Theory Twelvefold_Way.Equiv_Relations_on_Functions
section ‹Definition of Equivalence Classes›
theory Equiv_Relations_on_Functions
imports
Preliminaries
Twelvefold_Way_Core
begin
subsection ‹Permutation on the Domain›
definition domain_permutation
where
"domain_permutation A B = {(f, f') ∈ (A →⇩E B) × (A →⇩E B). ∃p. p permutes A ∧ (∀x ∈ A. f x = f' (p x))}"
lemma equiv_domain_permutation:
"equiv (A →⇩E B) (domain_permutation A B)"
proof (rule equivI)
show "refl_on (A →⇩E B) (domain_permutation A B)"
proof (rule refl_onI)
show "domain_permutation A B ⊆ (A →⇩E B) × (A →⇩E B)"
unfolding domain_permutation_def by auto
next
fix f
assume "f ∈ A →⇩E B"
from this show "(f, f) ∈ domain_permutation A B"
using permutes_id unfolding domain_permutation_def by fastforce
qed
next
show "sym (domain_permutation A B)"
proof (rule symI)
fix f f'
assume "(f, f') ∈ domain_permutation A B"
from this obtain p where "p permutes A" and "∀x∈A. f x = f' (p x)"
unfolding domain_permutation_def by auto
from ‹(f, f') ∈ domain_permutation A B› have "f ∈ A →⇩E B" "f' ∈ A →⇩E B"
unfolding domain_permutation_def by auto
moreover from ‹p permutes A› have "inv p permutes A"
by (simp add: permutes_inv)
moreover from ‹p permutes A› ‹∀x∈A. f x = f' (p x)› have "∀x∈A. f' x = f (inv p x)"
using permutes_in_image permutes_inverses(1) by (metis (mono_tags, opaque_lifting))
ultimately show "(f', f) ∈ domain_permutation A B"
unfolding domain_permutation_def by auto
qed
next
show "trans (domain_permutation A B)"
proof (rule transI)
fix f f' f''
assume "(f, f') ∈ domain_permutation A B" "(f', f'') ∈ domain_permutation A B"
from ‹(f, f') ∈ _› obtain p where "p permutes A" and "∀x∈A. f x = f' (p x)"
unfolding domain_permutation_def by auto
from ‹(f', f'') ∈ _› obtain p' where "p' permutes A" and "∀x∈A. f' x = f'' (p' x)"
unfolding domain_permutation_def by auto
from ‹(f, f') ∈ domain_permutation A B› have "f ∈ A →⇩E B"
unfolding domain_permutation_def by auto
moreover from ‹(f', f'') ∈ domain_permutation A B› have "f'' ∈ A →⇩E B"
unfolding domain_permutation_def by auto
moreover from ‹p permutes A› ‹p' permutes A› have "(p' ∘ p) permutes A"
by (simp add: permutes_compose)
moreover have "∀x∈A. f x = f'' ((p' ∘ p) x)"
using ‹∀x∈A. f x = f' (p x)› ‹∀x∈A. f' x = f'' (p' x)› ‹p permutes A›
by (simp add: permutes_in_image)
ultimately show "(f, f'') ∈ domain_permutation A B"
unfolding domain_permutation_def by auto
qed
qed
subsubsection ‹Respecting Functions›
lemma inj_on_respects_domain_permutation:
"(λf. inj_on f A) respects domain_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ domain_permutation A B"
from this obtain p where p: "p permutes A" "∀x∈A. f x = f' (p x)"
unfolding domain_permutation_def by auto
have inv_p: "∀x∈A. f' x = f (inv p x)"
using p by (metis permutes_inverses(1) permutes_not_in)
show "inj_on f A ⟷ inj_on f' A"
proof
assume "inj_on f A"
show "inj_on f' A"
proof (rule inj_onI)
fix a a'
assume "a ∈ A" "a' ∈ A" "f' a = f' a'"
from this ‹p permutes A› have "inv p a ∈ A" "inv p a' ∈ A"
by (simp add: permutes_in_image permutes_inv)+
have "f (inv p a) = f (inv p a')"
using ‹f' a = f' a'› ‹a ∈ A› ‹a' ∈ A› inv_p by auto
from ‹inj_on f A› this ‹inv p a ∈ A› ‹inv p a' ∈ A› have "inv p a = inv p a'"
using inj_on_contraD by fastforce
from this show "a = a'"
by (metis ‹p permutes A› permutes_inverses(1))
qed
next
assume "inj_on f' A"
from this p show "inj_on f A"
unfolding inj_on_def
by (metis inj_on_contraD permutes_in_image permutes_inj_on)
qed
qed
lemma image_respects_domain_permutation:
"(λf. f ` A) respects (domain_permutation A B)"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ domain_permutation A B"
from this obtain p where p: "p permutes A" and f_eq: "∀x∈A. f x = f' (p x)"
unfolding domain_permutation_def by auto
show "f ` A = f' ` A"
proof
from p f_eq show "f ` A ⊆ f' ` A"
by (auto simp add: permutes_in_image)
next
from ‹p permutes A› ‹∀x∈A. f x = f' (p x)› have "∀x∈A. f' x = f (inv p x)"
using permutes_in_image permutes_inverses(1) by (metis (mono_tags, opaque_lifting))
from this show "f' ` A ⊆ f ` A"
using ‹p permutes A› by (auto simp add: permutes_inv permutes_in_image)
qed
qed
lemma surjective_respects_domain_permutation:
"(λf. f ` A = B) respects domain_permutation A B"
by (metis image_respects_domain_permutation congruentD congruentI)
lemma bij_betw_respects_domain_permutation:
"(λf. bij_betw f A B) respects domain_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ domain_permutation A B"
from this obtain p where "p permutes A" and "∀x∈A. f x = f' (p x)"
unfolding domain_permutation_def by auto
have "bij_betw f A B ⟷ bij_betw (f' o p) A B"
using ‹∀x∈A. f x = f' (p x)›
by (metis (mono_tags, opaque_lifting) bij_betw_cong comp_apply)
also have "... ⟷ bij_betw f' A B"
using ‹p permutes A›
by (auto intro!: bij_betw_comp_iff[symmetric] permutes_imp_bij)
finally show "bij_betw f A B ⟷ bij_betw f' A B" .
qed
lemma image_mset_respects_domain_permutation:
shows "(λf. image_mset f (mset_set A)) respects (domain_permutation A B)"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ domain_permutation A B"
from this obtain p where "p permutes A" and "∀x∈A. f x = f' (p x)"
unfolding domain_permutation_def by auto
from this show "image_mset f (mset_set A) = image_mset f' (mset_set A)"
using permutes_implies_image_mset_eq by fastforce
qed
subsection ‹Permutation on the Range›
definition range_permutation
where
"range_permutation A B = {(f, f') ∈ (A →⇩E B) × (A →⇩E B). ∃p. p permutes B ∧ (∀x ∈ A. f x = p (f' x))}"
lemma equiv_range_permutation:
"equiv (A →⇩E B) (range_permutation A B)"
proof (rule equivI)
show "refl_on (A →⇩E B) (range_permutation A B)"
proof (rule refl_onI)
show "range_permutation A B ⊆ (A →⇩E B) × (A →⇩E B)"
unfolding range_permutation_def by auto
next
fix f
assume "f ∈ A →⇩E B"
from this show "(f, f) ∈ range_permutation A B"
using permutes_id unfolding range_permutation_def by fastforce
qed
next
show "sym (range_permutation A B)"
proof (rule symI)
fix f f'
assume "(f, f') ∈ range_permutation A B"
from this obtain p where "p permutes B" and "∀x∈A. f x = p (f' x)"
unfolding range_permutation_def by auto
from ‹(f, f') ∈ range_permutation A B› have "f ∈ A →⇩E B" "f' ∈ A →⇩E B"
unfolding range_permutation_def by auto
moreover from ‹p permutes B› have "inv p permutes B"
by (simp add: permutes_inv)
moreover from ‹p permutes B› ‹∀x∈A. f x = p (f' x)› have "∀x∈A. f' x = inv p (f x)"
by (simp add: permutes_inverses(2))
ultimately show "(f', f) ∈ range_permutation A B"
unfolding range_permutation_def by auto
qed
next
show "trans (range_permutation A B)"
proof (rule transI)
fix f f' f''
assume "(f, f') ∈ range_permutation A B" "(f', f'') ∈ range_permutation A B"
from ‹(f, f') ∈ _› obtain p where "p permutes B" and "∀x∈A. f x = p (f' x)"
unfolding range_permutation_def by auto
from ‹(f', f'') ∈ _› obtain p' where "p' permutes B" and "∀x∈A. f' x = p' (f'' x)"
unfolding range_permutation_def by auto
from ‹(f, f') ∈ range_permutation A B› have "f ∈ A →⇩E B"
unfolding range_permutation_def by auto
moreover from ‹(f', f'') ∈ range_permutation A B› have "f'' ∈ A →⇩E B"
unfolding range_permutation_def by auto
moreover from ‹p permutes B› ‹p' permutes B› have "(p ∘ p') permutes B"
by (simp add: permutes_compose)
moreover have "∀x∈A. f x = (p ∘ p') (f'' x)"
using ‹∀x∈A. f x = p (f' x)› ‹∀x∈A. f' x = p' (f'' x)› by auto
ultimately show "(f, f'') ∈ range_permutation A B"
unfolding range_permutation_def by auto
qed
qed
subsubsection ‹Respecting Functions›
lemma inj_on_respects_range_permutation:
"(λf. inj_on f A) respects range_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ range_permutation A B"
from this obtain p where p: "p permutes B" "∀x∈A. f x = p (f' x)"
unfolding range_permutation_def by auto
have inv_p: "∀x∈A. f' x = inv p (f x)"
using p by (simp add: permutes_inverses(2))
show "inj_on f A ⟷ inj_on f' A"
proof
assume "inj_on f A"
from this p show "inj_on f' A"
unfolding inj_on_def by auto
next
assume "inj_on f' A"
from this inv_p show "inj_on f A"
unfolding inj_on_def by auto
qed
qed
lemma surj_on_respects_range_permutation:
"(λf. f ` A = B) respects range_permutation A B"
proof (rule congruentI)
fix f f'
assume a: "(f, f') ∈ range_permutation A B"
from this have "f ∈ A →⇩E B" "f' ∈ A →⇩E B"
unfolding range_permutation_def by auto
from a obtain p where p: "p permutes B" "∀x∈A. f x = p (f' x)"
unfolding range_permutation_def by auto
have 1: "f ` A = (λx. p (f' x)) ` A"
using p by (meson image_cong)
have 2: "inv p ` ((λx. p (f' x)) ` A) = f' ` A"
using p by (simp add: image_image image_inv_f_f permutes_inj)
show "(f ` A = B) = (f' ` A = B)"
proof
assume "f ` A = B"
from this 1 2 show "f' ` A = B"
using p by (simp add: permutes_image permutes_inv)
next
assume "f' ` A = B"
from this 1 2 show "f ` A = B"
using p by (metis image_image permutes_image)
qed
qed
lemma bij_betw_respects_range_permutation:
"(λf. bij_betw f A B) respects range_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ range_permutation A B"
from this obtain p where "p permutes B" and "∀x∈A. f x = p (f' x)"
and "f' ∈ A →⇩E B"
unfolding range_permutation_def by auto
have "bij_betw f A B ⟷ bij_betw (p o f') A B"
using ‹∀x∈A. f x = p (f' x)›
by (metis (mono_tags, opaque_lifting) bij_betw_cong comp_apply)
also have "... ⟷ bij_betw f' A B"
using ‹f' ∈ A →⇩E B› ‹p permutes B›
by (auto intro!: bij_betw_comp_iff2[symmetric] permutes_imp_bij)
finally show "bij_betw f A B ⟷ bij_betw f' A B" .
qed
lemma domain_partitions_respects_range_permutation:
"(λf. (λb. {x ∈ A. f x = b}) ` B - {{}}) respects range_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ range_permutation A B"
from this obtain p where p: "p permutes B" "∀x ∈ A. f x = p (f' x)"
unfolding range_permutation_def by blast
have "{} ∈ (λb. {x ∈ A. f' x = b}) ` B ⟷ ¬ (∀b ∈ B. ∃x ∈ A. f' x = b)" by auto
also have "(∀b ∈ B. ∃x ∈ A. f' x = b) ⟷ (∀b ∈ B. ∃x ∈ A. p (f' x) = b)"
proof
assume "∀b∈B. ∃x∈A. f' x = b"
from this show "∀b∈B. ∃x∈A. p (f' x) = b"
using ‹p permutes B› unfolding permutes_def by metis
next
assume "∀b∈B. ∃x∈A. p (f' x) = b"
from this show "∀b∈B. ∃x∈A. f' x = b"
using ‹p permutes B› by (metis bij_betwE permutes_imp_bij permutes_inverses(2))
qed
also have "¬ (∀b∈B. ∃x∈A. p (f' x) = b) ⟷ {} ∈ (λb. {x ∈ A. p (f' x) = b}) ` B" by auto
finally have "{} ∈ (λb. {x ∈ A. f' x = b}) ` B ⟷ {} ∈ (λb. {x ∈ A. p (f' x) = b}) ` B" .
moreover have "(λb. {x ∈ A. f' x = b}) ` B = (λb. {x ∈ A. p (f' x) = b}) ` B"
using ‹p permutes B› permutes_implies_inv_image_on_eq by blast
ultimately have "(λb. {x ∈ A. f' x = b}) ` B - {{}} = (λb. {x ∈ A. p (f' x) = b}) ` B - {{}}" by auto
also have "… = (λb. {x ∈ A. f x = b}) ` B - {{}}"
using ‹∀x ∈ A. f x = p (f' x)› Collect_cong image_cong by auto
finally show "(λb. {x ∈ A. f x = b}) ` B - {{}} = (λb. {x ∈ A. f' x = b}) ` B - {{}}" ..
qed
subsection ‹Permutation on the Domain and the Range›
definition domain_and_range_permutation
where
"domain_and_range_permutation A B = {(f, f') ∈ (A →⇩E B) × (A →⇩E B).
∃p⇩A p⇩B. p⇩A permutes A ∧ p⇩B permutes B ∧ (∀x ∈ A. f x = p⇩B (f' (p⇩A x)))}"
lemma equiv_domain_and_range_permutation:
"equiv (A →⇩E B) (domain_and_range_permutation A B)"
proof (rule equivI)
show "refl_on (A →⇩E B) (domain_and_range_permutation A B)"
proof (rule refl_onI)
show "domain_and_range_permutation A B ⊆ (A →⇩E B) × (A →⇩E B)"
unfolding domain_and_range_permutation_def by auto
next
fix f
assume "f ∈ A →⇩E B"
from this show "(f, f) ∈ domain_and_range_permutation A B"
using permutes_id[of A] permutes_id[of B]
unfolding domain_and_range_permutation_def by fastforce
qed
next
show "sym (domain_and_range_permutation A B)"
proof (rule symI)
fix f f'
assume "(f, f') ∈ domain_and_range_permutation A B"
from this obtain p⇩A p⇩B where "p⇩A permutes A" "p⇩B permutes B" and "∀x∈A. f x = p⇩B (f' (p⇩A x))"
unfolding domain_and_range_permutation_def by auto
from ‹(f, f') ∈ domain_and_range_permutation A B› have f: "f ∈ A →⇩E B" "f' ∈ A →⇩E B"
unfolding domain_and_range_permutation_def by auto
moreover from ‹p⇩A permutes A› ‹p⇩B permutes B› have "inv p⇩A permutes A" "inv p⇩B permutes B"
by (auto simp add: permutes_inv)
moreover from ‹∀x∈A. f x = p⇩B (f' (p⇩A x))› have "∀x∈A. f' x = inv p⇩B (f (inv p⇩A x))"
using ‹p⇩A permutes A› ‹p⇩B permutes B› ‹inv p⇩A permutes A› ‹inv p⇩B permutes B›
by (metis (no_types, lifting) bij_betwE bij_inv_eq_iff permutes_bij permutes_imp_bij)
ultimately show "(f', f) ∈ domain_and_range_permutation A B"
unfolding domain_and_range_permutation_def by auto
qed
next
show "trans (domain_and_range_permutation A B)"
proof (rule transI)
fix f f' f''
assume "(f, f') ∈ domain_and_range_permutation A B"
assume "(f', f'') ∈ domain_and_range_permutation A B"
from ‹(f, f') ∈ _› obtain p⇩A p⇩B where
"p⇩A permutes A" "p⇩B permutes B" and "∀x∈A. f x = p⇩B (f' (p⇩A x))"
unfolding domain_and_range_permutation_def by auto
from ‹(f', f'') ∈ _› obtain p'⇩A p'⇩B where
"p'⇩A permutes A" "p'⇩B permutes B" and "∀x∈A. f' x = p'⇩B (f'' (p'⇩A x))"
unfolding domain_and_range_permutation_def by auto
from ‹(f, f') ∈ domain_and_range_permutation A B› have "f ∈ A →⇩E B"
unfolding domain_and_range_permutation_def by auto
moreover from ‹(f', f'') ∈ domain_and_range_permutation A B› have "f'' ∈ A →⇩E B"
unfolding domain_and_range_permutation_def by auto
moreover from ‹p⇩A permutes A› ‹p'⇩A permutes A› have "(p'⇩A ∘ p⇩A) permutes A"
by (simp add: permutes_compose)
moreover from ‹p⇩B permutes B› ‹p'⇩B permutes B› have "(p⇩B ∘ p'⇩B) permutes B"
by (simp add: permutes_compose)
moreover have "∀x∈A. f x = (p⇩B ∘ p'⇩B) (f'' ((p'⇩A ∘ p⇩A) x))"
using ‹∀x∈A. f' x = p'⇩B (f'' (p'⇩A x))› ‹∀x∈A. f x = p⇩B (f' (p⇩A x))› ‹p⇩A permutes A›
by (simp add: permutes_in_image)
ultimately show "(f, f'') ∈ domain_and_range_permutation A B"
unfolding domain_and_range_permutation_def by fastforce
qed
qed
subsubsection ‹Respecting Functions›
lemma inj_on_respects_domain_and_range_permutation:
"(λf. inj_on f A) respects domain_and_range_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ domain_and_range_permutation A B"
from this obtain p⇩A p⇩B where "p⇩A permutes A" "p⇩B permutes B" and "∀x∈A. f x = p⇩B (f' (p⇩A x))"
unfolding domain_and_range_permutation_def by auto
from ‹(f, f') ∈ domain_and_range_permutation A B› have "f' ` A ⊆ B"
unfolding domain_and_range_permutation_def by auto
from ‹p⇩A permutes A› have "p⇩A ` A = A" by (auto simp add: permutes_image)
from ‹p⇩A permutes A› have "inj_on p⇩A A"
using bij_betw_imp_inj_on permutes_imp_bij by blast
from ‹p⇩B permutes B› have "inj_on p⇩B B"
using bij_betw_imp_inj_on permutes_imp_bij by blast
show "inj_on f A ⟷ inj_on f' A"
proof -
have "inj_on f A ⟷ inj_on (λx. p⇩B (f' (p⇩A x))) A"
using ‹∀x∈A. f x = p⇩B (f' (p⇩A x))› inj_on_cong comp_apply by fastforce
have "inj_on f A ⟷ inj_on (p⇩B o f' o p⇩A) A"
by (simp add: ‹∀x∈A. f x = p⇩B (f' (p⇩A x))› inj_on_def)
also have "inj_on (p⇩B o f' o p⇩A) A ⟷ inj_on (p⇩B o f') A"
using ‹inj_on p⇩A A› ‹p⇩A ` A = A›
by (auto dest: inj_on_imageI intro: comp_inj_on)
also have "inj_on (p⇩B o f') A ⟷ inj_on f' A"
using ‹inj_on p⇩B B› ‹f' ` A ⊆ B›
by (auto dest: inj_on_imageI2 intro: comp_inj_on subset_inj_on)
finally show ?thesis .
qed
qed
lemma surjective_respects_domain_and_range_permutation:
"(λf. f ` A = B) respects domain_and_range_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ domain_and_range_permutation A B"
from this obtain p⇩A p⇩B where
permutes: "p⇩A permutes A" "p⇩B permutes B" and "∀x∈A. f x = p⇩B (f' (p⇩A x))"
unfolding domain_and_range_permutation_def by auto
from permutes have "p⇩A ` A = A" "p⇩B ` B = B" by (auto simp add: permutes_image)
from ‹p⇩B permutes B› have "inj p⇩B" by (simp add: permutes_inj)
show "(f ` A = B) ⟷ (f' ` A = B)"
proof -
have "f ` A = B ⟷ (λx. p⇩B (f' (p⇩A x))) ` A = B"
using ‹∀x∈A. f x = p⇩B (f' (p⇩A x))› by (metis (mono_tags, lifting) image_cong)
also have "(λx. p⇩B (f' (p⇩A x))) ` A = B ⟷ (λx. p⇩B (f' x)) ` A = B"
using ‹p⇩A ` A = A› by (metis image_image)
also have "(λx. p⇩B (f' x)) ` A = B ⟷ (f' ` A = B)"
using ‹p⇩B ` B = B› ‹inj p⇩B› by (metis image_image image_inv_f_f)
finally show ?thesis .
qed
qed
lemma bij_betw_respects_domain_and_range_permutation:
"(λf. bij_betw f A B) respects domain_and_range_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ domain_and_range_permutation A B"
from this obtain p⇩A p⇩B where "p⇩A permutes A" "p⇩B permutes B"
and "∀x∈A. f x = p⇩B (f' (p⇩A x))" and "f' ∈ A →⇩E B"
unfolding domain_and_range_permutation_def by auto
have "bij_betw f A B ⟷ bij_betw (p⇩B o f' o p⇩A) A B"
using ‹∀x∈A. f x = p⇩B (f' (p⇩A x))› bij_betw_congI by fastforce
also have "... ⟷ bij_betw (p⇩B o f') A B"
using ‹p⇩A permutes A›
by (auto intro!: bij_betw_comp_iff[symmetric] permutes_imp_bij)
also have "... ⟷ bij_betw f' A B"
using ‹f' ∈ A →⇩E B› ‹p⇩B permutes B›
by (auto intro!: bij_betw_comp_iff2[symmetric] permutes_imp_bij)
finally show "bij_betw f A B ⟷ bij_betw f' A B" .
qed
lemma count_image_mset':
"count (image_mset f A) x = sum (count A) {x' ∈ set_mset A. f x' = x}"
proof -
have "count (image_mset f A) x = sum (count A) (f -` {x} ∩ set_mset A)"
unfolding count_image_mset ..
also have "… = sum (count A) {x' ∈ set_mset A. f x' = x}"
proof -
have "(f -` {x} ∩ set_mset A) = {x' ∈ set_mset A. f x' = x}" by blast
from this show ?thesis by simp
qed
finally show ?thesis .
qed
lemma multiset_of_partition_cards_respects_domain_and_range_permutation:
assumes "finite B"
shows "(λf. image_mset (λX. card X) (mset_set (((λb. {x ∈ A. f x = b})) ` B - {{}}))) respects domain_and_range_permutation A B"
proof (rule congruentI)
fix f f'
assume "(f, f') ∈ domain_and_range_permutation A B"
from this obtain p⇩A p⇩B where "p⇩A permutes A" "p⇩B permutes B" "∀x∈A. f x = p⇩B (f' (p⇩A x))"
unfolding domain_and_range_permutation_def by auto
have "(λb. {x ∈ A. f x = b}) ` B = (λb. {x ∈ A. p⇩B (f' (p⇩A x)) = b}) ` B"
using ‹∀x∈A. f x = p⇩B (f' (p⇩A x))› by auto
from this have "image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}})) =
image_mset card (mset_set ((λb. {x ∈ A. p⇩B (f' (p⇩A x)) = b}) ` B - {{}}))" by simp
also have "image_mset card (mset_set ((λb. {x ∈ A. p⇩B (f' (p⇩A x)) = b}) ` B - {{}})) =
image_mset card (mset_set ((λb. {x ∈ A. f' (p⇩A x) = b}) ` B - {{}}))"
using permutes_implies_inv_image_on_eq[OF ‹p⇩B permutes B›, of A] by metis
also have "image_mset card (mset_set ((λb. {x ∈ A. f' (p⇩A x) = b}) ` B - {{}})) =
image_mset card (mset_set ((λb. {x ∈ A. f' x = b}) ` B - {{}}))"
proof (rule multiset_eqI)
fix n
have "bij_betw (λX. p⇩A ` X) {X ∈ (λb. {x ∈ A. f' (p⇩A x) = b}) ` B - {{}}. card X = n} {X ∈ (λb. {x ∈ A. f' x = b}) ` B - {{}}. card X = n}"
proof (rule bij_betw_byWitness)
show "∀X∈{X ∈ (λb. {x ∈ A. f' (p⇩A x) = b}) ` B - {{}}. card X = n}. inv p⇩A ` p⇩A ` X = X"
by (meson ‹p⇩A permutes A› image_inv_f_f permutes_inj)
show "∀X∈{X ∈ (λb. {x ∈ A. f' x = b}) ` B - {{}}. card X = n}. p⇩A ` inv p⇩A ` X = X"
by (meson ‹p⇩A permutes A› image_f_inv_f permutes_surj)
show "(λX. p⇩A ` X) ` {X ∈ (λb. {x ∈ A. f' (p⇩A x) = b}) ` B - {{}}. card X = n} ⊆ {X ∈ (λb. {x ∈ A. f' x = b}) ` B - {{}}. card X = n}"
proof -
have "card (p⇩A ` {x ∈ A. f' (p⇩A x) = b}) = card {x ∈ A. f' (p⇩A x) = b}" for b
proof -
have "inj_on p⇩A {x ∈ A. f' (p⇩A x) = b}"
by (metis (no_types, lifting) ‹p⇩A permutes A› injD inj_onI permutes_inj)
from this show ?thesis by (simp add: card_image)
qed
moreover have "p⇩A ` {x ∈ A. f' (p⇩A x) = b} = {x ∈ A. f' x = b}" for b
proof
show "p⇩A ` {x ∈ A. f' (p⇩A x) = b} ⊆ {x ∈ A. f' x = b}"
by (auto simp add: ‹p⇩A permutes A› permutes_in_image)
show "{x ∈ A. f' x = b} ⊆ p⇩A ` {x ∈ A. f' (p⇩A x) = b}"
proof
fix x
assume "x ∈ {x ∈ A. f' x = b}"
moreover have "p⇩A (inv p⇩A x) = x"
using ‹p⇩A permutes A› permutes_inverses(1) by fastforce
moreover from ‹x ∈ {x ∈ A. f' x = b}› have "inv p⇩A x ∈ A"
by (simp add: ‹p⇩A permutes A› permutes_in_image permutes_inv)
ultimately show "x ∈ p⇩A ` {x ∈ A. f' (p⇩A x) = b}"
by (auto intro: image_eqI[where x="inv p⇩A x"])
qed
qed
ultimately show ?thesis by auto
qed
show "(λX. inv p⇩A ` X) ` {X ∈ (λb. {x ∈ A. f' x = b}) ` B - {{}}. card X = n} ⊆ {X ∈ (λb. {x ∈ A. f' (p⇩A x) = b}) ` B - {{}}. card X = n}"
proof -
have "card (inv p⇩A ` {x ∈ A. f' x = b}) = card {x ∈ A. f' x = b}" for b
proof -
have "inj_on (inv p⇩A) {x ∈ A. f' x = b}"
by (metis (no_types, lifting) ‹p⇩A permutes A› injD inj_onI permutes_surj surj_imp_inj_inv)
from this show ?thesis by (simp add: card_image)
qed
moreover have "inv p⇩A ` {x ∈ A. f' x = b} = {x ∈ A. f' (p⇩A x) = b}" for b
proof
show "inv p⇩A ` {x ∈ A. f' x = b} ⊆ {x ∈ A. f' (p⇩A x) = b}"
using ‹p⇩A permutes A›
by (auto simp add: permutes_in_image permutes_inv permutes_inverses(1))
show "{x ∈ A. f' (p⇩A x) = b} ⊆ inv p⇩A ` {x ∈ A. f' x = b}"
proof
fix x
assume "x ∈ {x ∈ A. f' (p⇩A x) = b}"
moreover have "inv p⇩A (p⇩A x) = x"
by (meson ‹p⇩A permutes A› permutes_inverses(2))
moreover from ‹x ∈ {x ∈ A. f' (p⇩A x) = b}› have "p⇩A x ∈ A"
by (simp add: ‹p⇩A permutes A› permutes_in_image)
ultimately show "x ∈ inv p⇩A ` {x ∈ A. f' x = b}"
by (auto intro: image_eqI[where x="p⇩A x"])
qed
qed
ultimately show ?thesis by auto
qed
qed
from this have "card {x' ∈ (λb. {x ∈ A. f' (p⇩A x) = b}) ` B - {{}}. card x' = n} = card {x' ∈ (λb. {x ∈ A. f' x = b}) ` B - {{}}. card x' = n}"
by (rule bij_betw_same_card)
from this show "count (image_mset card (mset_set ((λb. {x ∈ A. f' (p⇩A x) = b}) ` B - {{}}))) n =
count (image_mset card (mset_set ((λb. {x ∈ A. f' x = b}) ` B - {{}}))) n"
using ‹finite B› by (simp add: count_image_mset')
qed
finally show "image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}})) =
image_mset card (mset_set ((λb. {x ∈ A. f' x = b}) ` B - {{}}))" .
qed
end