Theory DRAT
section ‹Demonic Refinement Algebra with Tests›
theory DRAT
imports KAT Kleene_Algebra.DRA
begin
text ‹
In this section, we define demonic refinement algebras with tests and prove the most important theorems from
the literature. In this context, tests are also known as guards.
›
class drat = dra + test_semiring_zerol
begin
subclass kat_zerol ..
text ‹
An assertion is a mapping from a guard to a subset similar to tests, but it aborts if the predicate does
not hold.
›
definition assertion :: "'a ⇒ 'a" ("_⇧o" [101] 100) where
"test p ⟹ p⇧o = !p⋅⊤ + 1"
lemma asg: "⟦test p; test q⟧ ⟹ q ≤ 1 ∧ 1 ≤ p⇧o"
by (simp add: assertion_def local.test_subid)
lemma assertion_isol: "test p ⟹ y ≤ p⇧o⋅x ⟷ p⋅y ≤ x"
proof
assume assms: "test p" "y ≤ p⇧o⋅x"
hence "p⋅y ≤ p⋅!p⋅⊤⋅x + p⋅x"
by (metis add_commute assertion_def local.distrib_left local.iteration_prod_unfold local.iteration_unfoldl_distr local.mult_isol local.top_mult_annil mult_assoc)
also have "... ≤ x"
by (simp add: assms(1) local.test_restrictl)
finally show "p⋅y ≤ x"
by metis
next
assume assms: "test p" "p⋅y ≤ x"
hence "p⇧o⋅p⋅y = !p⋅⊤⋅p⋅y + p⋅y"
by (metis assertion_def distrib_right' mult_1_left mult.assoc)
also have "... = !p⋅⊤ + p⋅y"
by (metis mult.assoc top_mult_annil)
moreover have "p⇧o⋅p⋅y ≤ p⇧o⋅x"
by (metis assms(2) mult.assoc mult_isol)
moreover have "!p⋅y + p⋅y ≤ !p⋅⊤ + p⋅y"
using local.add_iso local.top_elim by blast
ultimately show "y ≤ p⇧o⋅x"
by (metis add.commute assms(1) distrib_right' mult_1_left order_trans test_add_comp)
qed
lemma assertion_isor: "test p ⟹ y ≤ x⋅p ⟷ y⋅p⇧o ≤ x"
proof
assume assms: "test p" "y ≤ x⋅p"
hence "y⋅p⇧o ≤ x⋅p⋅!p⋅⊤ + x⋅p"
by (metis mult_isor assertion_def assms(1) distrib_left mult_1_right mult.assoc)
also have "... ≤ x"
by (metis assms(1) local.iteration_idep local.join.sup.absorb_iff1 local.join.sup_commute local.join.sup_ge2 local.mult_1_right local.mult_isol_var local.mult_isor local.mult_onel local.test_add_comp local.test_comp_mult2 mult_assoc)
finally show "y⋅p⇧o ≤ x"
by metis
next
assume assms: "test p" "y⋅p⇧o ≤ x"
have "y ≤ y⋅(!p⋅⊤ + p)"
by (metis join.sup_mono mult_isol order_refl order_refl top_elim add.commute assms(1) mult_1_right test_add_comp)
also have "... = y⋅p⇧o⋅p"
by (metis assertion_def assms(1) distrib_right' mult_1_left mult.assoc top_mult_annil)
finally show "y ≤ x⋅p"
by (metis assms(2) mult_isor order_trans)
qed
lemma assertion_iso: "⟦test p; test q⟧ ⟹ x⋅q⇧o ≤ p⇧o⋅x ⟷ p⋅x ≤ x⋅q"
by (metis assertion_isol assertion_isor mult.assoc)
lemma total_correctness: "⟦test p; test q⟧ ⟹ p⋅x⋅!q = 0 ⟷ x⋅!q ≤ !p⋅⊤"
apply standard
apply (metis local.test_eq4 local.top_elim mult_assoc)
by (metis annil order.antisym test_comp_mult2 join.bot_least mult_assoc mult_isol)
lemma test_iteration_sim: "⟦test p; p⋅x ≤ x⋅p⟧ ⟹ p⋅x⇧∞ ≤ x⇧∞⋅p"
by (metis iteration_sim)
lemma test_iteration_annir: "test p ⟹ !p⋅(p⋅x)⇧∞ = !p"
by (metis annil test_comp_mult1 iteration_idep mult.assoc)
text ‹Next we give an example of a program transformation from von Wright~\<^cite>‹"Wright02"›.›
lemma loop_refinement: "⟦test p; test q⟧ ⟹ (p⋅x)⇧∞⋅!p ≤ (p⋅q⋅x)⇧∞⋅!(p⋅q)⋅(p⋅x)⇧∞⋅!p"
proof -
assume assms: "test p" "test q"
hence "(p⋅x)⇧∞⋅!p = ((p⋅q) + !(p⋅q))⋅(p⋅x)⇧∞⋅!p"
by (simp add: local.test_mult_closed)
also have "... = (p⋅q)⋅(p⋅x)⇧∞⋅!p + !(p⋅q)⋅(p⋅x)⇧∞⋅!p"
by (metis distrib_right')
also have "... = (p⋅q)⋅!p + (p⋅q)⋅(p⋅x)⋅(p⋅x)⇧∞⋅!p + !(p⋅q)⋅(p⋅x)⇧∞⋅!p"
by (metis iteration_unfoldr_distr mult.assoc iteration_unfold_eq distrib_left mult.assoc)
also have "... = (p⋅q)⋅(p⋅x)⋅(p⋅x)⇧∞⋅!p + !(p⋅q)⋅(p⋅x)⇧∞⋅!p"
by (metis assms less_eq_def test_preserve2 join.bot_least)
finally have "(p⋅x)⇧∞⋅!p ≤ p⋅q⋅x⋅(p⋅x)⇧∞⋅!p + !(p⋅q)⋅(p⋅x)⇧∞⋅!p"
by (metis assms(1) assms(2) order.eq_iff local.test_mult_comm_var local.test_preserve mult_assoc)
thus ?thesis
by (metis coinduction add.commute mult.assoc)
qed
text ‹Finally, we prove different versions of Back's atomicity refinement theorem for action systems.›
lemma atom_step1: "r⋅b ≤ b⋅r ⟹ (a + b + r)⇧∞ = b⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅r⇧∞)⇧∞"
apply (subgoal_tac "(a + b + r)⇧∞ = (b + r)⇧∞⋅(a⋅(b + r)⇧∞)⇧∞")
apply (metis iteration_sep mult.assoc)
by (metis add_assoc' add.commute iteration_denest)
lemma atom_step2:
assumes "s = s⋅q" "q⋅b = 0" "r⋅q ≤ q⋅r" "q⋅l ≤ l⋅q" "r⇧∞ = r⇧⋆" "test q"
shows "s⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧∞⋅q)⇧∞ ≤ s⋅l⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
proof -
have "s⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧∞⋅q)⇧∞ ≤ s⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by (metis assms(3) assms(5) star_sim1 mult.assoc mult_isol iteration_iso)
also have "... ≤ s⋅q⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
using assms(1) assms(6) local.mult_isor local.test_restrictr by auto
also have "... ≤ s⋅l⇧∞⋅q⋅b⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by (metis assms(4) iteration_sim mult.assoc mult_double_iso mult_double_iso)
also have "... ≤ s⋅l⇧∞⋅r⇧∞⋅q⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by (metis assms(2) join.bot_least iteration_sim mult.assoc mult_double_iso)
also have "... ≤ s⋅l⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by (metis assms(6) mult.assoc mult_isol test_restrictl iteration_idem mult.assoc)
finally show "s⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧∞⋅q)⇧∞ ≤ s⋅l⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by metis
qed
lemma atom_step3:
assumes "r⋅l ≤ l⋅r" "a⋅l ≤ l⋅a" "b⋅l ≤ l⋅b" "q⋅l ≤ l⋅q" "b⇧∞ = b⇧⋆"
shows "l⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞ = (a⋅b⇧∞⋅q + l + r)⇧∞"
proof -
have "(a⋅b⇧∞⋅q + r)⋅l ≤ a⋅b⇧∞⋅l⋅q + l⋅r"
by (metis distrib_right join.sup_mono assms(1,4) mult.assoc mult_isol)
also have "... ≤ a⋅l⋅b⇧∞⋅q + l⋅r"
by (metis assms(3) assms(5) star_sim1 add_iso mult.assoc mult_double_iso)
also have "... ≤ l⋅(a⋅b⇧∞⋅q + r)"
by (metis add_iso assms(2) mult_isor distrib_left mult.assoc)
finally have "(a⋅b⇧∞⋅q + r)⋅l ≤ l⋅(a⋅b⇧∞⋅q + r)"
by metis
moreover have "l⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞ = l⇧∞⋅(a⋅b⇧∞⋅q + r)⇧∞"
by (metis add.commute mult.assoc iteration_denest)
ultimately show ?thesis
by (metis add.commute add.left_commute iteration_sep)
qed
text ‹
This is Back's atomicity refinement theorem, as specified by von Wright~\cite {Wright02}.
›
theorem atom_ref_back:
assumes "s = s⋅q" "a = q⋅a" "q⋅b = 0"
"r⋅b ≤ b⋅r" "r⋅l ≤ l⋅r" "r⋅q ≤ q⋅r"
"a⋅l ≤ l⋅a" "b⋅l ≤ l⋅b" "q⋅l ≤ l⋅q"
"r⇧∞ = r⇧⋆" "b⇧∞ = b⇧⋆" "test q"
shows "s⋅(a + b + r + l)⇧∞⋅q ≤ s⋅(a⋅b⇧∞⋅q + r + l)⇧∞"
proof -
have "(a + b + r)⋅l ≤ l⋅(a + b + r)"
by (metis join.sup_mono distrib_right' assms(5) assms(7) assms(8) distrib_left)
hence "s⋅(l + a + b + r)⇧∞⋅q = s⋅l⇧∞⋅(a + b + r)⇧∞⋅q"
by (metis add.commute add.left_commute mult.assoc iteration_sep)
also have "... ≤ s⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧∞⋅q)⇧∞"
by (metis assms(2,4,10,11) atom_step1 iteration_slide eq_refl mult.assoc)
also have "... ≤ s⋅l⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by (metis assms(1) assms(10) assms(12) assms(3) assms(6) assms(9) atom_step2)
also have "... ≤ s⋅(a⋅b⇧∞⋅q + l + r)⇧∞"
by (metis assms(11) assms(5) assms(7) assms(8) assms(9) atom_step3 eq_refl mult.assoc)
finally show ?thesis
by (metis add.commute add.left_commute)
qed
text ‹
This variant is due to H\"ofner, Struth and Sutcliffe~\<^cite>‹"HofnerSS09"›.
›
theorem atom_ref_back_struth:
assumes "s ≤ s⋅q" "a ≤ q⋅a" "q⋅b = 0"
"r⋅b ≤ b⋅r" "r⋅q ≤ q⋅r"
"(a + r + b)⋅l ≤ l⋅(a + r + b)" "q⋅l ≤ l⋅q"
"r⇧∞ = r⇧⋆" "q ≤ 1"
shows "s⋅(a + b + r + l)⇧∞⋅q ≤ s⋅(a⋅b⇧∞⋅q + r + l)⇧∞"
proof -
have "s⋅(a + b + r + l)⇧∞⋅q = s⋅l⇧∞⋅(a + b + r)⇧∞⋅q"
by (metis add.commute add.left_commute assms(6) iteration_sep mult.assoc)
also have "... = s⋅l⇧∞⋅(b + r)⇧∞⋅(a⋅(b + r)⇧∞)⇧∞⋅q"
by (metis add_assoc' add.commute iteration_denest add.commute mult.assoc)
also have "... = s⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅r⇧∞)⇧∞⋅q"
by (metis assms(4) iteration_sep mult.assoc)
also have "... ≤ s⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅(q⋅a⋅b⇧∞⋅r⇧∞)⇧∞⋅q"
by (metis assms(2) iteration_iso mult_isol_var eq_refl order_refl)
also have "... = s⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧∞⋅q)⇧∞"
by (metis iteration_slide mult.assoc)
also have "... ≤ s⋅q⋅l⇧∞⋅b⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧∞⋅q)⇧∞"
by (metis assms(1) mult_isor)
also have "... ≤ s⋅l⇧∞⋅q⋅b⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧∞⋅q)⇧∞"
by (metis assms(7) iteration_sim mult.assoc mult_double_iso)
also have "... ≤ s⋅l⇧∞⋅q⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧∞⋅q)⇧∞"
by (metis assms(3) iteration_idep mult.assoc order_refl)
also have "... ≤ s⋅l⇧∞⋅q⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅r⇧⋆⋅q)⇧∞"
by (metis assms(8) eq_refl)
also have "... ≤ s⋅l⇧∞⋅q⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅q⋅r⇧⋆)⇧∞"
by (metis assms(5) iteration_iso mult.assoc mult_isol star_sim1)
also have "... = s⋅l⇧∞⋅q⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by (metis assms(8))
also have "... ≤ s⋅l⇧∞⋅r⇧∞⋅q⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by (metis assms(9) mult_1_right mult_double_iso mult_isor)
also have "... ≤ s⋅l⇧∞⋅r⇧∞⋅(a⋅b⇧∞⋅q⋅r⇧∞)⇧∞"
by (metis assms(9) mult_1_right mult_double_iso)
also have "... = s⋅l⇧∞⋅(a⋅b⇧∞⋅q + r)⇧∞"
by (metis add.commute mult.assoc iteration_denest)
also have "... ≤ s⋅(a⋅b⇧∞⋅q + r + l)⇧∞"
by (metis add.commute iteration_subdenest mult.assoc mult_isol)
finally show ?thesis .
qed
text ‹Finally, we prove Cohen's~\<^cite>‹"Cohen00"› variation of the atomicity refinement theorem.›
lemma atom_ref_cohen:
assumes "r⋅p⋅y ≤ y⋅r" "y⋅p⋅l ≤ l⋅y" "r⋅p⋅l ≤ l⋅r"
"p⋅r⋅!p = 0" "p⋅l⋅!p = 0" "!p⋅l⋅p = 0"
"y⋅0 = 0" "r⋅0 = 0" "test p"
shows "(y + r + l)⇧∞ = (p⋅l)⇧∞⋅(y + !p⋅l + r⋅!p)⇧∞⋅(r⋅p)⇧∞"
proof -
have "(y + r)⋅p⋅l ≤ l⋅y + l⋅r"
by (metis distrib_right' join.sup_mono assms(2) assms(3))
hence stepA: "(y + r)⋅p⋅l ≤ (p⋅l + !p⋅l)⋅(y + r)⇧⋆"
by (metis assms(9) distrib_left distrib_right' mult_1_left mult_isol order_trans star_ext test_add_comp)
have subStepB: "(!p⋅l + y + p⋅r + !p⋅r)⇧∞ = (!p⋅l + y + r⋅p + r⋅!p)⇧∞"
by (metis add_assoc' annil assms(8) assms(9) distrib_left distrib_right' star_slide star_subid test_add_comp join.bot_least)
have "r⋅p⋅(y + r⋅!p + !p⋅l) ≤ y⋅(r⋅p + r⋅!p)"
by (metis assms(1,4,9) distrib_left add_0_left add.commute annil mult.assoc test_comp_mult2 distrib_left mult_oner test_add_comp)
also have "... ≤ (y + r⋅!p + !p⋅l)⋅(r⋅p + (y + r⋅!p + !p⋅l))"
by (meson local.eq_refl local.join.sup_ge1 local.join.sup_ge2 local.join.sup_mono local.mult_isol_var local.order_trans)
finally have "r⋅p⋅(y + r⋅!p + !p⋅l) ≤ (y + r⋅!p + !p⋅l)⋅(y + r⋅!p + !p⋅l + r⋅p)"
by (metis add.commute)
hence stepB: "(!p⋅l + y + p⋅r + !p⋅r)⇧∞ = (y + !p⋅l + r⋅!p)⇧∞⋅(r⋅p)⇧∞"
by (metis subStepB iteration_sep3[of "r⋅p" "y + r⋅!p + !p⋅l"] add_assoc' add.commute)
have "(y + r + l)⇧∞ = (p⋅l + !p⋅l + y + r)⇧∞"
by (metis add_comm add.left_commute assms(9) distrib_right' mult_onel test_add_comp)
also have "... = (p⋅l)⇧∞⋅(!p⋅l + y + r)⇧∞" using stepA
by (metis assms(6-8) annil add.assoc add_0_left distrib_right' add.commute mult.assoc iteration_sep4[of "y+r" "!p⋅l" "p⋅l"])
also have "... = (p⋅l)⇧∞⋅(!p⋅l + y + p⋅r + !p⋅r)⇧∞"
by (metis add.commute assms(9) combine_common_factor mult_1_left test_add_comp)
finally show ?thesis using stepB
by (metis mult.assoc)
qed
end
end