Theory Twelvefold_Way.Twelvefold_Way_Entry4
section ‹Functions from A to B, up to a Permutation of A›
theory Twelvefold_Way_Entry4
imports Equiv_Relations_on_Functions
begin
subsection ‹Definition of Bijections›
definition msubset_of :: "'a set ⇒ ('a ⇒ 'b) set ⇒ 'b multiset"
where
"msubset_of A F = univ (λf. image_mset f (mset_set A)) F"
definition functions_of :: "'a set ⇒ 'b multiset ⇒ ('a ⇒ 'b) set"
where
"functions_of A B = {f ∈ A →⇩E set_mset B. image_mset f (mset_set A) = B}"
subsection ‹Properties for Bijections›
lemma msubset_of:
assumes "F ∈ (A →⇩E B) // domain_permutation A B"
shows "size (msubset_of A F) = card A"
and "set_mset (msubset_of A F) ⊆ B"
proof -
from ‹F ∈ (A →⇩E B) // domain_permutation A B› obtain f where "f ∈ A →⇩E B"
and F_eq: "F = domain_permutation A B `` {f}" using quotientE by blast
have "msubset_of A F = univ (λf. image_mset f (mset_set A)) F"
unfolding msubset_of_def ..
also have "… = univ (λf. image_mset f (mset_set A)) (domain_permutation A B `` {f})"
unfolding F_eq ..
also have "… = image_mset f (mset_set A)"
using equiv_domain_permutation image_mset_respects_domain_permutation ‹f ∈ A →⇩E B›
by (subst univ_commute') auto
finally have msubset_of_eq: "msubset_of A F = image_mset f (mset_set A)" .
show "size (msubset_of A F) = card A"
proof -
have "size (msubset_of A F) = size (image_mset f (mset_set A))"
unfolding msubset_of_eq ..
also have "… = card A"
by (cases ‹finite A›) auto
finally show ?thesis .
qed
show "set_mset (msubset_of A F) ⊆ B"
proof -
have "set_mset (msubset_of A F) = set_mset (image_mset f (mset_set A))"
unfolding msubset_of_eq ..
also have "… ⊆ B"
using ‹f ∈ A →⇩E B› by (cases "finite A") auto
finally show ?thesis .
qed
qed
lemma functions_of:
assumes "finite A"
assumes "set_mset M ⊆ B"
assumes "size M = card A"
shows "functions_of A M ∈ (A →⇩E B) // domain_permutation A B"
proof -
obtain f where "f ∈ A →⇩E set_mset M" and "image_mset f (mset_set A) = M"
using obtain_function_on_ext_funcset ‹finite A› ‹size M = card A› by blast
from ‹f ∈ A →⇩E set_mset M› have "f ∈ A →⇩E B"
using ‹set_mset M ⊆ B› PiE_iff subset_eq by blast
have "functions_of A M = (domain_permutation A B) `` {f}"
proof
show "functions_of A M ⊆ domain_permutation A B `` {f}"
proof
fix f'
assume "f' ∈ functions_of A M"
from this have "M = image_mset f' (mset_set A)" and "f' ∈ A →⇩E f' ` A"
using ‹finite A› unfolding functions_of_def by auto
from this assms(1, 2) have "f' ∈ A →⇩E B"
by (simp add: PiE_iff image_subset_iff)
obtain p where "p permutes A ∧ (∀x∈A. f x = f' (p x))"
using ‹finite A› ‹image_mset f (mset_set A) = M› ‹M = image_mset f' (mset_set A)›
image_mset_eq_implies_permutes by blast
from this show "f' ∈ domain_permutation A B `` {f}"
using ‹f ∈ A →⇩E B› ‹f' ∈ A →⇩E B›
unfolding domain_permutation_def by auto
qed
next
show "domain_permutation A B `` {f} ⊆ functions_of A M"
proof
fix f'
assume "f' ∈ domain_permutation A B `` {f}"
from this have "(f, f') ∈ domain_permutation A B" by auto
from this ‹image_mset f (mset_set A) = M› have "image_mset f' (mset_set A) = M"
using congruentD[OF image_mset_respects_domain_permutation] by metis
moreover from this ‹(f, f') ∈ domain_permutation A B› have "f' ∈ A →⇩E set_mset M"
using ‹finite A› unfolding domain_permutation_def by auto
ultimately show "f' ∈ functions_of A M"
unfolding functions_of_def by auto
qed
qed
from this ‹f ∈ A →⇩E B› show ?thesis by (auto intro: quotientI)
qed
lemma functions_of_msubset_of:
assumes "finite A"
assumes "F ∈ (A →⇩E B) // domain_permutation A B"
shows "functions_of A (msubset_of A F) = F"
proof -
from ‹F ∈ (A →⇩E B) // domain_permutation A B› obtain f where "f ∈ A →⇩E B"
and F_eq: "F = domain_permutation A B `` {f}" using quotientE by blast
have "msubset_of A F = univ (λf. image_mset f (mset_set A)) F"
unfolding msubset_of_def ..
also have "… = univ (λf. image_mset f (mset_set A)) (domain_permutation A B `` {f})"
unfolding F_eq ..
also have "… = image_mset f (mset_set A)"
using equiv_domain_permutation image_mset_respects_domain_permutation ‹f ∈ A →⇩E B›
by (subst univ_commute') auto
finally have msubset_of_eq: "msubset_of A F = image_mset f (mset_set A)" .
show ?thesis
proof
show "functions_of A (msubset_of A F) ⊆ F"
proof
fix f'
assume "f' ∈ functions_of A (msubset_of A F)"
from this have f': "f' ∈ A →⇩E f ` set_mset (mset_set A)"
"image_mset f' (mset_set A) = image_mset f (mset_set A)"
unfolding functions_of_def by (auto simp add: msubset_of_eq)
from ‹f ∈ A →⇩E B› have "f ` A ⊆ B" by auto
note ‹f ∈ A →⇩E B›
moreover from f'(1) ‹finite A› ‹f ` A ⊆ B› have "f' ∈ A →⇩E B" by auto
moreover obtain p where "p permutes A ∧ (∀x∈A. f x = f' (p x))"
using ‹finite A› ‹image_mset f' (mset_set A) = image_mset f (mset_set A)›
by (metis image_mset_eq_implies_permutes)
ultimately show "f' ∈ F"
unfolding F_eq domain_permutation_def by auto
qed
next
show "F ⊆ functions_of A (msubset_of A F)"
proof
fix f'
assume "f' ∈ F"
from this have "f' ∈ A →⇩E B"
unfolding F_eq domain_permutation_def by auto
from ‹f' ∈ F› obtain p where "p permutes A ∧ (∀x∈A. f x = f' (p x))"
unfolding F_eq domain_permutation_def by auto
from this have eq: "image_mset f' (mset_set A) = image_mset f (mset_set A)"
using permutes_implies_image_mset_eq by blast
moreover have "f' ∈ A →⇩E set_mset (image_mset f (mset_set A))"
using ‹finite A› ‹f' ∈ A →⇩E B› eq[symmetric] by auto
ultimately show "f' ∈ functions_of A (msubset_of A F)"
unfolding functions_of_def msubset_of_eq by auto
qed
qed
qed
lemma msubset_of_functions_of:
assumes "set_mset M ⊆ B" "size M = card A" "finite A"
shows "msubset_of A (functions_of A M) = M"
proof -
from assms have "functions_of A M ∈ (A →⇩E B) // domain_permutation A B"
using functions_of by fastforce
from this obtain f where "f ∈ A →⇩E B" and "functions_of A M = domain_permutation A B `` {f}"
by (rule quotientE)
from this have "f ∈ functions_of A M"
using equiv_domain_permutation equiv_class_self by fastforce
have "msubset_of A (functions_of A M) = univ (λf. image_mset f (mset_set A)) (functions_of A M)"
unfolding msubset_of_def ..
also have "… = univ (λf. image_mset f (mset_set A)) (domain_permutation A B `` {f})"
unfolding ‹functions_of A M = domain_permutation A B `` {f}› ..
also have "… = image_mset f (mset_set A)"
using equiv_domain_permutation image_mset_respects_domain_permutation ‹f ∈ A →⇩E B›
by (subst univ_commute') auto
also have "image_mset f (mset_set A) = M"
using ‹f ∈ functions_of A M› unfolding functions_of_def by simp
finally show ?thesis .
qed
subsection ‹Bijections›
lemma bij_betw_msubset_of:
assumes "finite A"
shows "bij_betw (msubset_of A) ((A →⇩E B) // domain_permutation A B) {M. set_mset M ⊆ B ∧ size M = card A}"
proof (rule bij_betw_byWitness[where f'="λM. functions_of A M"])
show "∀F∈(A →⇩E B) // domain_permutation A B. functions_of A (msubset_of A F) = F"
using ‹finite A› by (auto simp add: functions_of_msubset_of)
show "∀M∈{M. set_mset M ⊆ B ∧ size M = card A}. msubset_of A (functions_of A M) = M"
using ‹finite A› by (auto simp add: msubset_of_functions_of)
show "msubset_of A ` ((A →⇩E B) // domain_permutation A B) ⊆ {M. set_mset M ⊆ B ∧ size M = card A}"
using msubset_of by blast
show "functions_of A ` {M. set_mset M ⊆ B ∧ size M = card A} ⊆ (A →⇩E B) // domain_permutation A B"
using functions_of ‹finite A› by blast
qed
subsection ‹Cardinality›
lemma
assumes "finite A" "finite B"
shows "card ((A →⇩E B) // domain_permutation A B) = card B + card A - 1 choose card A"
proof -
have "bij_betw (msubset_of A) ((A →⇩E B) // domain_permutation A B) {M. set_mset M ⊆ B ∧ size M = card A}"
using ‹finite A› by (rule bij_betw_msubset_of)
from this have "card ((A →⇩E B) // domain_permutation A B) = card {M. set_mset M ⊆ B ∧ size M = card A}"
by (rule bij_betw_same_card)
also have "card {M. set_mset M ⊆ B ∧ size M = card A} = card B + card A - 1 choose card A"
using ‹finite B› by (rule card_multisets)
finally show ?thesis .
qed
end