Theory Twelvefold_Way.Twelvefold_Way_Entry9
section ‹Surjections from A to B up to a Permutation on B›
theory Twelvefold_Way_Entry9
imports Twelvefold_Way_Entry7
begin
subsection ‹Properties for Bijections›
lemma surjective_on_implies_card_eq:
assumes "f ` A = B"
shows "card ((λb. {x ∈ A. f x = b}) ` B - {{}}) = card B"
proof -
from ‹f ` A = B› have "{} ∉ (λb. {x ∈ A. f x = b}) ` B" by auto
from ‹f ` A = B› have "inj_on (λb. {x ∈ A. f x = b}) B" by (fastforce intro: inj_onI)
have "card ((λb. {x ∈ A. f x = b}) ` B - {{}}) = card ((λb. {x ∈ A. f x = b}) ` B)"
using ‹{} ∉ (λb. {x ∈ A. f x = b}) ` B› by simp
also have "… = card B"
using ‹inj_on (λb. {x ∈ A. f x = b}) B› by (rule card_image)
finally show ?thesis .
qed
lemma card_eq_implies_surjective_on:
assumes "finite B" "f ∈ A →⇩E B"
assumes card_eq: "card ((λb. {x ∈ A. f x = b}) ` B - {{}}) = card B"
shows "f ` A = B"
proof
from ‹f ∈ A →⇩E B› show "f ` A ⊆ B" by auto
next
show "B ⊆ f ` A"
proof
fix x
assume "x ∈ B"
have "{} ∉ (λb. {x ∈ A. f x = b}) ` B"
proof (cases "card B ≥ 1")
assume "¬ card B ≥ 1"
from this have "card B = 0" by simp
from this ‹finite B› have "B = {}" by simp
from this show ?thesis by simp
next
assume "card B ≥ 1"
show ?thesis
proof (rule ccontr)
assume "¬ {} ∉ (λb. {x ∈ A. f x = b}) ` B"
from this have "{} ∈ (λb. {x ∈ A. f x = b}) ` B" by simp
moreover have "card ((λb. {x ∈ A. f x = b}) ` B) ≤ card B"
using ‹finite B› card_image_le by blast
moreover have "finite ((λb. {x ∈ A. f x = b}) ` B)"
using ‹finite B› by auto
ultimately have "card ((λb. {x ∈ A. f x = b}) ` B - {{}}) ≤ card B - 1"
by (auto simp add: card_Diff_singleton)
from this card_eq ‹card B ≥ 1› show False by auto
qed
qed
from this ‹x ∈ B› show "x ∈ f ` A" by force
qed
qed
lemma card_partitions_of:
assumes "F ∈ (A →⇩E B) // range_permutation A B"
assumes "univ (λf. f ` A = B) F"
shows "card (partitions_of A B F) = card B"
proof -
from ‹F ∈ (A →⇩E B) // range_permutation A B› obtain f where "f ∈ A →⇩E B"
and F_eq: "F = range_permutation A B `` {f}" using quotientE by blast
from this ‹univ (λf. f ` A = B) F› have "f ` A = B"
using univ_commute'[OF equiv_range_permutation surj_on_respects_range_permutation ‹f ∈ A →⇩E B›] by simp
have "card (partitions_of A B F) = card (univ (λf. (λb. {x ∈ A. f x = b}) ` B - {{}}) F)"
unfolding partitions_of_def ..
also have "… = card (univ (λf. (λb. {x ∈ A. f x = b}) ` B - {{}}) (range_permutation A B `` {f}))"
unfolding F_eq ..
also have "… = card ((λb. {x ∈ A. f x = b}) ` B - {{}})"
using equiv_range_permutation domain_partitions_respects_range_permutation ‹f ∈ A →⇩E B›
by (subst univ_commute') auto
also from ‹f ` A = B› have "… = card B"
using surjective_on_implies_card_eq by auto
finally show ?thesis .
qed
lemma functions_of_is_surj_on:
assumes "finite A" "finite B"
assumes "partition_on A P" "card P = card B"
shows "univ (λf. f ` A = B) (functions_of P A B)"
proof -
have "functions_of P A B ∈ (A →⇩E B) // range_permutation A B"
using functions_of ‹finite A› ‹finite B› ‹partition_on A P› ‹card P = card B› by fastforce
from this obtain f where eq_f: "functions_of P A B = range_permutation A B `` {f}" and "f ∈ A →⇩E B"
using quotientE by blast
from eq_f have "f ∈ functions_of P A B"
using ‹f ∈ A →⇩E B› equiv_range_permutation equiv_class_self by fastforce
from ‹f ∈ functions_of P A B› have eq: "(λb. {x ∈ A. f x = b}) ` B - {{}} = P"
unfolding functions_of_def by auto
from this have "card ((λb. {x ∈ A. f x = b}) ` B - {{}}) = card B"
using ‹card P = card B› by simp
from ‹finite B› ‹f ∈ A →⇩E B› this have "f ` A = B"
using card_eq_implies_surjective_on by blast
from this show ?thesis
unfolding eq_f using equiv_range_permutation surj_on_respects_range_permutation ‹f ∈ A →⇩E B›
by (subst univ_commute') assumption+
qed
subsection ‹Bijections›
lemma bij_betw_partitions_of:
assumes "finite A" "finite B"
shows "bij_betw (partitions_of A B) ({f ∈ A →⇩E B. f ` A = B} // range_permutation A B) {P. partition_on A P ∧ card P = card B}"
proof (rule bij_betw_byWitness[where f'="λP. functions_of P A B"])
have quotient_eq: "{f ∈ A →⇩E B. f ` A = B} // range_permutation A B = {F ∈ ((A →⇩E B) // range_permutation A B). univ (λf. f ` A = B) F}"
using equiv_range_permutation[of A B] surj_on_respects_range_permutation[of A B] by (simp only: univ_preserves_predicate)
show "∀F∈{f ∈ A →⇩E B. f ` A = B} // range_permutation A B. functions_of (partitions_of A B F) A B = F"
using ‹finite B› by (simp add: functions_of_partitions_of quotient_eq)
show "∀P∈{P. partition_on A P ∧ card P = card B}. partitions_of A B (functions_of P A B) = P"
using ‹finite A› ‹finite B› by (auto simp add: partitions_of_functions_of)
show "partitions_of A B ` ({f ∈ A →⇩E B. f ` A = B} // range_permutation A B) ⊆ {P. partition_on A P ∧ card P = card B}"
using ‹finite B› quotient_eq card_partitions_of partitions_of by fastforce
show "(λP. functions_of P A B) ` {P. partition_on A P ∧ card P = card B} ⊆ {f ∈ A →⇩E B. f ` A = B} // range_permutation A B"
using ‹finite A› ‹finite B› by (auto simp add: quotient_eq intro: functions_of functions_of_is_surj_on)
qed
subsection ‹Cardinality›
lemma card_surjective_functions_range_permutation:
assumes "finite A" "finite B"
shows "card ({f ∈ A →⇩E B. f ` A = B} // range_permutation A B) = Stirling (card A) (card B)"
proof -
have "bij_betw (partitions_of A B) ({f ∈ A →⇩E B. f ` A = B} // range_permutation A B) {P. partition_on A P ∧ card P = card B}"
using ‹finite A› ‹finite B› by (rule bij_betw_partitions_of)
from this have "card ({f ∈ A →⇩E B. f ` A = B} // range_permutation A B) = card {P. partition_on A P ∧ card P = card B}"
by (rule bij_betw_same_card)
also have "card {P. partition_on A P ∧ card P = card B} = Stirling (card A) (card B)"
using ‹finite A› by (rule card_partition_on)
finally show ?thesis .
qed
end