))) = f (x + z 0) - f (x + z (Suc (DIM('a) - 1)))"
by (rule sum_telescope)
moreover have "z DIM('a) = h"
using index
by (auto simp: z_def h_def algebra_simps inner_sum_left inner_Basis if_distrib
nth_eq_iff_index
sum.delta
intro!: euclidean_eqI[where 'a='a]
cong: if_cong)
moreover have "z 0 = 0"
by (auto simp: z_def)
moreover have "{..DIM('a) - 1} = {..<DIM('a)}"
using le_imp_less_Suc by fastforce
ultimately have "f x - f (x + h) = (∑j<DIM('a). f (x + z j) - f (x + z (Suc j)))"
by auto
then have "norm (f (x + h) - f x - (∑j∈Basis. ((x' - x) ∙ j) *⇩R f' j x)) =
norm(
(∑j<DIM('a). f (x + z (Suc j)) - f (x + z j) - (x' ∙ E ! j - x ∙ E ! j) *⇩R f' (E ! j) (x + z j)) +
(∑j<DIM('a). (x' ∙ E ! j - x ∙ E ! j) *⇩R (f' (E ! j) (x + z j) - f' (E ! j) x)))"
(is "_ = norm (sum ?a ?E + sum ?b ?E)")
by (intro arg_cong[where f=norm]) (simp add: sum_negf sum_subtractf sum.distrib algebra_simps sum_Basis_E)
also have "… ≤ norm (sum ?a ?E) + norm (sum ?b ?E)" by (norm)
also have "norm (sum ?a ?E) ≤ sum (λx. norm (?a x)) ?E"
by (rule norm_sum)
also have "… ≤ sum (λj. norm ¦x' ∙ E ! j - x ∙ E ! j¦ * B) ?E"
by (auto intro!: sum_mono B_le)
also have "… ≤ sum (λj. norm (x' - x) * B) ?E"
apply (rule sum_mono)
apply (auto intro!: mult_right_mono ‹0 ≤ B›)
by (metis (full_types) ‹⋀j. j < DIM('a) ⟹ E ! j ∈ Basis› inner_diff_left norm_bound_Basis_le order_refl)
also have "… = norm (x' - x) * DIM('a) * B"
by simp
also have "norm (sum ?b ?E) ≤ sum (λx. norm (?b x)) ?E"
by (rule norm_sum)
also have "… ≤ sum (λj. norm (x' - x) * B) ?E"
apply (intro sum_mono)
apply (auto intro!: mult_mono B')
apply (metis (full_types) ‹⋀j. j < DIM('a) ⟹ E ! j ∈ Basis› inner_diff_left norm_bound_Basis_le order_refl)
done
also have "… = norm (x' - x) * DIM('a) * B"
by simp
finally have "norm (f (x + h) - f x - (∑j∈Basis. ((x' - x) ∙ j) *⇩R f' j x)) ≤
norm (x' - x) * real DIM('a) * B + norm (x' - x) * real DIM('a) * B"
by arith
also have "… /⇩R norm (x' - x) ≤ norm (2 * DIM('a) * B)"
using ‹B ≥ 0›
by (simp add: divide_simps abs_mult)
also have "… < e" using B_thms by simp
finally show ?case by (auto simp: divide_simps abs_mult h_def)
qed
qed
qed
lemma
frechet_derivative_equals_partial_derivative:
fixes f::"'a::euclidean_space ⇒ 'a"
assumes Df: "⋀x. (f has_derivative Df x) (at x)"
assumes f': "((λp. f (x + (p - x ∙ i) *⇩R i) ∙ b) has_real_derivative f' x i b) (at (x ∙ i))"
shows "Df x i ∙ b = f' x i b"
proof -
define Dfb where "Dfb x = Blinfun (Df x)" for x
have Dfb_apply: "blinfun_apply (Dfb x) = Df x" for x
unfolding Dfb_def
apply (rule bounded_linear_Blinfun_apply)
apply (rule has_derivative_bounded_linear)
apply (rule assms)
done
have "Dfb x = blinfun_of_matrix (λi b. Dfb x b ∙ i)" for x
using blinfun_of_matrix_works[of "Dfb x"] by auto
have Dfb: "⋀x. (f has_derivative Dfb x) (at x)"
by (auto simp: Dfb_apply Df)
note [derivative_intros] = diff_chain_at[OF _ Dfb, unfolded o_def]
have "((λp. f (x + (p - x ∙ i) *⇩R i) ∙ b) has_real_derivative Dfb x i ∙ b) (at (x ∙ i))"
by (auto intro!: derivative_eq_intros ext simp: has_field_derivative_def blinfun.bilinear_simps)
from DERIV_unique[OF f' this]
show ?thesis by (simp add: Dfb_apply)
qed
subsection ‹Integration›
lemmas content_real[simp]
lemmas integrable_continuous[intro, simp]
and integrable_continuous_real[intro, simp]
lemma integral_eucl_le:
fixes f g::"'a::euclidean_space ⇒ 'b::ordered_euclidean_space"
assumes "f integrable_on s"
and "g integrable_on s"
and "⋀x. x ∈ s ⟹ f x ≤ g x"
shows "integral s f ≤ integral s g"
using assms
by (auto intro!: integral_component_le simp: eucl_le[where 'a='b])
lemma
integral_ivl_bound:
fixes l u::"'a::ordered_euclidean_space"
assumes "⋀x h'. h' ∈ {t0 .. h} ⟹ x ∈ {t0 .. h} ⟹ (h' - t0) *⇩R f x ∈ {l .. u}"
assumes "t0 ≤ h"
assumes f_int: "f integrable_on {t0 .. h}"
shows "integral {t0 .. h} f ∈ {l .. u}"
proof -
from assms(1)[of t0 t0] assms(2) have "0 ∈ {l .. u}" by auto
have "integral {t0 .. h} f = integral {t0 .. h} (λt. if t ∈ {t0, h} then 0 else f t)"
by (rule integral_spike[where S="{t0, h}"]) auto
also
{
fix x
assume 1: "x ∈ {t0 <..< h}"
with assms have "(h - t0) *⇩R f x ∈ {l .. u}" by auto
then have "(if x ∈ {t0, h} then 0 else f x) ∈ {l /⇩R (h - t0) .. u /⇩R (h - t0)}"
using ‹x ∈ _›
by (auto simp: inverse_eq_divide
simp: eucl_le[where 'a='a] field_simps algebra_simps)
}
then have "… ∈ {integral {t0..h} (λ_. l /⇩R (h - t0)) .. integral {t0..h} (λ_. u /⇩R (h - t0))}"
unfolding atLeastAtMost_iff
apply (safe intro!: integral_eucl_le)
using ‹0 ∈ {l .. u}›
apply (auto intro!: assms
intro: integrable_continuous_real integrable_spike[where S="{t0, h}", OF f_int]
simp: eucl_le[where 'a='a] divide_simps
split: if_split_asm)
done
also have "… ⊆ {l .. u}"
using assms ‹0 ∈ {l .. u}›
by (auto simp: inverse_eq_divide)
finally show ?thesis .
qed
lemma
add_integral_ivl_bound:
fixes l u::"'a::ordered_euclidean_space"
assumes "⋀x h'. h' ∈ {t0 .. h} ⟹ x ∈ {t0 .. h} ⟹ (h' - t0) *⇩R f x ∈ {l - x0 .. u - x0}"
assumes "t0 ≤ h"
assumes f_int: "f integrable_on {t0 .. h}"
shows "x0 + integral {t0 .. h} f ∈ {l .. u}"
using integral_ivl_bound[OF assms]
by (auto simp: algebra_simps)
subsection ‹conditionally complete lattice›
subsection ‹Lists›
lemma
Ball_set_Cons[simp]: "(∀a∈set_Cons x y. P a) ⟷ (∀a∈x. ∀b∈y. P (a#b))"
by (auto simp: set_Cons_def)
lemma set_cons_eq_empty[iff]: "set_Cons a b = {} ⟷ a = {} ∨ b = {}"
by (auto simp: set_Cons_def)
lemma listset_eq_empty_iff[iff]: "listset XS = {} ⟷ {} ∈ set XS"
by (induction XS) auto
lemma sing_in_sings[simp]: "[x] ∈ (λx. [x]) ` xd ⟷ x ∈ xd"
by auto
lemma those_eq_None_set_iff: "those xs = None ⟷ None ∈ set xs"
by (induction xs) (auto split: option.split)
lemma those_eq_Some_lengthD: "those xs = Some ys ⟹ length xs = length ys"
by (induction xs arbitrary: ys) (auto split: option.splits)
lemma those_eq_Some_map_Some_iff: "those xs = Some ys ⟷ (xs = map Some ys)" (is "?l ⟷ ?r")
proof safe
assume ?l
then have "length xs = length ys"
by (rule those_eq_Some_lengthD)
then show ?r using ‹?l›
by (induction xs ys rule: list_induct2) (auto split: option.splits)
next
assume ?r
then have "length xs = length ys"
by simp
then show "those (map Some ys) = Some ys" using ‹?r›
by (induction xs ys rule: list_induct2) (auto split: option.splits)
qed
subsection ‹Set(sum)›
subsection ‹Max›
subsection ‹Uniform Limit›
subsection ‹Bounded Linear Functions›
lift_definition comp3::
"('c::real_normed_vector ⇒⇩L 'd::real_normed_vector) ⇒ ('b::real_normed_vector ⇒⇩L 'c) ⇒⇩L 'b ⇒⇩L 'd" is
"λ(cd::('c ⇒⇩L 'd)) (bc::'b ⇒⇩L 'c). (cd o⇩L bc)"
by (rule bounded_bilinear.bounded_linear_right[OF bounded_bilinear_blinfun_compose])
lemma blinfun_apply_comp3[simp]: "blinfun_apply (comp3 a) b = (a o⇩L b)"
by (simp add: comp3.rep_eq)
lemma bounded_linear_comp3[bounded_linear]: "bounded_linear comp3"
by transfer (rule bounded_bilinear_blinfun_compose)
lift_definition comp12::
"('a::real_normed_vector ⇒⇩L 'c::real_normed_vector) ⇒ ('b::real_normed_vector ⇒⇩L 'c) ⇒ ('a × 'b) ⇒⇩L 'c"
is "λf g (a, b). f a + g b"
by (auto intro!: bounded_linear_intros
intro: bounded_linear_compose
simp: split_beta')
lemma blinfun_apply_comp12[simp]: "blinfun_apply (comp12 f g) b = f (fst b) + g (snd b)"
by (simp add: comp12.rep_eq split_beta)
subsection ‹Order Transitivity Attributes›
attribute_setup le = ‹Scan.succeed (Thm.rule_attribute [] (fn context => fn thm => thm RS @{thm order_trans}))›
"transitive version of inequality (useful for intro)"
attribute_setup ge = ‹Scan.succeed (Thm.rule_attribute [] (fn context => fn thm => thm RS @{thm order_trans[rotated]}))›
"transitive version of inequality (useful for intro)"
subsection ‹point reflection›
definition preflect::"'a::real_vector ⇒ 'a ⇒ 'a" where "preflect ≡ λt0 t. 2 *⇩R t0 - t"
lemma preflect_preflect[simp]: "preflect t0 (preflect t0 t) = t"
by (simp add: preflect_def algebra_simps)
lemma preflect_preflect_image[simp]: "preflect t0 ` preflect t0 ` S = S"
by (simp add: image_image)
lemma is_interval_preflect[simp]: "is_interval (preflect t0 ` S) ⟷ is_interval S"
by (auto simp: preflect_def[abs_def])
lemma iv_in_preflect_image[intro, simp]: "t0 ∈ T ⟹ t0 ∈ preflect t0 ` T"
by (auto intro!: image_eqI simp: preflect_def algebra_simps scaleR_2)
lemma preflect_tendsto[tendsto_intros]:
fixes l::"'a::real_normed_vector"
shows "(g ⤏ l) F ⟹ (h ⤏ m) F ⟹ ((λx. preflect (g x) (h x)) ⤏ preflect l m) F"
by (auto intro!: tendsto_eq_intros simp: preflect_def)
lemma continuous_preflect[continuous_intros]:
fixes a::"'a::real_normed_vector"
shows "continuous (at a within A) (preflect t0)"
by (auto simp: continuous_within intro!: tendsto_intros)
lemma
fixes t0::"'a::ordered_real_vector"
shows preflect_le[simp]: "t0 ≤ preflect t0 b ⟷ b ≤ t0"
and le_preflect[simp]: "preflect t0 b ≤ t0 ⟷ t0 ≤ b"
and antimono_preflect: "antimono (preflect t0)"
and preflect_le_preflect[simp]: "preflect t0 a ≤ preflect t0 b ⟷ b ≤ a"
and preflect_eq_cancel[simp]: "preflect t0 a = preflect t0 b ⟷ a = b"
by (auto intro!: antimonoI simp: preflect_def scaleR_2)
lemma preflect_eq_point_iff[simp]: "t0 = preflect t0 s ⟷ t0 = s" "preflect t0 s = t0 ⟷ t0 = s"
by (auto simp: preflect_def algebra_simps scaleR_2)
lemma preflect_minus_self[simp]: "preflect t0 s - t0 = t0 - s"
by (simp add: preflect_def scaleR_2)
end