Theory DRA_Models
section ‹Models for Demonic Refinement Algebra with Tests›
theory DRA_Models
imports DRAT
begin
text ‹
We formalise the predicate transformer model of demonic refinement algebra.
Predicate transformers are formalised as strict and additive functions over a field of sets,
or alternatively as costrict and multiplicative functions.
In the future, this should be merged with Preoteasa's more abstract formalisation~\<^cite>‹"Preoteasa11"›.
›
no_notation
plus (infixl "+" 65) and
less_eq ("'(≤')") and
less_eq ("(_/ ≤ _)" [51, 51] 50)
notation comp (infixl "⋅" 55)
type_synonym 'a bfun = "'a set ⇒ 'a set"
text ‹
Definitions of signature:
›
definition top :: "'a bfun" where "top ≡ λx. UNIV"
definition bot :: "'a bfun" where "bot ≡ λx. {}"
definition adjoint :: "'a bfun ⇒ 'a bfun" where "adjoint f ≡ (λp. - f (-p))"
definition fun_inter :: "'a bfun ⇒ 'a bfun ⇒ 'a bfun" (infix "⊓" 51) where
"f ⊓ g ≡ λp. f p ∩ g p"
definition fun_union :: "'a bfun ⇒ 'a bfun ⇒ 'a bfun" (infix "+" 52) where
"f + g ≡ λp. f p ∪ g p"
definition fun_order :: "'a bfun ⇒ 'a bfun ⇒ bool" (infix "≤" 50) where
"f ≤ g ≡ ∀p. f p ⊆ g p"
definition fun_strict_order :: "'a bfun ⇒ 'a bfun ⇒ bool" (infix "<." 50) where
"f <. g ≡ f ≤ g ∧ f ≠ g"
definition N :: "'a bfun ⇒ 'a bfun" where
"N f ≡ ((adjoint f o bot) ⊓ id)"
lemma top_max: "f ≤ top"
by (auto simp: top_def fun_order_def)
lemma bot_min: "bot ≤ f"
by (auto simp: bot_def fun_order_def)
lemma oder_def: "f ⊓ g = f ⟹ f ≤ g"
by (metis fun_inter_def fun_order_def le_iff_inf)
lemma order_def_var: "f ≤ g ⟹ f ⊓ g = f"
by (auto simp: fun_inter_def fun_order_def)
lemma adjoint_idem [simp]: "adjoint (adjoint f) = f"
by (auto simp: adjoint_def)
lemma adjoint_prop1[simp]: "(f o top) ⊓ (adjoint f o bot) = bot"
by (auto simp: fun_inter_def adjoint_def bot_def top_def)
lemma adjoint_prop2[simp]: "(f o top) + (adjoint f o bot) = top"
by (auto simp: fun_union_def adjoint_def bot_def top_def)
lemma adjoint_mult: "adjoint (f o g) = adjoint f o adjoint g"
by (auto simp: adjoint_def)
lemma adjoint_top[simp]: "adjoint top = bot"
by (auto simp: adjoint_def bot_def top_def)
lemma N_comp1: "(N (N f)) + N f = id"
by (auto simp: fun_union_def N_def fun_inter_def adjoint_def bot_def)
lemma N_comp2: "(N (N f)) o N f = bot"
by (auto simp: N_def fun_inter_def adjoint_def bot_def)
lemma N_comp3: "N f o (N (N f)) = bot"
by (auto simp: N_def fun_inter_def adjoint_def bot_def)
lemma N_de_morgan: "N (N f) o N (N g) = N (N f) ⊓ N (N g)"
by (auto simp: fun_union_def N_def fun_inter_def adjoint_def bot_def)
lemma conj_pred_aux [simp]: "(λp. x p ∪ y p) = y ⟹ ∀p. x p ⊆ y p"
by (metis Un_upper1)
text ‹
Next, we define a type for conjuctive or multiplicative predicate transformers.
›
typedef 'a bool_op = "{f::'a bfun. (∀g h. mono f ∧ f ∘ g + f ∘ h = f ∘ (g + h) ∧ bot o f = bot)}"
apply (rule_tac x="λx. x" in exI)
apply auto
apply (metis monoI)
by (auto simp: fun_order_def fun_union_def)
setup_lifting type_definition_bool_op
text ‹
Conjuctive predicate transformers form a dioid with tests without right annihilator.
›
instantiation bool_op :: (type) dioid_one_zerol
begin
lift_definition less_eq_bool_op :: "'a bool_op ⇒ 'a bool_op ⇒ bool" is fun_order .
lift_definition less_bool_op :: "'a bool_op ⇒ 'a bool_op ⇒ bool" is "(<.)" .
lift_definition zero_bool_op :: "'a bool_op" is "bot"
by (auto simp: bot_def fun_union_def fun_order_def mono_def)
lift_definition one_bool_op :: "'a bool_op" is "id"
by (auto simp: fun_union_def fun_order_def mono_def)
lift_definition times_bool_op :: "'a bool_op ⇒ 'a bool_op ⇒ 'a bool_op" is "(o)"
by (auto simp: o_def fun_union_def fun_order_def bot_def mono_def) metis
lift_definition plus_bool_op :: "'a bool_op ⇒ 'a bool_op ⇒ 'a bool_op" is "(+)"
apply (auto simp: o_def fun_union_def fun_order_def bot_def mono_def)
apply (metis subsetD)
apply (metis subsetD)
apply (rule ext)
by (metis (no_types, lifting) semilattice_sup_class.sup.assoc semilattice_sup_class.sup.left_commute)
instance
by standard (transfer, auto simp: fun_order_def fun_strict_order_def fun_union_def bot_def)+
end
instantiation bool_op :: (type) test_semiring_zerol
begin
lift_definition n_op_bool_op :: "'a bool_op ⇒ 'a bool_op" is "N"
by (auto simp: N_def fun_inter_def adjoint_def bot_def fun_union_def mono_def)
instance
apply standard
apply (transfer, clarsimp simp add: N_def adjoint_def bot_def id_def comp_def fun_inter_def)
apply (transfer, clarsimp simp add: N_def adjoint_def bot_def id_def comp_def fun_inter_def fun_union_def mono_def, blast)
apply (transfer, clarsimp simp add: N_def adjoint_def bot_def comp_def mono_def fun_union_def fun_inter_def)
by (transfer, clarsimp simp add: N_def adjoint_def bot_def comp_def mono_def fun_union_def fun_inter_def, blast)
end
definition fun_star :: "'a bfun ⇒ 'a bfun" where
"fun_star f = lfp (λr. f o r + id)"
definition fun_iteration :: "'a bfun ⇒ 'a bfun" where
"fun_iteration f = gfp (λg. f o g + id)"
text ‹
Verifying the iteration laws is left for future work. This could be obtained by integrating
Preoteasa's approach~\<^cite>‹"Preoteasa11"›.
›
end