Theory Twelvefold_Way.Twelvefold_Way_Entry10
section ‹Functions from A to B up to a Permutation on A and B›
theory Twelvefold_Way_Entry10
imports Equiv_Relations_on_Functions
begin
subsection ‹Definition of Bijections›
definition number_partition_of :: "'a set ⇒ 'b set ⇒ ('a ⇒ 'b) set ⇒ nat multiset"
where
"number_partition_of A B F = univ (λf. image_mset (λX. card X) (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))) F"
definition functions_of :: "'a set ⇒ 'b set ⇒ nat multiset ⇒ ('a ⇒ 'b) set"
where
"functions_of A B N = {f ∈ A →⇩E B. image_mset (λX. card X) (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}})) = N}"
subsection ‹Properties for Bijections›
lemma card_setsum_partition:
assumes "finite A" "finite B" "f ∈ A →⇩E B"
shows "sum card ((λb. {x ∈ A. f x = b}) ` B - {{}}) = card A"
proof -
have "finite ((λb. {x ∈ A. f x = b}) ` B - {{}})"
using ‹finite B› by blast
moreover have "∀X∈(λb. {x ∈ A. f x = b}) ` B - {{}}. finite X"
using ‹finite A› by auto
moreover have "⋃((λb. {x ∈ A. f x = b}) ` B - {{}}) = A"
using ‹f ∈ A →⇩E B› by auto
ultimately show ?thesis
by (subst card_Union_disjoint[symmetric]) (auto simp: pairwise_def disjnt_def)
qed
lemma number_partition_of:
assumes "finite A" "finite B"
assumes "F ∈ (A →⇩E B) // domain_and_range_permutation A B"
shows "number_partition (card A) (number_partition_of A B F)"
and "size (number_partition_of A B F) ≤ card B"
proof -
from ‹F ∈ (A →⇩E B) // domain_and_range_permutation A B› obtain f where "f ∈ A →⇩E B"
and F_eq: "F = domain_and_range_permutation A B `` {f}" using quotientE by blast
have number_partition_of_eq: "number_partition_of A B F = image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))"
proof -
have "number_partition_of A B F = univ (λf. image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))) F"
unfolding number_partition_of_def ..
also have "… = univ (λf. image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))) (domain_and_range_permutation A B `` {f})"
unfolding F_eq ..
also have "… = image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))"
using ‹finite B› equiv_domain_and_range_permutation multiset_of_partition_cards_respects_domain_and_range_permutation ‹f ∈ A →⇩E B›
by (subst univ_commute') auto
finally show ?thesis .
qed
show "number_partition (card A) (number_partition_of A B F)"
proof -
have "sum_mset (number_partition_of A B F) = card A"
using number_partition_of_eq ‹finite A› ‹finite B› ‹f ∈ A →⇩E B›
by (simp only: sum_unfold_sum_mset[symmetric] card_setsum_partition)
moreover have "0 ∉# number_partition_of A B F"
proof -
have "∀X ∈ (λb. {x ∈ A. f x = b}) ` B. finite X"
using ‹finite A› by simp
from this have "∀X ∈ (λb. {x ∈ A. f x = b}) ` B - {{}}. card X ≠ 0" by auto
from this show ?thesis
using number_partition_of_eq ‹finite B› by (simp add: image_iff)
qed
ultimately show ?thesis unfolding number_partition_def by simp
qed
show "size (number_partition_of A B F) ≤ card B"
using number_partition_of_eq ‹finite A› ‹finite B›
by (metis (no_types, lifting) card_Diff1_le card_image_le finite_imageI le_trans size_image_mset size_mset_set)
qed
lemma functions_of:
assumes "finite A" "finite B"
assumes "number_partition (card A) N"
assumes "size N ≤ card B"
shows "functions_of A B N ∈ (A →⇩E B) // domain_and_range_permutation A B"
proof -
obtain f where "f ∈ A →⇩E B" and eq_N: "image_mset (λX. card X) (mset_set (((λb. {x ∈ A. f x = b})) ` B - {{}})) = N"
using obtain_extensional_function_from_number_partition ‹finite A› ‹finite B› ‹number_partition (card A) N› ‹size N ≤ card B› by blast
have "functions_of A B N = (domain_and_range_permutation A B) `` {f}"
proof
show "functions_of A B N ⊆ domain_and_range_permutation A B `` {f}"
proof
fix f'
assume "f' ∈ functions_of A B N"
from this have eq_N': "N = image_mset (λX. card X) (mset_set (((λb. {x ∈ A. f' x = b})) ` B - {{}}))"
and "f' ∈ A →⇩E B"
unfolding functions_of_def by auto
from ‹finite A› ‹finite B› ‹f ∈ A →⇩E B› ‹f' ∈ A →⇩E B›
obtain p⇩A p⇩B where "p⇩A permutes A" "p⇩B permutes B" "∀x∈A. f x = p⇩B (f' (p⇩A x))"
using eq_N eq_N' multiset_of_partition_cards_eq_implies_permutes[of A B f f'] by blast
from this show "f' ∈ domain_and_range_permutation A B `` {f}"
using ‹f ∈ A →⇩E B› ‹f' ∈ A →⇩E B›
unfolding domain_and_range_permutation_def by auto
qed
next
show "domain_and_range_permutation A B `` {f} ⊆ functions_of A B N"
proof
fix f'
assume "f' ∈ domain_and_range_permutation A B `` {f}"
from this have in_equiv_relation: "(f, f') ∈ domain_and_range_permutation A B" by auto
from eq_N ‹finite B› have "image_mset (λX. card X) (mset_set (((λb. {x ∈ A. f' x = b})) ` B - {{}})) = N"
using congruentD[OF multiset_of_partition_cards_respects_domain_and_range_permutation in_equiv_relation]
by metis
moreover from ‹(f, f') ∈ domain_and_range_permutation A B› have "f' ∈ A →⇩E B"
unfolding domain_and_range_permutation_def by auto
ultimately show "f' ∈ functions_of A B N"
unfolding functions_of_def by auto
qed
qed
from this ‹f ∈ A →⇩E B› show ?thesis by (auto intro: quotientI)
qed
lemma functions_of_number_partition_of:
assumes "finite A" "finite B"
assumes "F ∈ (A →⇩E B) // domain_and_range_permutation A B"
shows "functions_of A B (number_partition_of A B F) = F"
proof -
from ‹F ∈ (A →⇩E B) // domain_and_range_permutation A B› obtain f where "f ∈ A →⇩E B"
and F_eq: "F = domain_and_range_permutation A B `` {f}" using quotientE by blast
have "number_partition_of A B F = univ (λf. image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))) F"
unfolding number_partition_of_def ..
also have "… = univ (λf. image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))) (domain_and_range_permutation A B `` {f})"
unfolding F_eq ..
also have "… = image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))"
using ‹finite B›
using equiv_domain_and_range_permutation multiset_of_partition_cards_respects_domain_and_range_permutation ‹f ∈ A →⇩E B›
by (subst univ_commute') auto
finally have number_partition_of_eq: "number_partition_of A B F = image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))" .
show ?thesis
proof
show "functions_of A B (number_partition_of A B F) ⊆ F"
proof
fix f'
assume "f' ∈ functions_of A B (number_partition_of A B F)"
from this have "f' ∈ A →⇩E B"
and eq: "image_mset card (mset_set ((λb. {x ∈ A. f' x = b}) ` B - {{}})) = image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))"
unfolding functions_of_def by (auto simp add: number_partition_of_eq)
note ‹f ∈ A →⇩E B› ‹f' ∈ A →⇩E B›
moreover obtain p⇩A p⇩B where "p⇩A permutes A" "p⇩B permutes B" "∀x∈A. f x = p⇩B (f' (p⇩A x))"
using ‹finite A› ‹finite B› ‹f ∈ A →⇩E B› ‹f' ∈ A →⇩E B› eq
multiset_of_partition_cards_eq_implies_permutes[of A B f f']
by metis
ultimately show "f' ∈ F"
unfolding F_eq domain_and_range_permutation_def by auto
qed
next
show "F ⊆ functions_of A B (number_partition_of A B F)"
proof
fix f'
assume "f' ∈ F"
from ‹f' ∈ F› obtain p⇩A p⇩B where "p⇩A permutes A" "p⇩B permutes B" "∀x∈A. f x = p⇩B (f' (p⇩A x))"
unfolding F_eq domain_and_range_permutation_def by auto
have eq: "image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}})) = image_mset card (mset_set ((λb. {x ∈ A. f' x = b}) ` B - {{}}))"
proof -
have "(λb. {x ∈ A. f x = b}) ` B = (λb. {x ∈ A. p⇩B (f' (p⇩A x)) = b}) ` B"
using ‹∀x∈A. f x = p⇩B (f' (p⇩A x))› by auto
from this have "image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}})) =
image_mset card (mset_set ((λb. {x ∈ A. p⇩B (f' (p⇩A x)) = b}) ` B - {{}}))" by simp
also have "… = image_mset card (mset_set ((λb. {x ∈ A. f' x = b}) ` B - {{}}))"
using ‹p⇩A permutes A› ‹p⇩B permutes B› permutes_implies_multiset_of_partition_cards_eq by blast
finally show ?thesis .
qed
moreover from ‹f' ∈ F› have "f' ∈ A →⇩E B"
unfolding F_eq domain_and_range_permutation_def by auto
ultimately show "f' ∈ functions_of A B (number_partition_of A B F)"
unfolding functions_of_def number_partition_of_eq by auto
qed
qed
qed
lemma number_partition_of_functions_of:
assumes "finite A" "finite B"
assumes "number_partition (card A) N" "size N ≤ card B"
shows "number_partition_of A B (functions_of A B N) = N"
proof -
from assms have "functions_of A B N ∈ (A →⇩E B) // domain_and_range_permutation A B"
using functions_of assms by fastforce
from this obtain f where "f ∈ A →⇩E B" and "functions_of A B N = domain_and_range_permutation A B `` {f}"
by (meson quotientE)
from this have "f ∈ functions_of A B N"
using equiv_domain_and_range_permutation equiv_class_self by fastforce
have "number_partition_of A B (functions_of A B N) = univ (λf. image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))) (functions_of A B N)"
unfolding number_partition_of_def ..
also have "… = univ (λf. image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))) (domain_and_range_permutation A B `` {f})"
unfolding ‹functions_of A B N = domain_and_range_permutation A B `` {f}› ..
also have "… = image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}}))"
using ‹finite B› ‹f ∈ A →⇩E B› equiv_domain_and_range_permutation
multiset_of_partition_cards_respects_domain_and_range_permutation
by (subst univ_commute') auto
also have "image_mset card (mset_set ((λb. {x ∈ A. f x = b}) ` B - {{}})) = N"
using ‹f ∈ functions_of A B N› unfolding functions_of_def by simp
finally show ?thesis .
qed
subsection ‹Bijections›
lemma bij_betw_number_partition_of:
assumes "finite A" "finite B"
shows "bij_betw (number_partition_of A B) ((A →⇩E B) // domain_and_range_permutation A B) {N. number_partition (card A) N ∧ size N ≤ card B}"
proof (rule bij_betw_byWitness[where f'="λM. functions_of A B M"])
show "∀F∈(A →⇩E B) // domain_and_range_permutation A B. functions_of A B (number_partition_of A B F) = F"
using ‹finite A› ‹finite B› by (auto simp add: functions_of_number_partition_of)
show "∀N∈{N. number_partition (card A) N ∧ size N ≤ card B}. number_partition_of A B (functions_of A B N) = N"
using ‹finite A› ‹finite B› by (auto simp add: number_partition_of_functions_of)
show "number_partition_of A B ` ((A →⇩E B) // domain_and_range_permutation A B) ⊆ {N. number_partition (card A) N ∧ size N ≤ card B}"
using number_partition_of[of A B] ‹finite A› ‹finite B› by auto
show "functions_of A B ` {N. number_partition (card A) N ∧ size N ≤ card B} ⊆ (A →⇩E B) // domain_and_range_permutation A B"
using functions_of ‹finite A› ‹finite B› by blast
qed
subsection ‹Cardinality›
lemma card_domain_and_range_permutation:
assumes "finite A" "finite B"
shows "card ((A →⇩E B) // domain_and_range_permutation A B) = Partition (card A + card B) (card B)"
proof -
have "bij_betw (number_partition_of A B) ((A →⇩E B) // domain_and_range_permutation A B) {N. number_partition (card A) N ∧ size N ≤ card B}"
using ‹finite A› ‹finite B› by (rule bij_betw_number_partition_of)
from this have "card ((A →⇩E B) // domain_and_range_permutation A B) = card {N. number_partition (card A) N ∧ size N ≤ card B}"
by (rule bij_betw_same_card)
also have "card {N. number_partition (card A) N ∧ size N ≤ card B} = Partition (card A + card B) (card B)"
by (rule card_number_partitions_with_atmost_k_parts)
finally show ?thesis .
qed
end