Theory FWBisimulation

(*  Title:      JinjaThreads/Framework/FWBisimulation.thy
    Author:     Andreas Lochbihler
*)

section ‹Bisimulation relations for the multithreaded semantics›

theory FWBisimulation
imports
  FWLTS
  Bisimulation
begin

subsection ‹Definitions for lifting bisimulation relations›

primrec nta_bisim :: "('t  ('x1 × 'm1, 'x2 × 'm2) bisim)  (('t,'x1,'m1) new_thread_action, ('t,'x2,'m2) new_thread_action) bisim"
  where
  [code del]: "nta_bisim bisim (NewThread t x m) ta = (x' m'. ta = NewThread t x' m'  bisim t (x, m) (x', m'))"
| "nta_bisim bisim (ThreadExists t b) ta = (ta = ThreadExists t b)"

lemma nta_bisim_1_code [code]:
  "nta_bisim bisim (NewThread t x m) ta = (case ta of NewThread t' x' m'  t = t'  bisim t (x, m) (x', m') | _  False)"
by(auto split: new_thread_action.split)
  
lemma nta_bisim_simps_sym [simp]:
  "nta_bisim bisim ta (NewThread t x m) = (x' m'. ta = NewThread t x' m'  bisim t (x', m') (x, m))"
  "nta_bisim bisim ta (ThreadExists t b) = (ta = ThreadExists t b)"
by(cases ta, auto)+

definition ta_bisim :: "('t  ('x1 × 'm1, 'x2 × 'm2) bisim)  (('l,'t,'x1,'m1,'w,'o) thread_action, ('l,'t,'x2,'m2,'w,'o) thread_action) bisim"
where
  "ta_bisim bisim ta1 ta2 
   ta1l =  ta2l   ta1w =  ta2w   ta1c =  ta2c   ta1o =  ta2o   ta1i =  ta2i 
  list_all2 (nta_bisim bisim)  ta1t  ta2t"

lemma ta_bisim_empty [iff]: "ta_bisim bisim ε ε"
by(auto simp add: ta_bisim_def)

lemma ta_bisim_ε [simp]:
  "ta_bisim b ε ta'  ta' = ε" "ta_bisim b ta ε  ta = ε"
apply(cases ta', fastforce simp add: ta_bisim_def)
apply(cases ta, fastforce simp add: ta_bisim_def)
done

lemma nta_bisim_mono:
  assumes major: "nta_bisim bisim ta ta'"
  and mono: "t s1 s2. bisim t s1 s2  bisim' t s1 s2"
  shows "nta_bisim bisim' ta ta'"
using major by(cases ta)(auto intro: mono)

lemma ta_bisim_mono:
  assumes major: "ta_bisim bisim ta1 ta2"
  and mono: "t s1 s2. bisim t s1 s2  bisim' t s1 s2"
  shows "ta_bisim bisim' ta1 ta2"
using major
by(auto simp add: ta_bisim_def elim!: List.list_all2_mono nta_bisim_mono intro: mono)

lemma nta_bisim_flip [flip_simps]:
  "nta_bisim (λt. flip (bisim t)) = flip (nta_bisim bisim)"
by(rule ext)(case_tac x, auto simp add: flip_simps)

lemma ta_bisim_flip [flip_simps]:
  "ta_bisim (λt. flip (bisim t)) = flip (ta_bisim bisim)"
by(auto simp add: fun_eq_iff flip_simps ta_bisim_def)

locale FWbisimulation_base =
  r1: multithreaded_base final1 r1 convert_RA +
  r2: multithreaded_base final2 r2 convert_RA 
  for final1 :: "'x1  bool"
  and r1 :: "('l,'t,'x1,'m1,'w,'o) semantics" ("_  _ -1-_ _" [50, 0, 0, 50] 80)
  and final2 :: "'x2  bool"
  and r2 :: "('l,'t,'x2,'m2,'w,'o) semantics" ("_  _ -2-_ _" [50, 0, 0, 50] 80) 
  and convert_RA :: "'l released_locks  'o list"
  +
  fixes bisim :: "'t  ('x1 × 'm1, 'x2 × 'm2) bisim" ("_  _/  _" [50, 50, 50] 60)
  and bisim_wait :: "('x1, 'x2) bisim" ("_/ ≈w _" [50, 50] 60)
begin

notation r1.redT_syntax1 ("_ -1-__ _" [50,0,0,50] 80)
notation r2.redT_syntax1 ("_ -2-__ _" [50,0,0,50] 80)

notation r1.RedT ("_ -1-▹_→* _" [50,0,50] 80)
notation r2.RedT ("_ -2-▹_→* _" [50,0,50] 80)

notation r1.must_sync ("_  _,/ _/ ≀1" [50,0,0] 81)
notation r2.must_sync ("_  _,/ _/ ≀2" [50,0,0] 81)

notation r1.can_sync  ("_  _,/ _/ _/ ≀1" [50,0,0,0] 81)
notation r2.can_sync  ("_  _,/ _/ _/ ≀2" [50,0,0,0] 81)

abbreviation ta_bisim_bisim_syntax ("_/ ∼m _" [50, 50] 60)
where "ta1 ∼m ta2  ta_bisim bisim ta1 ta2"

definition tbisim :: "bool  't  ('x1 × 'l released_locks) option  'm1  ('x2 × 'l released_locks) option  'm2  bool" where
  "ln. tbisim nw t ts1 m1 ts2 m2 
  (case ts1 of None  ts2 = None
       | (x1, ln)  (x2. ts2 = (x2, ln)  t  (x1, m1)  (x2, m2)  (nw  x1 ≈w x2)))"

lemma tbisim_NoneI: "tbisim w t None m None m'"
by(simp add: tbisim_def)

lemma tbisim_SomeI:
  "ln.  t  (x, m)  (x', m'); nw  x ≈w x'   tbisim nw t (Some (x, ln)) m (Some (x', ln)) m'"
by(simp add: tbisim_def)

lemma tbisim_cases[consumes 1, case_names None Some]:
  assumes major: "tbisim nw t ts1 m1 ts2 m2"
  and " ts1 = None; ts2 = None   thesis"
  and "x ln x'.  ts1 = (x, ln); ts2 = (x', ln); t  (x, m1)  (x', m2); nw  x ≈w x'   thesis"
  shows thesis
using assms
by(auto simp add: tbisim_def)

definition mbisim :: "(('l,'t,'x1,'m1,'w) state, ('l,'t,'x2,'m2,'w) state) bisim" ("_ ≈m _" [50, 50] 60)
where
  "s1 ≈m s2  
  finite (dom (thr s1))  locks s1 = locks s2  wset s1 = wset s2  wset_thread_ok (wset s1) (thr s1) 
  interrupts s1 = interrupts s2 
  (t. tbisim (wset s2 t = None) t (thr s1 t) (shr s1) (thr s2 t) (shr s2))"

lemma mbisim_thrNone_eq: "s1 ≈m s2  thr s1 t = None  thr s2 t = None"
unfolding mbisim_def tbisim_def
apply(clarify)
apply(erule allE[where x=t])
apply(clarsimp)
done

lemma mbisim_thrD1:
  "ln.  s1 ≈m s2; thr s1 t = (x, ln) 
   x'. thr s2 t = (x', ln)  t  (x, shr s1)  (x', shr s2)  (wset s1 t = None  x ≈w x')"
by(fastforce simp add: mbisim_def tbisim_def)

lemma mbisim_thrD2:
  "ln.  s1 ≈m s2; thr s2 t = (x, ln) 
   x'. thr s1 t = (x', ln)  t  (x', shr s1)  (x, shr s2)  (wset s2 t = None  x' ≈w x)"
by(frule mbisim_thrNone_eq[where t=t])(cases "thr s1 t",(fastforce simp add: mbisim_def tbisim_def)+)

lemma mbisim_dom_eq: "s1 ≈m s2  dom (thr s1) = dom (thr s2)"
apply(clarsimp simp add: dom_def fun_eq_iff simp del: not_None_eq)
apply(rule Collect_cong)
apply(drule mbisim_thrNone_eq)
apply(simp del: not_None_eq)
done

lemma mbisim_wset_thread_ok1:
  "s1 ≈m s2  wset_thread_ok (wset s1) (thr s1)"
by(clarsimp simp add: mbisim_def)

lemma mbisim_wset_thread_ok2:
  assumes "s1 ≈m s2"
  shows "wset_thread_ok (wset s2) (thr s2)"
using assms
apply(clarsimp simp add: mbisim_def)
apply(auto intro!: wset_thread_okI simp add: mbisim_thrNone_eq[OF assms, THEN sym] dest: wset_thread_okD)
done

lemma mbisimI:
  " finite (dom (thr s1)); locks s1 = locks s2; wset s1 = wset s2; interrupts s1 = interrupts s2; 
     wset_thread_ok (wset s1) (thr s1);
     t. thr s1 t = None  thr s2 t = None;
     t x1 ln. thr s1 t = (x1, ln)  x2. thr s2 t = (x2, ln)  t  (x1, shr s1)  (x2, shr s2)  (wset s2 t = None  x1 ≈w x2) 
   s1 ≈m s2"
by(fastforce simp add: mbisim_def tbisim_def)

lemma mbisimI2:
  " finite (dom (thr s2)); locks s1 = locks s2; wset s1 = wset s2; interrupts s1 = interrupts s2;
     wset_thread_ok (wset s2) (thr s2);
     t. thr s2 t = None  thr s1 t = None;
     t x2 ln. thr s2 t = (x2, ln)  x1. thr s1 t = (x1, ln)  t  (x1, shr s1)  (x2, shr s2)  (wset s2 t = None  x1 ≈w x2) 
   s1 ≈m s2"
apply(auto simp add: mbisim_def tbisim_def)
   prefer 2
   apply(rule wset_thread_okI)
   apply(case_tac "thr s2 t")
    apply(auto dest!: wset_thread_okD)[1]
   apply fastforce
  apply(erule back_subst[where P=finite])
  apply(clarsimp simp add: dom_def fun_eq_iff simp del: not_None_eq)
  defer
  apply(rename_tac t)
  apply(case_tac [!] "thr s2 t")
by fastforce+

lemma mbisim_finite1:
  "s1 ≈m s2  finite (dom (thr s1))"
by(simp add: mbisim_def)

lemma mbisim_finite2:
  "s1 ≈m s2  finite (dom (thr s2))"
by(frule mbisim_finite1)(simp add: mbisim_dom_eq)

definition mta_bisim :: "('t × ('l,'t,'x1,'m1,'w,'o) thread_action,
                       't × ('l,'t,'x2,'m2,'w,'o) thread_action) bisim"
  ("_/ ∼T _" [50, 50] 60)
where "tta1 ∼T tta2  fst tta1 = fst tta2  snd tta1 ∼m snd tta2"

lemma mta_bisim_conv [simp]: "(t, ta1) ∼T (t', ta2)  t = t'  ta1 ∼m ta2"
by(simp add: mta_bisim_def)

definition bisim_inv :: "bool" where
  "bisim_inv  (s1 ta1 s1' s2 t. t  s1  s2  t  s1 -1-ta1 s1'  (s2'. t  s1'  s2')) 
               (s2 ta2 s2' s1 t. t  s1  s2  t  s2 -2-ta2 s2'  (s1'. t  s1'  s2'))"

lemma bisim_invI:
  " s1 ta1 s1' s2 t.  t  s1  s2; t  s1 -1-ta1 s1'   s2'. t  s1'  s2';
     s2 ta2 s2' s1 t.  t  s1  s2; t  s2 -2-ta2 s2'   s1'. t  s1'  s2' 
   bisim_inv"
by(auto simp add: bisim_inv_def)

lemma bisim_invD1:
  " bisim_inv; t  s1  s2; t  s1 -1-ta1 s1'   s2'. t  s1'  s2'"
unfolding bisim_inv_def by blast

lemma bisim_invD2:
  " bisim_inv; t  s1  s2; t  s2 -2-ta2 s2'   s1'. t  s1'  s2'"
unfolding bisim_inv_def by blast

lemma thread_oks_bisim_inv:
  " t. ts1 t = None  ts2 t = None; list_all2 (nta_bisim bisim) tas1 tas2 
   thread_oks ts1 tas1  thread_oks ts2 tas2"
proof(induct tas2 arbitrary: tas1 ts1 ts2)
  case Nil thus ?case by(simp)
next
  case (Cons ta2 TAS2 tas1 TS1 TS2)
  note IH = ts1 tas1 ts2.  t. ts1 t = None  ts2 t = None; list_all2 (nta_bisim bisim) tas1 TAS2 
              thread_oks ts1 tas1  thread_oks ts2 TAS2
  note eqNone = t. TS1 t = None  TS2 t = None[rule_format]
  hence fti: "free_thread_id TS1 = free_thread_id TS2" by(auto simp add: free_thread_id_def)
  from list_all2 (nta_bisim bisim) tas1 (ta2 # TAS2)
  obtain ta1 TAS1 where "tas1 = ta1 # TAS1" "nta_bisim bisim ta1 ta2" "list_all2 (nta_bisim bisim) TAS1 TAS2"
    by(auto simp add: list_all2_Cons2)
  moreover
  { fix t
    from nta_bisim bisim ta1 ta2 have "redT_updT' TS1 ta1 t = None  redT_updT' TS2 ta2 t = None"
      by(cases ta1, auto split: if_split_asm simp add: eqNone) }
  ultimately have "thread_oks (redT_updT' TS1 ta1) TAS1  thread_oks (redT_updT' TS2 ta2) TAS2"
    by -(rule IH, auto)
  moreover from nta_bisim bisim ta1 ta2 fti have "thread_ok TS1 ta1 = thread_ok TS2 ta2" by(cases ta1, auto)
  ultimately show ?case using tas1 = ta1 # TAS1 by auto
qed

lemma redT_updT_nta_bisim_inv:
  " nta_bisim bisim ta1 ta2; ts1 T = None  ts2 T = None   redT_updT ts1 ta1 T = None  redT_updT ts2 ta2 T = None"
by(cases ta1, auto)

lemma redT_updTs_nta_bisim_inv:
  " list_all2 (nta_bisim bisim) tas1 tas2; ts1 T = None  ts2 T = None 
   redT_updTs ts1 tas1 T = None  redT_updTs ts2 tas2 T = None"
proof(induct tas1 arbitrary: tas2 ts1 ts2)
  case Nil thus ?case by(simp)
next
  case (Cons TA1 TAS1 tas2 TS1 TS2)
  note IH = tas2 ts1 ts2. list_all2 (nta_bisim bisim) TAS1 tas2; (ts1 T = None) = (ts2 T = None)
             (redT_updTs ts1 TAS1 T = None) = (redT_updTs ts2 tas2 T = None)
  from list_all2 (nta_bisim bisim) (TA1 # TAS1) tas2
  obtain TA2 TAS2 where "tas2 = TA2 # TAS2" "nta_bisim bisim TA1 TA2" "list_all2 (nta_bisim bisim) TAS1 TAS2"
    by(auto simp add: list_all2_Cons1)
  from nta_bisim bisim TA1 TA2 (TS1 T = None) = (TS2 T = None)
  have "redT_updT TS1 TA1 T = None  redT_updT TS2 TA2 T = None"
    by(rule redT_updT_nta_bisim_inv)
  with IH[OF list_all2 (nta_bisim bisim) TAS1 TAS2, of "redT_updT TS1 TA1" "redT_updT TS2 TA2"] tas2 = TA2 # TAS2
  show ?case by simp
qed

end

lemma tbisim_flip [flip_simps]:
  "FWbisimulation_base.tbisim (λt. flip (bisim t)) (flip bisim_wait) w t ts2 m2 ts1 m1 =
   FWbisimulation_base.tbisim bisim bisim_wait w t ts1 m1 ts2 m2"
unfolding FWbisimulation_base.tbisim_def flip_simps by auto

lemma mbisim_flip [flip_simps]:
  "FWbisimulation_base.mbisim (λt. flip (bisim t)) (flip bisim_wait) s2 s1 =
   FWbisimulation_base.mbisim bisim bisim_wait s1 s2"
apply(rule iffI)
 apply(frule FWbisimulation_base.mbisim_dom_eq)
 apply(frule FWbisimulation_base.mbisim_wset_thread_ok2)
 apply(fastforce simp add: FWbisimulation_base.mbisim_def flip_simps)
apply(frule FWbisimulation_base.mbisim_dom_eq)
apply(frule FWbisimulation_base.mbisim_wset_thread_ok2)
apply(fastforce simp add: FWbisimulation_base.mbisim_def flip_simps)
done

lemma mta_bisim_flip [flip_simps]:
  "FWbisimulation_base.mta_bisim (λt. flip (bisim t)) = flip (FWbisimulation_base.mta_bisim bisim)"
by(auto simp add: fun_eq_iff flip_simps FWbisimulation_base.mta_bisim_def)

lemma flip_const [simp]: "flip (λa b. c) = (λa b. c)"
by(rule flip_def)

lemma mbisim_K_flip [flip_simps]:
  "FWbisimulation_base.mbisim (λt. flip (bisim t)) (λx1 x2. c) s1 s2 = 
   FWbisimulation_base.mbisim bisim (λx1 x2. c) s2 s1"
using mbisim_flip[of bisim "λx1 x2. c" s1 s2]
unfolding flip_const . 

context FWbisimulation_base begin

lemma mbisim_actions_ok_bisim_no_join_12:
  assumes mbisim: "mbisim s1 s2"
  and "collect_cond_actions ta1c = {}"
  and "ta_bisim bisim ta1 ta2"
  and "r1.actions_ok s1 t ta1"
  shows "r2.actions_ok s2 t ta2"
using assms mbisim_thrNone_eq[OF mbisim]
by(auto simp add: ta_bisim_def mbisim_def intro: thread_oks_bisim_inv[THEN iffD1] r2.may_join_cond_action_oks)

lemma mbisim_actions_ok_bisim_no_join_21:
  " mbisim s1 s2; collect_cond_actions ta2c = {}; ta_bisim bisim ta1 ta2; r2.actions_ok s2 t ta2 
   r1.actions_ok s1 t ta1"
using FWbisimulation_base.mbisim_actions_ok_bisim_no_join_12[where bisim="λt. flip (bisim t)" and bisim_wait="flip bisim_wait"]
unfolding flip_simps .

lemma mbisim_actions_ok_bisim_no_join:
  " mbisim s1 s2; collect_cond_actions ta1c = {}; ta_bisim bisim ta1 ta2  
   r1.actions_ok s1 t ta1 = r2.actions_ok s2 t ta2"
apply(rule iffI)
 apply(erule (3) mbisim_actions_ok_bisim_no_join_12)
apply(erule mbisim_actions_ok_bisim_no_join_21[where ?ta2.0 = ta2])
  apply(simp add: ta_bisim_def)
apply assumption+
done

end

locale FWbisimulation_base_aux = FWbisimulation_base +
  r1: multithreaded final1 r1 convert_RA +
  r2: multithreaded final2 r2 convert_RA +
  constrains final1 :: "'x1  bool"
  and r1 :: "('l,'t,'x1,'m1,'w, 'o) semantics"
  and final2 :: "'x2  bool"
  and r2 :: "('l,'t,'x2,'m2,'w, 'o) semantics"
  and convert_RA :: "'l released_locks  'o list"
  and bisim :: "'t  ('x1 × 'm1, 'x2 × 'm2) bisim"
  and bisim_wait :: "('x1, 'x2) bisim"
begin

lemma FWbisimulation_base_aux_flip:
  "FWbisimulation_base_aux final2 r2 final1 r1"
by(unfold_locales)

end

lemma FWbisimulation_base_aux_flip_simps [flip_simps]:
  "FWbisimulation_base_aux final2 r2 final1 r1 = FWbisimulation_base_aux final1 r1 final2 r2"
by(blast intro: FWbisimulation_base_aux.FWbisimulation_base_aux_flip)

sublocale FWbisimulation_base_aux < mthr:
  bisimulation_final_base 
    r1.redT
    r2.redT
    mbisim
    mta_bisim
    r1.mfinal
    r2.mfinal
.

declare split_paired_Ex [simp del]

subsection ‹Lifting for delay bisimulations›

locale FWdelay_bisimulation_base =
  FWbisimulation_base _ _ _ r2 convert_RA bisim bisim_wait +
  r1: τmultithreaded final1 r1 convert_RA τmove1 +
  r2: τmultithreaded final2 r2 convert_RA τmove2 
  for r2 :: "('l,'t,'x2,'m2,'w,'o) semantics" ("_  _ -2-_ _" [50,0,0,50] 80)
  and convert_RA :: "'l released_locks  'o list"
  and bisim :: "'t  ('x1 × 'm1, 'x2 × 'm2) bisim" ("_  _/  _" [50, 50, 50] 60)
  and bisim_wait :: "('x1, 'x2) bisim" ("_/ ≈w _" [50, 50] 60)
  and τmove1 :: "('l,'t,'x1,'m1,'w,'o) τmoves"
  and τmove2 :: "('l,'t,'x2,'m2,'w,'o) τmoves"
begin

abbreviation τmred1 :: "('l,'t,'x1,'m1,'w) state  ('l,'t,'x1,'m1,'w) state  bool"
where "τmred1  r1.τmredT"

abbreviation τmred2 :: "('l,'t,'x2,'m2,'w) state  ('l,'t,'x2,'m2,'w) state  bool"
where "τmred2  r2.τmredT"

abbreviation mτmove1 :: "(('l,'t,'x1,'m1,'w) state, 't × ('l,'t,'x1,'m1,'w,'o) thread_action) trsys"
where "mτmove1  r1.mτmove"

abbreviation mτmove2 :: "(('l,'t,'x2,'m2,'w) state, 't × ('l,'t,'x2,'m2,'w,'o) thread_action) trsys"
where "mτmove2  r2.mτmove"

abbreviation τmRed1 :: "('l,'t,'x1,'m1,'w) state  ('l,'t,'x1,'m1,'w) state  bool"
where "τmRed1  τmred1^**"

abbreviation τmRed2 :: "('l,'t,'x2,'m2,'w) state  ('l,'t,'x2,'m2,'w) state  bool"
where "τmRed2  τmred2^**"

abbreviation τmtRed1 :: "('l,'t,'x1,'m1,'w) state  ('l,'t,'x1,'m1,'w) state  bool"
where "τmtRed1  τmred1^++"

abbreviation τmtRed2 :: "('l,'t,'x2,'m2,'w) state  ('l,'t,'x2,'m2,'w) state  bool"
where "τmtRed2  τmred2^++"

lemma bisim_inv_τs1_inv:
  assumes inv: "bisim_inv"
  and bisim: "t  s1  s2"
  and red: "r1.silent_moves t s1 s1'"
  obtains s2' where "t  s1'  s2'"
proof(atomize_elim)
  from red bisim show "s2'. t  s1'  s2'"
    by(induct rule: rtranclp_induct)(fastforce elim: bisim_invD1[OF inv])+
qed

lemma bisim_inv_τs2_inv:
  assumes inv: "bisim_inv"
  and bisim: "t  s1  s2"
  and red: "r2.silent_moves t s2 s2'"
  obtains s1' where "t  s1'  s2'"
proof(atomize_elim)
  from red bisim show "s1'. t  s1'  s2'"
    by(induct rule: rtranclp_induct)(fastforce elim: bisim_invD2[OF inv])+
qed

primrec activate_cond_action1 :: "('l,'t,'x1,'m1,'w) state  ('l,'t,'x2,'m2,'w) state  
                                 't conditional_action  ('l,'t,'x1,'m1,'w) state"
where
  "activate_cond_action1 s1 s2 (Join t) =
   (case thr s1 t of None  s1
            | (x1, ln1)  (case thr s2 t of None  s1
                                     | (x2, ln2)  
  if final2 x2  ln2 = no_wait_locks
  then redT_upd_ε s1 t
                  (SOME x1'. r1.silent_moves t (x1, shr s1) (x1', shr s1)  final1 x1'  
                             t  (x1', shr s1)  (x2, shr s2))
                  (shr s1)
  else s1))"
| "activate_cond_action1 s1 s2 Yield = s1"

primrec activate_cond_actions1 :: "('l,'t,'x1,'m1,'w) state  ('l,'t,'x2,'m2,'w) state
                                   ('t conditional_action) list  ('l,'t,'x1,'m1,'w) state"
where
  "activate_cond_actions1 s1 s2 [] = s1"
| "activate_cond_actions1 s1 s2 (ct # cts) = activate_cond_actions1 (activate_cond_action1 s1 s2 ct) s2 cts"

primrec activate_cond_action2 :: "('l,'t,'x1,'m1,'w) state  ('l,'t,'x2,'m2,'w) state  
                                 't conditional_action  ('l,'t,'x2,'m2,'w) state"
where
 "activate_cond_action2 s1 s2 (Join t) =
   (case thr s2 t of None  s2
            | (x2, ln2)  (case thr s1 t of None  s2
                                     | (x1, ln1)  
  if final1 x1  ln1 = no_wait_locks
  then redT_upd_ε s2 t
                  (SOME x2'. r2.silent_moves t (x2, shr s2) (x2', shr s2)  final2 x2' 
                             t  (x1, shr s1)  (x2', shr s2))
                  (shr s2)
  else s2))"
| "activate_cond_action2 s1 s2 Yield = s2"

primrec activate_cond_actions2 :: "('l,'t,'x1,'m1,'w) state  ('l,'t,'x2,'m2,'w) state 
                                  ('t conditional_action) list  ('l,'t,'x2,'m2,'w) state"
where
  "activate_cond_actions2 s1 s2 [] = s2"
| "activate_cond_actions2 s1 s2 (ct # cts) = activate_cond_actions2 s1 (activate_cond_action2 s1 s2 ct) cts"

end

lemma activate_cond_action1_flip [flip_simps]:
  "FWdelay_bisimulation_base.activate_cond_action1 final2 r2 final1 (λt. flip (bisim t)) τmove2 s2 s1 =
   FWdelay_bisimulation_base.activate_cond_action2 final1 final2 r2 bisim τmove2 s1 s2"
apply(rule ext)
apply(case_tac x)
apply(simp_all only: FWdelay_bisimulation_base.activate_cond_action1.simps 
                     FWdelay_bisimulation_base.activate_cond_action2.simps flip_simps)
done

lemma activate_cond_actions1_flip [flip_simps]:
  "FWdelay_bisimulation_base.activate_cond_actions1 final2 r2 final1 (λt. flip (bisim t)) τmove2 s2 s1 =
   FWdelay_bisimulation_base.activate_cond_actions2 final1 final2 r2 bisim τmove2 s1 s2"
  (is "?lhs = ?rhs")
proof(rule ext)
  fix xs
  show "?lhs xs = ?rhs xs"
    by(induct xs arbitrary: s2)
      (simp_all only: FWdelay_bisimulation_base.activate_cond_actions1.simps
                      FWdelay_bisimulation_base.activate_cond_actions2.simps flip_simps)
qed

lemma activate_cond_action2_flip [flip_simps]:
  "FWdelay_bisimulation_base.activate_cond_action2 final2 final1 r1 (λt. flip (bisim t)) τmove1 s2 s1 =
   FWdelay_bisimulation_base.activate_cond_action1 final1 r1 final2 bisim τmove1 s1 s2"
apply(rule ext)
apply(case_tac x)
apply(simp_all only: FWdelay_bisimulation_base.activate_cond_action1.simps 
                     FWdelay_bisimulation_base.activate_cond_action2.simps flip_simps)
done

lemma activate_cond_actions2_flip [flip_simps]:
  "FWdelay_bisimulation_base.activate_cond_actions2 final2 final1 r1 (λt. flip (bisim t)) τmove1 s2 s1 =
   FWdelay_bisimulation_base.activate_cond_actions1 final1 r1 final2 bisim τmove1 s1 s2"
  (is "?lhs = ?rhs")
proof(rule ext)
  fix xs
  show "?lhs xs = ?rhs xs"
    by(induct xs arbitrary: s1)
      (simp_all only: FWdelay_bisimulation_base.activate_cond_actions1.simps 
                      FWdelay_bisimulation_base.activate_cond_actions2.simps flip_simps)
qed
  
context FWdelay_bisimulation_base begin

lemma shr_activate_cond_action1 [simp]: "shr (activate_cond_action1 s1 s2 ct) = shr s1"
by(cases ct) simp_all

lemma shr_activate_cond_actions1 [simp]: "shr (activate_cond_actions1 s1 s2 cts) = shr s1"
by(induct cts arbitrary: s1) auto

lemma shr_activate_cond_action2 [simp]: "shr (activate_cond_action2 s1 s2 ct) = shr s2"
by(cases ct) simp_all

lemma shr_activate_cond_actions2 [simp]: "shr (activate_cond_actions2 s1 s2 cts) = shr s2"
by(induct cts arbitrary: s2) auto

lemma locks_activate_cond_action1 [simp]: "locks (activate_cond_action1 s1 s2 ct) = locks s1"
by(cases ct) simp_all

lemma locks_activate_cond_actions1 [simp]: "locks (activate_cond_actions1 s1 s2 cts) = locks s1"
by(induct cts arbitrary: s1) auto

lemma locks_activate_cond_action2 [simp]: "locks (activate_cond_action2 s1 s2 ct) = locks s2"
by(cases ct) simp_all

lemma locks_activate_cond_actions2 [simp]: "locks (activate_cond_actions2 s1 s2 cts) = locks s2"
by(induct cts arbitrary: s2) auto

lemma wset_activate_cond_action1 [simp]: "wset (activate_cond_action1 s1 s2 ct) = wset s1"
by(cases ct) simp_all

lemma wset_activate_cond_actions1 [simp]: "wset (activate_cond_actions1 s1 s2 cts) = wset s1"
by(induct cts arbitrary: s1) auto

lemma wset_activate_cond_action2 [simp]: "wset (activate_cond_action2 s1 s2 ct) = wset s2"
by(cases ct) simp_all

lemma wset_activate_cond_actions2 [simp]: "wset (activate_cond_actions2 s1 s2 cts) = wset s2"
by(induct cts arbitrary: s2) auto

lemma interrupts_activate_cond_action1 [simp]: "interrupts (activate_cond_action1 s1 s2 ct) = interrupts s1"
by(cases ct) simp_all

lemma interrupts_activate_cond_actions1 [simp]: "interrupts (activate_cond_actions1 s1 s2 cts) = interrupts s1"
by(induct cts arbitrary: s1) auto

lemma interrupts_activate_cond_action2 [simp]: "interrupts (activate_cond_action2 s1 s2 ct) = interrupts s2"
by(cases ct) simp_all

lemma interrupts_activate_cond_actions2 [simp]: "interrupts (activate_cond_actions2 s1 s2 cts) = interrupts s2"
by(induct cts arbitrary: s2) auto

end

locale FWdelay_bisimulation_lift_aux =
  FWdelay_bisimulation_base _ _ _ _ _ _ _ τmove1 τmove2 +
  r1: τmultithreaded_wf final1 r1 convert_RA τmove1 +
  r2: τmultithreaded_wf final2 r2 convert_RA τmove2 
  for τmove1 :: "('l,'t,'x1,'m1,'w,'o) τmoves"
  and τmove2 :: "('l,'t,'x2,'m2,'w,'o) τmoves"
begin

lemma FWdelay_bisimulation_lift_aux_flip:
  "FWdelay_bisimulation_lift_aux final2 r2 final1 r1 τmove2 τmove1"
by unfold_locales

end

lemma FWdelay_bisimulation_lift_aux_flip_simps [flip_simps]:
  "FWdelay_bisimulation_lift_aux final2 r2 final1 r1 τmove2 τmove1 =
   FWdelay_bisimulation_lift_aux final1 r1 final2 r2 τmove1 τmove2"
by(auto dest: FWdelay_bisimulation_lift_aux.FWdelay_bisimulation_lift_aux_flip simp only: flip_flip)

context FWdelay_bisimulation_lift_aux begin

lemma cond_actions_ok_τmred1_inv:
  assumes red: "τmred1 s1 s1'"
  and ct: "r1.cond_action_ok s1 t ct"
  shows "r1.cond_action_ok s1' t ct"
using ct
proof(cases ct)
  case (Join t')
  show ?thesis using red ct
  proof(cases "thr s1 t'")
    case None with red ct Join show ?thesis
      by(fastforce elim!: r1.mthr.silent_move.cases r1.redT.cases r1.mτmove.cases rtrancl3p_cases 
                  dest: r1.silent_tl split: if_split_asm)
  next
    case (Some a) with red ct Join show ?thesis
      by(fastforce elim!: r1.mthr.silent_move.cases r1.redT.cases r1.mτmove.cases rtrancl3p_cases
                  dest: r1.silent_tl r1.final_no_red split: if_split_asm simp add: redT_updWs_def)
  qed
next
  case Yield thus ?thesis by simp
qed

lemma cond_actions_ok_τmred2_inv:
  " τmred2 s2 s2'; r2.cond_action_ok s2 t ct   r2.cond_action_ok s2' t ct"
using FWdelay_bisimulation_lift_aux.cond_actions_ok_τmred1_inv[OF FWdelay_bisimulation_lift_aux_flip] .

lemma cond_actions_ok_τmRed1_inv:
  " τmRed1 s1 s1'; r1.cond_action_ok s1 t ct   r1.cond_action_ok s1' t ct"
by(induct rule: rtranclp_induct)(blast intro: cond_actions_ok_τmred1_inv)+

lemma cond_actions_ok_τmRed2_inv:
  " τmRed2 s2 s2'; r2.cond_action_ok s2 t ct   r2.cond_action_ok s2' t ct"
by(rule FWdelay_bisimulation_lift_aux.cond_actions_ok_τmRed1_inv[OF FWdelay_bisimulation_lift_aux_flip])

end

locale FWdelay_bisimulation_lift =
  FWdelay_bisimulation_lift_aux +
  constrains final1 :: "'x1  bool"
  and r1 :: "('l, 't, 'x1, 'm1, 'w, 'o) semantics"
  and final2 :: "'x2  bool"
  and r2 :: "('l, 't, 'x2, 'm2, 'w, 'o) semantics"
  and convert_RA :: "'l released_locks  'o list"
  and bisim :: "'t  ('x1 × 'm1, 'x2 × 'm2) bisim"
  and bisim_wait :: "('x1, 'x2) bisim"
  and τmove1 :: "('l, 't, 'x1, 'm1, 'w, 'o) τmoves" 
  and τmove2 :: "('l, 't, 'x2, 'm2, 'w, 'o) τmoves"
  assumes τinv_locale: "τinv (r1 t) (r2 t) (bisim t) (ta_bisim bisim) τmove1 τmove2"

sublocale FWdelay_bisimulation_lift < τinv "r1 t" "r2 t" "bisim t" "ta_bisim bisim" τmove1 τmove2 for t
by(rule τinv_locale)

context FWdelay_bisimulation_lift begin

lemma FWdelay_bisimulation_lift_flip:
  "FWdelay_bisimulation_lift final2 r2 final1 r1 (λt. flip (bisim t)) τmove2 τmove1"
apply(rule FWdelay_bisimulation_lift.intro)
 apply(rule FWdelay_bisimulation_lift_aux_flip)
apply(rule FWdelay_bisimulation_lift_axioms.intro)
apply(unfold flip_simps)
apply(unfold_locales)
done

end

lemma FWdelay_bisimulation_lift_flip_simps [flip_simps]:
  "FWdelay_bisimulation_lift final2 r2 final1 r1 (λt. flip (bisim t)) τmove2 τmove1 =
   FWdelay_bisimulation_lift final1 r1 final2 r2 bisim τmove1 τmove2"
by(auto dest: FWdelay_bisimulation_lift.FWdelay_bisimulation_lift_flip simp only: flip_flip)

context FWdelay_bisimulation_lift begin

lemma τinv_lift: "τinv r1.redT r2.redT mbisim mta_bisim mτmove1 mτmove2"
proof
  fix s1 s2 tl1 s1' tl2 s2'
  assume "s1 ≈m s2" "s1' ≈m s2'" "tl1 ∼T tl2" "r1.redT s1 tl1 s1'" "r2.redT s2 tl2 s2'"
  moreover obtain t ta1 where tl1: "tl1 = (t, ta1)" by(cases tl1)
  moreover obtain t' ta2 where tl2: "tl2 = (t', ta2)" by(cases tl2)
  moreover obtain ls1 ts1 ws1 m1 is1 where s1: "s1 = (ls1, (ts1, m1), ws1, is1)" by(cases s1) fastforce
  moreover obtain ls2 ts2 ws2 m2 is2 where s2: "s2 = (ls2, (ts2, m2), ws2, is2)" by(cases s2) fastforce
  moreover obtain ls1' ts1' ws1' m1' is1' where s1': "s1' = (ls1', (ts1', m1'), ws1', is1')" by(cases s1') fastforce
  moreover obtain ls2' ts2' ws2' m2' is2' where s2': "s2' = (ls2', (ts2', m2'), ws2', is2')" by(cases s2') fastforce
  ultimately have mbisim: "(ls1, (ts1, m1), ws1, is1) ≈m (ls2, (ts2, m2), ws2, is2)"
    and mbisim': "(ls1', (ts1', m1'), ws1', is1') ≈m (ls2', (ts2', m2'), ws2', is2')"
    and mred1: "(ls1, (ts1, m1), ws1, is1) -1-tta1 (ls1', (ts1', m1'), ws1', is1')"
    and mred2: "(ls2, (ts2, m2), ws2, is2) -2-tta2 (ls2', (ts2', m2'), ws2', is2')"
    and tasim: "ta1 ∼m ta2" and tt': "t' = t" by simp_all
  from mbisim have ls: "ls1 = ls2" and ws: "ws1 = ws2" and "is": "is1 = is2"
    and tbisim: "t. tbisim (ws2 t = None) t (ts1 t) m1 (ts2 t) m2" by(simp_all add: mbisim_def)
  from mbisim' have ls': "ls1' = ls2'" and ws': "ws1' = ws2'" and is': "is1' = is2'"
    and tbisim': "t. tbisim (ws2' t = None) t (ts1' t) m1' (ts2' t) m2'" by(simp_all add: mbisim_def)
  from mred1 r1.redT_thread_not_disappear[OF mred1]
  obtain x1 ln1 x1' ln1' where tst1: "ts1 t = (x1, ln1)"
    and tst1': "ts1' t = (x1', ln1')"
    by(fastforce elim!: r1.redT.cases)
  from mred2 r2.redT_thread_not_disappear[OF mred2]
  obtain x2 ln2 x2' ln2' where tst2: "ts2 t = (x2, ln2)"
    and tst2': "ts2' t = (x2', ln2')" by(fastforce elim!: r2.redT.cases)
  from tbisim[of t] tst1 tst2 ws have bisim: "t  (x1, m1)  (x2, m2)"
    and ln: "ln1 = ln2" by(auto simp add: tbisim_def)
  from tbisim'[of t] tst1' tst2' have bisim': "t  (x1', m1')  (x2', m2')"
    and ln': "ln1' = ln2'" by(auto simp add: tbisim_def)
  show "mτmove1 s1 tl1 s1' = mτmove2 s2 tl2 s2'" unfolding s1 s2 s1' s2' tt' tl1 tl2
  proof -
    show "mτmove1 (ls1, (ts1, m1), ws1, is1) (t, ta1) (ls1', (ts1', m1'), ws1', is1') =
          mτmove2 (ls2, (ts2, m2), ws2, is2) (t, ta2) (ls2', (ts2', m2'), ws2', is2')"
      (is "?lhs = ?rhs")
    proof
      assume : ?lhs
      with tst1 tst1' obtain τ1: "τmove1 (x1, m1) ta1 (x1', m1')" 
        and ln1: "ln1 = no_wait_locks" by(fastforce elim!: r1.mτmove.cases)
      from τ1 have "ta1 = ε" by(rule r1.silent_tl)
      with mred1 τ1 tst1 tst1' ln1 have red1: "t  (x1, m1) -1-ta1 (x1', m1')"
        by(auto elim!: r1.redT.cases rtrancl3p_cases)
      from tasim ta1 = ε have [simp]: "ta2 = ε" by(simp)
      with mred2 ln1 ln tst2 tst2' have red2: "t  (x2, m2) -2-ε (x2', m2')"
        by(fastforce elim!: r2.redT.cases rtrancl3p_cases)
      from τ1 τinv[OF bisim red1 red2] bisim' tasim
      have τ2: "τmove2 (x2, m2) ε (x2', m2')" by simp
      with tst2 tst2' ln ln1 show ?rhs by -(rule r2.mτmove.intros, auto)
    next
      assume : ?rhs
      with tst2 tst2' obtain τ2: "τmove2 (x2, m2) ta2 (x2', m2')" 
        and ln2: "ln2 = no_wait_locks" by(fastforce elim!: r2.mτmove.cases)
      from τ2 have "ta2 = ε" by(rule r2.silent_tl)
      with mred2 τ2 tst2 tst2' ln2 have red2: "t  (x2, m2) -2-ta2 (x2', m2')"
        by(auto elim!: r2.redT.cases rtrancl3p_cases)
      from tasim ta2 = ε have [simp]: "ta1 = ε" by simp
      with mred1 ln2 ln tst1 tst1' have red1: "t  (x1, m1) -1-ε (x1', m1')"
        by(fastforce elim!: r1.redT.cases rtrancl3p_cases)
      from τ2 τinv[OF bisim red1 red2] bisim' tasim
      have τ1: "τmove1 (x1, m1) ε (x1', m1')" by auto
      with tst1 tst1' ln ln2 show ?lhs unfolding ta1 = ε
        by-(rule r1.mτmove.intros, auto)
    qed
  qed
qed

end

sublocale FWdelay_bisimulation_lift < mthr: τinv r1.redT r2.redT mbisim mta_bisim mτmove1 mτmove2
by(rule τinv_lift)

locale FWdelay_bisimulation_final_base =
  FWdelay_bisimulation_lift_aux +
  constrains final1 :: "'x1  bool"
  and r1 :: "('l,'t,'x1,'m1,'w, 'o) semantics"
  and final2 :: "'x2  bool"
  and r2 :: "('l,'t,'x2,'m2,'w, 'o) semantics"
  and convert_RA :: "'l released_locks  'o list"
  and bisim :: "'t  ('x1 × 'm1, 'x2 × 'm2) bisim"
  and bisim_wait :: "('x1, 'x2) bisim"
  and τmove1 :: "('l,'t,'x1,'m1,'w, 'o) τmoves"
  and τmove2 :: "('l,'t,'x2,'m2,'w, 'o) τmoves"
  assumes delay_bisim_locale:
  "delay_bisimulation_final_base (r1 t) (r2 t) (bisim t) τmove1 τmove2 (λ(x1, m). final1 x1) (λ(x2, m). final2 x2)"

sublocale FWdelay_bisimulation_final_base <
  delay_bisimulation_final_base "r1 t" "r2 t" "bisim t" "ta_bisim bisim" τmove1 τmove2
                                "λ(x1, m). final1 x1" "λ(x2, m). final2 x2" 
  for t
by(rule delay_bisim_locale)

context FWdelay_bisimulation_final_base begin

lemma FWdelay_bisimulation_final_base_flip:
  "FWdelay_bisimulation_final_base final2 r2 final1 r1 (λt. flip (bisim t)) τmove2 τmove1"
apply(rule FWdelay_bisimulation_final_base.intro)
 apply(rule FWdelay_bisimulation_lift_aux_flip)
apply(rule FWdelay_bisimulation_final_base_axioms.intro)
apply(rule delay_bisimulation_final_base_flip)
done

end

lemma FWdelay_bisimulation_final_base_flip_simps [flip_simps]:
  "FWdelay_bisimulation_final_base final2 r2 final1 r1 (λt. flip (bisim t)) τmove2 τmove1 =
   FWdelay_bisimulation_final_base final1 r1 final2 r2 bisim τmove1 τmove2"
by(auto dest: FWdelay_bisimulation_final_base.FWdelay_bisimulation_final_base_flip simp only: flip_flip)

context FWdelay_bisimulation_final_base begin

lemma cond_actions_ok_bisim_ex_τ1_inv:
  fixes ls ts1 m1 ws "is" ts2 m2 ct
  defines "s1'  activate_cond_action1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) ct"
  assumes mbisim: "t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2"
  and ts1t: "ts1 t = Some xln"
  and ts2t: "ts2 t = Some xln'"
  and ct: "r2.cond_action_ok (ls, (ts2, m2), ws, is) t ct"
  shows "τmRed1 (ls, (ts1, m1), ws, is) s1'"
  and "t'. t'  t  tbisim (ws t' = None) t' (thr s1' t') m1 (ts2 t') m2"
  and "r1.cond_action_ok s1' t ct"
  and "thr s1' t = Some xln"
proof -
  have "τmRed1 (ls, (ts1, m1), ws, is) s1' 
        (t'. t'  t  tbisim (ws t' = None) t' (thr s1' t') m1 (ts2 t') m2) 
        r1.cond_action_ok s1' t ct  thr s1' t = xln"
    using ct
  proof(cases ct)
    case (Join t')
    show ?thesis 
    proof(cases "ts1 t'")
      case None
      with mbisim ts1t have "t  t'" by auto
      moreover from None Join have "s1' = (ls, (ts1, m1), ws, is)" by(simp add: s1'_def)
      ultimately show ?thesis using mbisim Join ct None ts1t by(simp add: tbisim_def)
    next
      case (Some xln)
      moreover obtain x1 ln where "xln = (x1, ln)" by(cases xln)
      ultimately have ts1t': "ts1 t' = (x1, ln)" by simp
      from Join ct Some ts2t have tt': "t'  t" by auto
      from mbisim[OF tt'] ts1t' obtain x2 where ts2t': "ts2 t' = (x2, ln)" 
        and bisim: "t'  (x1, m1)  (x2, m2)" by(auto simp add: tbisim_def)
      from ct Join ts2t' have final2: "final2 x2" and ln: "ln = no_wait_locks"
      and wst': "ws t' = None" by simp_all
      let ?x1' = "SOME x. r1.silent_moves t' (x1, m1) (x, m1)  final1 x  t'  (x, m1)  (x2, m2)"
      { from final2_simulation[OF bisim] final2 obtain x1' m1' 
          where "r1.silent_moves t' (x1, m1) (x1', m1')" and "t'  (x1', m1')  (x2, m2)"
          and "final1 x1'" by auto
        moreover hence "m1' = m1" using bisim by(auto dest: r1.red_rtrancl_τ_heapD_inv)
        ultimately have "x. r1.silent_moves t' (x1, m1) (x, m1)  final1 x  t'  (x, m1)  (x2, m2)"
          by blast }
      from someI_ex[OF this] have red1: "r1.silent_moves t' (x1, m1) (?x1', m1)"
        and final1: "final1 ?x1'" and bisim': "t'  (?x1', m1)  (x2, m2)" by blast+
      let ?S1' = "redT_upd_ε (ls, (ts1, m1), ws, is) t' ?x1' m1"
      from r1.silent_moves_into_RedT_τ_inv[where ?s="(ls, (ts1, m1), ws, is)" and t=t', simplified, OF red1]
        bisim ts1t' ln wst'
      have Red1: "τmRed1 (ls, (ts1, m1), ws, is) ?S1'" by auto
      moreover from Join ln ts1t' final1 wst' tt'
      have ct': "r1.cond_action_ok ?S1' t ct" by(auto intro: finfun_ext)
      { fix t''
        assume "t  t''"
        with Join mbisim[OF this[symmetric]] bisim' ts1t' ts2t' wst' s1'_def
        have "tbisim (ws t'' = None) t'' (thr s1' t'') m1 (ts2 t'') m2"
          by(auto simp add: tbisim_def redT_updLns_def o_def finfun_Diag_const2) }
      moreover from Join ts1t' ts2t' final2 ln have "s1' = ?S1'" by(simp add: s1'_def)
      ultimately show ?thesis using Red1 ct' ts1t' tt' ts1t by(auto)
    qed
  next
    case Yield thus ?thesis using mbisim ts1t by(simp add: s1'_def)
  qed
  thus "τmRed1 (ls, (ts1, m1), ws, is) s1'"
    and "t'. t'  t  tbisim (ws t' = None) t' (thr s1' t') m1 (ts2 t') m2"
    and "r1.cond_action_ok s1' t ct"
    and "thr s1' t = xln" by blast+
qed

lemma cond_actions_oks_bisim_ex_τ1_inv:
  fixes ls ts1 m1 ws "is" ts2 m2 cts
  defines "s1'  activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) cts"
  assumes tbisim: "t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2"
  and ts1t: "ts1 t = Some xln"
  and ts2t: "ts2 t = Some xln'"
  and ct: "r2.cond_action_oks (ls, (ts2, m2), ws, is) t cts"
  shows "τmRed1 (ls, (ts1, m1), ws, is) s1'" 
  and "t'. t'  t  tbisim (ws t' = None) t' (thr s1' t') m1 (ts2 t') m2"
  and "r1.cond_action_oks s1' t cts"
  and "thr s1' t = Some xln"
using tbisim ts1t ct unfolding s1'_def
proof(induct cts arbitrary: ts1)
  case (Cons ct cts)
  note IH1 = ts1. t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2; ts1 t = xln;
                    r2.cond_action_oks (ls, (ts2, m2), ws, is) t cts
               τmred1** (ls, (ts1, m1), ws, is) (activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) cts)
  note IH2 = t' ts1. t'  t; t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2; ts1 t = xln;
                        r2.cond_action_oks (ls, (ts2, m2), ws, is) t cts
            tbisim (ws t' = None) t' (thr (activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) cts) t') m1 (ts2 t') m2
  note IH3 = ts1. t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2; ts1 t = xln;
                     r2.cond_action_oks (ls, (ts2, m2), ws, is) t cts
               r1.cond_action_oks (activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) cts) t cts
  note IH4 = ts1. t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2; ts1 t = xln;
                     r2.cond_action_oks (ls, (ts2, m2), ws, is) t cts
               thr (activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) cts) t = xln
  { fix ts1
    assume tbisim: "t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2"
      and ts1t: "ts1 t = xln"
      and ct: "r2.cond_action_oks (ls, (ts2, m2), ws, is) t (ct # cts)"
    from ct have 1: "r2.cond_action_ok (ls, (ts2, m2), ws, is) t ct"
      and 2: "r2.cond_action_oks (ls, (ts2, m2), ws, is) t cts" by auto
    let ?s1' = "activate_cond_action1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) ct"
    from cond_actions_ok_bisim_ex_τ1_inv[OF tbisim, OF _ ts1t ts2t 1]
    have tbisim': "t'. t'  t  tbisim (ws t' = None) t' (thr ?s1' t') m1 (ts2 t') m2"
      and red: "τmRed1 (ls, (ts1, m1), ws, is) ?s1'" and ct': "r1.cond_action_ok ?s1' t ct" 
      and ts1't: "thr ?s1' t = xln" by blast+
    let ?s1'' = "activate_cond_actions1 ?s1' (ls, (ts2, m2), ws, is) cts"
    have "locks ?s1' = ls" "shr ?s1' = m1" "wset ?s1' = ws" "interrupts ?s1' = is" by simp_all
    hence s1': "(ls, (thr ?s1', m1), ws, is) = ?s1'" by(cases "?s1'") auto
    from IH1[OF tbisim', OF _ ts1't 2] s1' have red': "τmRed1 ?s1' ?s1''" by simp
    with red show "τmRed1 (ls, (ts1, m1), ws, is) (activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) (ct # cts))"
      by auto
    { fix t'
      assume t't: "t'  t"
      from IH2[OF t't tbisim', OF _ ts1't 2] s1'
      show "tbisim (ws t' = None) t' (thr (activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) (ct # cts)) t') m1 (ts2 t') m2"
        by auto }
    from red' ct' have "r1.cond_action_ok ?s1'' t ct" by(rule cond_actions_ok_τmRed1_inv)
    with IH3[OF tbisim', OF _ ts1't 2] s1'
    show "r1.cond_action_oks (activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) (ct # cts)) t (ct # cts)"
      by auto
    from ts1't IH4[OF tbisim', OF _ ts1't 2] s1'
    show "thr (activate_cond_actions1 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) (ct # cts)) t = xln" by auto }
qed(auto)

lemma cond_actions_ok_bisim_ex_τ2_inv:
  fixes ls ts1 m1 "is" ws ts2 m2 ct
  defines "s2'  activate_cond_action2 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) ct"
  assumes mbisim: "t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2"
  and ts1t: "ts1 t = Some xln"
  and ts2t: "ts2 t = Some xln'"
  and ct: "r1.cond_action_ok (ls, (ts1, m1), ws, is) t ct"
  shows "τmRed2 (ls, (ts2, m2), ws, is) s2'"
  and "t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (thr s2' t') m2"
  and "r2.cond_action_ok s2' t ct"
  and "thr s2' t = Some xln'"
unfolding s2'_def
by(blast intro: FWdelay_bisimulation_final_base.cond_actions_ok_bisim_ex_τ1_inv[OF FWdelay_bisimulation_final_base_flip, where bisim_wait = "flip bisim_wait", unfolded flip_simps, OF mbisim _ _ ct, OF _ ts2t ts1t])+

lemma cond_actions_oks_bisim_ex_τ2_inv:
  fixes ls ts1 m1 ws "is" ts2 m2 cts
  defines "s2'  activate_cond_actions2 (ls, (ts1, m1), ws, is) (ls, (ts2, m2), ws, is) cts"
  assumes tbisim: "t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (ts2 t') m2"
  and ts1t: "ts1 t = Some xln"
  and ts2t: "ts2 t = Some xln'"
  and ct: "r1.cond_action_oks (ls, (ts1, m1), ws, is) t cts"
  shows "τmRed2 (ls, (ts2, m2), ws, is) s2'"
  and "t'. t'  t  tbisim (ws t' = None) t' (ts1 t') m1 (thr s2' t') m2"
  and "r2.cond_action_oks s2' t cts"
  and "thr s2' t = Some xln'"
unfolding s2'_def
by(blast intro: FWdelay_bisimulation_final_base.cond_actions_oks_bisim_ex_τ1_inv[OF FWdelay_bisimulation_final_base_flip, where bisim_wait = "flip bisim_wait", unfolded flip_simps, OF tbisim _ _ ct, OF _ ts2t ts1t])+

lemma mfinal1_inv_simulation:
  assumes "s1 ≈m s2" 
  shows "s2'. r2.mthr.silent_moves s2 s2'  s1 ≈m s2'  r1.final_threads s1  r2.final_threads s2'  shr s2' = shr s2"
proof -
  from s1 ≈m s2 have "finite (dom (thr s1))" by(auto dest: mbisim_finite1)
  moreover have "r1.final_threads s1  dom (thr s1)" by(auto simp add: r1.final_thread_def)
  ultimately have "finite (r1.final_threads s1)" by(blast intro: finite_subset)
  thus ?thesis using s1 ≈m s2
  proof(induct A"r1.final_threads s1" arbitrary: s1 s2 rule: finite_induct)
    case empty
    from {} = r1.final_threads s1[symmetric] have "t. ¬ r1.final_thread s1 t" by(auto)
    with s1 ≈m s2 show ?case by blast
  next
    case (insert t A)
    define s1' where "s1' = (locks s1, ((thr s1)(t := None), shr s1), wset s1, interrupts s1)"
    define s2' where "s2' = (locks s2, ((thr s2)(t := None), shr s2), wset s2, interrupts s2)"
    from t  A insert t A = r1.final_threads s1 have "A = r1.final_threads s1'"
      unfolding s1'_def by(auto simp add: r1.final_thread_def r1.final_threads_def)
    moreover from insert t A = r1.final_threads s1 have "r1.final_thread s1 t" by auto
    hence "wset s1 t = None" by(auto simp add: r1.final_thread_def)
    with s1 ≈m s2 have "s1' ≈m s2'" unfolding s1'_def s2'_def
      by(auto simp add: mbisim_def intro: tbisim_NoneI intro!: wset_thread_okI dest: wset_thread_okD split: if_split_asm)
    ultimately have "s2''. r2.mthr.silent_moves s2' s2''  s1' ≈m s2''  r1.final_threads s1'  r2.final_threads s2''  shr s2'' = shr s2'" by(rule insert)
    then obtain s2'' where reds: "r2.mthr.silent_moves s2' s2''" 
      and "s1' ≈m s2''" and fin: "t. r1.final_thread s1' t  r2.final_thread s2'' t" and "shr s2'' = shr s2'" by blast
    have "thr s2' t = None" unfolding s2'_def by simp
    with r2.mthr.silent_moves s2' s2''
    have "r2.mthr.silent_moves (locks s2', ((thr s2')(t  the (thr s2 t)), shr s2'), wset s2', interrupts s2')
      (locks s2'', ((thr s2'')(t  the (thr s2 t)), shr s2''), wset s2'', interrupts s2'')"
      by(rule r2.τmRedT_add_thread_inv)
    also let ?s2'' = "(locks s2, ((thr s2'')(t  the (thr s2 t)), shr s2), wset s2, interrupts s2)"
    from shr s2'' = shr s2' s1' ≈m s2'' s1 ≈m s2
    have "(locks s2'', ((thr s2'')(t  the (thr s2 t)), shr s2''), wset s2'', interrupts s2'') = ?s2''"
      unfolding s2'_def s1'_def by(simp add: mbisim_def)
    also (back_subst) from s1 ≈m s2 have "dom (thr s1) = dom (thr s2)" by(rule mbisim_dom_eq)
    with r1.final_thread s1 t have "t  dom (thr s2)" by(auto simp add: r1.final_thread_def)
    then obtain x2 ln where tst2: "thr s2 t = (x2, ln)" by auto
    hence "(locks s2', ((thr s2')(t  the (thr s2 t)), shr s2'), wset s2', interrupts s2') = s2"
      unfolding s2'_def by(cases s2)(auto intro!: ext)
    also from s1 ≈m s2 tst2 obtain x1
      where tst1: "thr s1 t = (x1, ln)"
      and bisim: "t  (x1, shr s1)  (x2, shr s2)" by(auto dest: mbisim_thrD2)
    from shr s2'' = shr s2' have "shr ?s2'' = shr s2" by(simp add: s2'_def)
    from r1.final_thread s1 t tst1
    have final: "final1 x1" "ln = no_wait_locks" "wset s1 t = None" by(auto simp add: r1.final_thread_def)
    with final1_simulation[OF bisim] shr ?s2'' = shr s2 obtain x2' m2'
      where red: "r2.silent_moves t (x2, shr ?s2'') (x2', m2')"
      and bisim': "t  (x1, shr s1)  (x2', m2')" and "final2 x2'" by auto
    from wset s1 t = None s1 ≈m s2 have "wset s2 t = None" by(simp add: mbisim_def) 
    with bisim r2.silent_moves_into_RedT_τ_inv[OF red] tst2 ln = no_wait_locks
    have "r2.mthr.silent_moves ?s2'' (redT_upd_ε ?s2'' t x2' m2')" unfolding s2'_def by auto
    also (rtranclp_trans)
    from bisim r2.red_rtrancl_τ_heapD_inv[OF red] have "m2' = shr s2" by auto
    hence "s1 ≈m (redT_upd_ε ?s2'' t x2' m2')"
      using s1' ≈m s2'' s1 ≈m s2 tst1 tst2 shr ?s2'' = shr s2 bisim' shr s2'' = shr s2' wset s2 t = None
      unfolding s1'_def s2'_def by(auto simp add: mbisim_def redT_updLns_def split: if_split_asm intro: tbisim_SomeI)
    moreover { 
      fix t'
      assume "r1.final_thread s1 t'"
      with fin[of t'] final2 x2' tst2 ln = no_wait_locks wset s2 t = None s1' ≈m s2'' s1 ≈m s2
      have "r2.final_thread (redT_upd_ε ?s2'' t x2' m2') t'" unfolding s1'_def
        by(fastforce split: if_split_asm simp add: r2.final_thread_def r1.final_thread_def redT_updLns_def finfun_Diag_const2 o_def mbisim_def)
    }
    moreover have "shr (redT_upd_ε ?s2'' t x2' m2') = shr s2" using m2' = shr s2 by simp
    ultimately show ?case by blast
  qed
qed

lemma mfinal2_inv_simulation:
  "s1 ≈m s2  s1'. r1.mthr.silent_moves s1 s1'  s1' ≈m s2  r2.final_threads s2  r1.final_threads s1'  shr s1' = shr s1"
using FWdelay_bisimulation_final_base.mfinal1_inv_simulation[OF FWdelay_bisimulation_final_base_flip, where bisim_wait="flip bisim_wait"]
by(unfold flip_simps)

lemma mfinal1_simulation:
  assumes "s1 ≈m s2" and "r1.mfinal s1"
  shows "s2'. r2.mthr.silent_moves s2 s2'  s1 ≈m s2'  r2.mfinal s2'  shr s2' = shr s2"
proof -
  from mfinal1_inv_simulation[OF s1 ≈m s2]
  obtain s2' where 1: "r2.mthr.silent_moves s2 s2'" "s1 ≈m s2'" "shr s2' = shr s2"
    and fin: "t. r1.final_thread s1 t  r2.final_thread s2' t" by blast
  have "r2.mfinal s2'"
  proof(rule r2.mfinalI)
    fix t x2 ln
    assume "thr s2' t = (x2, ln)"
    with s1 ≈m s2' obtain x1 where "thr s1 t = (x1, ln)" "t  (x1, shr s1)  (x2, shr s2')"
      by(auto dest: mbisim_thrD2)
    from thr s1 t = (x1, ln) r1.mfinal s1 have "r1.final_thread s1 t"
      by(auto elim!: r1.mfinalE simp add: r1.final_thread_def)
    hence "r2.final_thread s2' t" by(rule fin)
    thus "final2 x2  ln = no_wait_locks  wset s2' t = None"
      using thr s2' t = (x2, ln) by(auto simp add: r2.final_thread_def)
  qed
  with 1 show ?thesis by blast
qed
    
lemma mfinal2_simulation:
  " s1 ≈m s2; r2.mfinal s2 
   s1'. r1.mthr.silent_moves s1 s1'  s1' ≈m s2  r1.mfinal s1'  shr s1' = shr s1"
using FWdelay_bisimulation_final_base.mfinal1_simulation[OF FWdelay_bisimulation_final_base_flip, where bisim_wait = "flip bisim_wait"]
by(unfold flip_simps)

end

locale FWdelay_bisimulation_obs =
  FWdelay_bisimulation_final_base _ _ _ _ _ _ _ τmove1 τmove2
  for τmove1 :: "('l,'t,'x1,'m1,'w, 'o) τmoves"
  and τmove2 :: "('l,'t,'x2,'m2,'w, 'o) τmoves" +
  assumes delay_bisimulation_obs_locale: "delay_bisimulation_obs (r1 t) (r2 t) (bisim t) (ta_bisim bisim) τmove1 τmove2"
  and bisim_inv_red_other:
   " t'  (x, m1)  (xx, m2); t  (x1, m1)  (x2, m2); 
      r1.silent_moves t (x1, m1) (x1', m1);
      t  (x1', m1) -1-ta1 (x1'', m1'); ¬ τmove1 (x1', m1) ta1 (x1'', m1');
      r2.silent_moves t (x2, m2) (x2', m2);
      t  (x2', m2) -2-ta2 (x2'', m2'); ¬ τmove2 (x2', m2) ta2 (x2'', m2');
      t  (x1'', m1')  (x2'', m2'); ta_bisim bisim ta1 ta2 
    t'  (x, m1')  (xx, m2')"
  and bisim_waitI:
   " t  (x1, m1)  (x2, m2); r1.silent_moves t (x1, m1) (x1', m1);
      t  (x1', m1) -1-ta1 (x1'', m1'); ¬ τmove1 (x1', m1) ta1 (x1'', m1');
      r2.silent_moves t (x2, m2) (x2', m2);
      t  (x2', m2) -2-ta2 (x2'', m2'); ¬ τmove2 (x2', m2) ta2 (x2'', m2');
      t  (x1'', m1')  (x2'', m2'); ta_bisim bisim ta1 ta2;
      Suspend w  set ta1w; Suspend w  set ta2w 
    x1'' ≈w x2''"
  and simulation_Wakeup1:
    " t  (x1, m1)  (x2, m2); x1 ≈w x2; t  (x1, m1) -1-ta1 (x1', m1'); Notified  set ta1w  WokenUp  set ta1w 
     ta2 x2' m2'. t  (x2, m2) -2-ta2 (x2', m2')  t  (x1', m1')  (x2', m2')  ta_bisim bisim ta1 ta2"
  and simulation_Wakeup2:
    " t  (x1, m1)  (x2, m2); x1 ≈w x2; t  (x2, m2) -2-ta2 (x2', m2'); Notified  set ta2w  WokenUp  set ta2w 
     ta1 x1' m1'. t  (x1, m1) -1-ta1 (x1', m1')  t  (x1', m1')  (x2', m2')  ta_bisim bisim ta1 ta2"
  and ex_final1_conv_ex_final2:
    "(x1. final1 x1)  (x2. final2 x2)"

sublocale FWdelay_bisimulation_obs <
  delay_bisimulation_obs "r1 t" "r2 t" "bisim t" "ta_bisim bisim" τmove1 τmove2 for t
by(rule delay_bisimulation_obs_locale)

context FWdelay_bisimulation_obs begin

lemma FWdelay_bisimulation_obs_flip:
  "FWdelay_bisimulation_obs final2 r2 final1 r1 (λt. flip (bisim t)) (flip bisim_wait) τmove2 τmove1"
apply(rule FWdelay_bisimulation_obs.intro)
 apply(rule FWdelay_bisimulation_final_base_flip)
apply(rule FWdelay_bisimulation_obs_axioms.intro)
     apply(unfold flip_simps)
     apply(rule delay_bisimulation_obs_axioms)
    apply(erule (9) bisim_inv_red_other)
   apply(erule (10) bisim_waitI)
  apply(erule (3) simulation_Wakeup2)
 apply(erule (3) simulation_Wakeup1)
apply(rule ex_final1_conv_ex_final2[symmetric])
done

end

lemma FWdelay_bisimulation_obs_flip_simps [flip_simps]:
  "FWdelay_bisimulation_obs final2 r2 final1 r1 (λt. flip (bisim t)) (flip bisim_wait) τmove2 τmove1 = 
   FWdelay_bisimulation_obs final1 r1 final2 r2 bisim bisim_wait τmove1 τmove2"
by(auto dest: FWdelay_bisimulation_obs.FWdelay_bisimulation_obs_flip simp only: flip_flip)

context FWdelay_bisimulation_obs begin

lemma mbisim_redT_upd:
  fixes s1 t ta1 x1' m1' s2 ta2 x2' m2' ln
  assumes s1': "redT_upd s1 t ta1 x1' m1' s1'"
  and s2': "redT_upd s2 t ta2 x2' m2' s2'"
  and [simp]: "wset s1 = wset s2" "locks s1 = locks s2" 
  and wset: "wset s1' = wset s2'"
  and interrupts: "interrupts s1' = interrupts s2'"
  and fin1: "finite (dom (thr s1))"
  and wsts: "wset_thread_ok (wset s1) (thr s1)"
  and tst: "thr s1 t = (x1, ln)"
  and tst': "thr s2 t = (x2, ln)"
  and aoe1: "r1.actions_ok s1 t ta1"
  and aoe2: "r2.actions_ok s2 t ta2"
  and tasim: "ta_bisim bisim ta1 ta2"
  and bisim': "t  (x1', m1')  (x2', m2')"
  and bisimw: "wset s1' t = None  x1' ≈w x2'"
  and τred1: "r1.silent_moves t (x1'', shr s1) (x1, shr s1)"
  and red1: "t  (x1, shr s1) -1-ta1 (x1', m1')"
  and τred2: "r2.silent_moves t (x2'', shr s2) (x2, shr s2)"
  and red2: "t  (x2, shr s2) -2-ta2 (x2', m2')"
  and bisim: "t  (x1'', shr s1)  (x2'', shr s2)"
  and τ1: "¬ τmove1 (x1, shr s1) ta1 (x1', m1')"
  and τ2: "¬ τmove2 (x2, shr s2) ta2 (x2', m2')"
  and tbisim: "t'. t  t'  tbisim (wset s1 t' = None) t' (thr s1 t') (shr s1) (thr s2 t') (shr s2)"
  shows "s1' ≈m s2'"
proof(rule mbisimI)
  from fin1 s1' show "finite (dom (thr s1'))"
    by(auto simp add: redT_updTs_finite_dom_inv)
next
  from tasim s1' s2' show "locks s1' = locks s2'"
    by(auto simp add: redT_updLs_def o_def ta_bisim_def)
next
  from wset show "wset s1' = wset s2'" .
next
  from interrupts show "interrupts s1' = interrupts s2'" .
next
  from wsts s1' s2' wset show "wset_thread_ok (wset s1') (thr s1')"
    by(fastforce intro!: wset_thread_okI split: if_split_asm dest: redT_updTs_None wset_thread_okD redT_updWs_None_implies_None)
next
  fix T
  assume "thr s1' T = None"
  moreover with tst s1' have [simp]: "t  T" by auto
  from tbisim[OF this] have "(thr s1 T = None) = (thr s2 T = None)"
    by(auto simp add: tbisim_def)
  hence "(redT_updTs (thr s1) ta1t T = None) = (redT_updTs (thr s2) ta2t T = None)"
    using tasim by -(rule redT_updTs_nta_bisim_inv, simp_all add: ta_bisim_def)
  ultimately show "thr s2' T = None" using s2' s1' by(auto split: if_split_asm)
next
  fix T X1 LN
  assume tsT: "thr s1' T = (X1, LN)"
  show "x2. thr s2' T = (x2, LN)  T  (X1, shr s1')  (x2, shr s2')  (wset s2' T = None  X1 ≈w x2)"
  proof(cases "thr s1 T")
    case None
    with tst have "t  T" by auto
    with tbisim[OF this] None have tsT': "thr s2 T = None" by(simp add: tbisim_def)
    from None t  T tsT aoe1 s1' obtain M1
      where ntset: "NewThread T X1 M1  set ta1t" and [simp]: "LN = no_wait_locks"
      by(auto dest!: redT_updTs_new_thread)
    from ntset obtain tas1 tas1' where "ta1t = tas1 @ NewThread T X1 M1 # tas1'"
      by(auto simp add: in_set_conv_decomp)
    with tasim obtain tas2 X2 M2 tas2' where "ta2t = tas2 @ NewThread T X2 M2 # tas2'"
      "length tas2 = length tas2" "length tas1' = length tas2'" and Bisim: "T  (X1, M1)  (X2, M2)"
      by(auto simp add: list_all2_append1 list_all2_Cons1 ta_bisim_def)
    hence ntset': "NewThread T X2 M2  set ta2t" by auto
    with tsT' t  T aoe2 s2' have "thr s2' T = (X2, no_wait_locks)"
      by(auto intro: redT_updTs_new_thread_ts)
    moreover from ntset' red2 have "m2' = M2" by(auto dest: r2.new_thread_memory)
    moreover from ntset red1 have "m1' = M1"
      by(auto dest: r1.new_thread_memory)
    moreover from wsts None have "wset s1 T = None" by(rule wset_thread_okD)
    ultimately show ?thesis using Bisim t  T s1' s2'
      by(auto simp add: redT_updWs_None_implies_None)
  next
    case (Some a)
    show ?thesis
    proof(cases "t = T")
      case True
      with tst tsT s1' have [simp]: "X1 = x1'" "LN = redT_updLns (locks s1) t ln ta1l" by(auto)
      show ?thesis using True bisim' bisimw tasim tst tst' s1' s2' wset
        by(auto simp add: redT_updLns_def ta_bisim_def)
    next
      case False
      with Some aoe1 tsT s1' have "thr s1 T = (X1, LN)" by(auto dest: redT_updTs_Some)
      with tbisim[OF False] obtain X2 
        where tsT': "thr s2 T = (X2, LN)" and Bisim: "T  (X1, shr s1)  (X2, shr s2)"
        and bisimw: "wset s1 T = None  X1 ≈w X2" by(auto simp add: tbisim_def)
      with aoe2 False s2' have tsT': "thr s2' T = (X2, LN)" by(auto simp add: redT_updTs_Some)
      moreover from Bisim bisim τred1 red1 τ1 τred2 red2 τ2 bisim' tasim
      have "T  (X1, m1')  (X2, m2')" by(rule bisim_inv_red_other)
      ultimately show ?thesis using False bisimw s1' s2'
        by(auto simp add: redT_updWs_None_implies_None)
    qed
  qed
qed

theorem mbisim_simulation1:
  assumes mbisim: "mbisim s1 s2" and "¬ mτmove1 s1 tl1 s1'" "r1.redT s1 tl1 s1'"
  shows "s2' s2'' tl2. r2.mthr.silent_moves s2 s2'  r2.redT s2' tl2 s2'' 
                        ¬ mτmove2 s2' tl2 s2''  mbisim s1' s2''  mta_bisim tl1 tl2"
proof -
  from assms obtain t ta1 where tl1 [simp]: "tl1 = (t, ta1)" and redT: "s1 -1-tta1 s1'"
    and : "¬ mτmove1 s1 (t, ta1) s1'" by(cases tl1) fastforce
  obtain ls1 ts1 m1 ws1 is1 where [simp]: "s1 = (ls1, (ts1, m1), ws1, is1)" by(cases s1) fastforce
  obtain ls1' ts1' m1' ws1' is1' where [simp]: "s1' = (ls1', (ts1', m1'), ws1', is1')" by(cases s1') fastforce
  obtain ls2 ts2 m2 ws2 is2 where [simp]: "s2 = (ls2, (ts2, m2), ws2, is2)" by(cases s2) fastforce
  from mbisim have [simp]: "ls2 = ls1" "ws2 = ws1" "is2 = is1" "finite (dom ts1)" by(auto simp add: mbisim_def)
  from redT show ?thesis
  proof cases
    case (redT_normal x1 x1' M1')
    hence red: "t  (x1, m1) -1-ta1 (x1', M1')" 
      and tst: "ts1 t = (x1, no_wait_locks)"
      and aoe: "r1.actions_ok s1 t ta1"
      and s1': "redT_upd s1 t ta1 x1' M1' s1'" by auto
    from mbisim tst obtain x2 where tst': "ts2 t = (x2, no_wait_locks)"
      and bisim: "t  (x1, m1)  (x2, m2)" by(auto dest: mbisim_thrD1)
    from  have τ: "¬ τmove1 (x1, m1) ta1 (x1', M1')"
    proof(rule contrapos_nn)
      assume τ: "τmove1 (x1, m1) ta1 (x1', M1')"
      moreover hence [simp]: "ta1 = ε" by(rule r1.silent_tl)
      moreover have [simp]: "M1' = m1" by(rule r1.τmove_heap[OF red τ, symmetric])
      ultimately show "mτmove1 s1 (t, ta1) s1'" using s1' tst s1'
        by(auto simp add: redT_updLs_def o_def intro: r1.mτmove.intros elim: rtrancl3p_cases)
    qed
    show ?thesis
    proof(cases "ws1 t")
      case None
      note wst = this
      from simulation1[OF bisim red τ] obtain x2' M2' x2'' M2'' ta2
        where red21: "r2.silent_moves t (x2, m2) (x2', M2')"
        and red22: "t  (x2', M2') -2-ta2 (x2'', M2'')" and τ2: "¬ τmove2 (x2', M2') ta2 (x2'', M2'')"
        and bisim': "t  (x1', M1')  (x2'', M2'')"
        and tasim: "ta_bisim bisim ta1 ta2" by auto
      let ?s2' = "redT_upd_ε s2 t x2' M2'"
      let ?S2' = "activate_cond_actions2 s1 ?s2' ta2c"
      let ?s2'' = "(redT_updLs (locks ?S2') t ta2l, ((redT_updTs (thr ?S2') ta2t)(t  (x2'', redT_updLns (locks ?S2') t (snd (the (thr ?S2' t))) ta2l)), M2''), wset s1', interrupts s1')"
      from red21 tst' wst bisim have "τmRed2 s2 ?s2'"
        by -(rule r2.silent_moves_into_RedT_τ_inv, auto)
      moreover from red21 bisim have [simp]: "M2' = m2" by(auto dest: r2.red_rtrancl_τ_heapD_inv)
      from tasim have [simp]: " ta1l =  ta2l" " ta1w =  ta2w" " ta1c =  ta2c" " ta1i =  ta2i"
        and nta: "list_all2 (nta_bisim bisim)  ta1t  ta2t" by(auto simp add: ta_bisim_def)
      from mbisim have tbisim: "t. tbisim (ws1 t = None) t (ts1 t) m1 (ts2 t) m2" by(simp add: mbisim_def)
      hence tbisim': "t'. t'  t  tbisim (ws1 t' = None) t' (ts1 t') m1 (thr ?s2' t') m2" by(auto)
      from aoe have cao1: "r1.cond_action_oks (ls1, (ts1, m1), ws1, is1) t ta2c" by auto
      from tst' have "thr ?s2' t = (x2', no_wait_locks)" by(auto simp add: redT_updLns_def o_def finfun_Diag_const2)
      from cond_actions_oks_bisim_ex_τ2_inv[OF tbisim', OF _ tst this cao1]
      have red21': "τmRed2 ?s2' ?S2'" and tbisim'': "t'. t'  t  tbisim (ws1 t' = None) t' (ts1 t') m1 (thr ?S2' t') m2"
        and cao2: "r2.cond_action_oks ?S2' t ta2c" and tst'': "thr ?S2' t = (x2', no_wait_locks)"
        by(auto simp del: fun_upd_apply)
      note red21' also (rtranclp_trans)
      from tbisim'' tst'' tst have "t'. ts1 t' = None  thr ?S2' t' = None" by(force simp add: tbisim_def)
      from aoe thread_oks_bisim_inv[OF this nta] have "thread_oks (thr ?S2') ta2t" by simp
      with cao2 aoe have aoe': "r2.actions_ok ?S2' t ta2" by auto
      with red22 tst'' s1' have "?S2' -2-tta2 ?s2''"
        by -(rule r2.redT.redT_normal, auto)
      moreover
      from τ2 have "¬ mτmove2 ?S2' (t, ta2) ?s2''"
      proof(rule contrapos_nn)
        assume : "mτmove2 ?S2' (t, ta2) ?s2''"
        thus "τmove2 (x2', M2') ta2 (x2'', M2'')" using tst'' tst'
          by cases auto
      qed
      moreover
      { 
        note s1'
        moreover have "redT_upd ?S2' t ta2 x2'' M2'' ?s2''" using s1' by auto
        moreover have "wset s1 = wset ?S2'" "locks s1 = locks ?S2'" by simp_all
        moreover have "wset s1' = wset ?s2''" by simp
        moreover have "interrupts s1' = interrupts ?s2''" by simp
        moreover have "finite (dom (thr s1))" by simp
        moreover from mbisim have "wset_thread_ok (wset s1) (thr s1)" by(simp add: mbisim_def) 
        moreover from tst have "thr s1 t = (x1, no_wait_locks)" by simp
        moreover note tst'' aoe aoe' tasim bisim'
        moreover have "wset s1' t = None  x1' ≈w x2''"
        proof(cases "wset s1' t")
          case None thus ?thesis ..
        next
          case (Some w)
          with wst s1' obtain w' where Suspend1: "Suspend w'  set ta1w"
            by(auto dest: redT_updWs_None_SomeD)
          with tasim have Suspend2: "Suspend w'  set ta2w" by(simp add: ta_bisim_def)
          from bisim_waitI[OF bisim rtranclp.rtrancl_refl red τ _ _ _ bisim' tasim Suspend1 this, of x2'] red21 red22 τ2
          have "x1' ≈w x2''" by auto
          thus ?thesis ..
        qed
        moreover note rtranclp.rtrancl_refl
        moreover from red have "t  (x1, shr s1) -1-ta1 (x1', M1')" by simp
        moreover from red21 have "r2.silent_moves t (x2, shr ?S2') (x2', shr ?S2')" by simp
        moreover from red22 have "t  (x2', shr ?S2') -2-ta2 (x2'', M2'')" by simp
        moreover from bisim have "t  (x1, shr s1)  (x2, shr ?S2')" by simp
        moreover from τ have "¬ τmove1 (x1, shr s1) ta1 (x1', M1')" by simp
        moreover from τ2 have "¬ τmove2 (x2', shr ?S2') ta2 (x2'', M2'')" by simp
        moreover from tbisim'' 
        have "t'. t  t'  tbisim (wset s1 t' = None) t' (thr s1 t') (shr s1) (thr ?S2' t') (shr ?S2')" 
          by simp
        ultimately have "mbisim s1' ?s2''" by(rule mbisim_redT_upd)
        }
      ultimately show ?thesis using tasim unfolding tl1 s1' by fastforce
    next
      case (Some w)
      with mbisim tst tst' have "x1 ≈w x2"
        by(auto dest: mbisim_thrD1)
      from aoe Some have wakeup: "Notified  set ta1w  WokenUp  set ta1w"
        by(auto simp add: wset_actions_ok_def split: if_split_asm)
      from simulation_Wakeup1[OF bisim x1 ≈w x2 red this]
      obtain ta2 x2' m2' where red2: "t  (x2, m2) -2-ta2 (x2', m2')"
        and bisim': "t  (x1', M1')  (x2', m2')"
        and tasim: "ta1 ∼m ta2" by auto

      let ?S2' = "activate_cond_actions2 s1 s2 ta2c"

      let ?s2' = "(redT_updLs (locks ?S2') t ta2l, ((redT_updTs (thr ?S2') ta2t)(t  (x2', redT_updLns (locks ?S2') t (snd (the (thr ?S2' t))) ta2l)), m2'), wset s1', interrupts s1')"

      from tasim have [simp]: " ta1l =  ta2l" " ta1w =  ta2w" " ta1c =  ta2c" " ta1i =  ta2i"
        and nta: "list_all2 (nta_bisim bisim)  ta1t  ta2t" by(auto simp add: ta_bisim_def)
      from mbisim have tbisim: "t. tbisim (ws1 t = None) t (ts1 t) m1 (ts2 t) m2" by(simp add: mbisim_def)
      hence tbisim': "t'. t'  t  tbisim (ws1 t' = None) t' (ts1 t') m1 (thr s2 t') m2" by(auto)
      from aoe have cao1: "r1.cond_action_oks (ls1, (ts1, m1), ws1, is1) t ta2c" by auto
      from tst' have "thr s2 t = (x2, no_wait_locks)"
        by(auto simp add: redT_updLns_def o_def finfun_Diag_const2)
      from cond_actions_oks_bisim_ex_τ2_inv[OF tbisim', OF _ tst this cao1]
      have red21': "τmRed2 s2 ?S2'" and tbisim'': "t'. t'  t  tbisim (ws1 t' = None) t' (ts1 t') m1 (thr ?S2' t') m2"
        and cao2: "r2.cond_action_oks ?S2' t ta2c" and tst'': "thr ?S2' t = (x2, no_wait_locks)"
        by(auto simp del: fun_upd_apply)
      note red21' moreover
      from tbisim'' tst'' tst have "t'. ts1 t' = None  thr ?S2' t' = None" by(force simp add: tbisim_def)
      from aoe thread_oks_bisim_inv[OF this nta] have "thread_oks (thr ?S2') ta2t" by simp
      with cao2 aoe have aoe': "r2.actions_ok ?S2' t ta2" by auto
      with red2 tst'' s1' tasim have "?S2' -2-tta2 ?s2'"
        by -(rule r2.redT_normal, auto simp add: ta_bisim_def)
      moreover from wakeup tasim
      have τ2: "¬ τmove2 (x2, m2) ta2 (x2', m2')" by(auto dest: r2.silent_tl)
      hence "¬ mτmove2 ?S2' (t, ta2) ?s2'"
      proof(rule contrapos_nn)
        assume : "mτmove2 ?S2' (t, ta2) ?s2'"
        thus "τmove2 (x2, m2) ta2 (x2', m2')" using tst'' tst'
          by cases auto
      qed
      moreover {
        note s1'
        moreover have "redT_upd ?S2' t ta2 x2' m2' ?s2'" using s1' tasim by(auto simp add: ta_bisim_def)
        moreover have "wset s1 = wset ?S2'" "locks s1 = locks ?S2'" by simp_all
        moreover have "wset s1' = wset ?s2'" by simp
        moreover have "interrupts s1' = interrupts ?s2'" by simp
        moreover have "finite (dom (thr s1))" by simp
        moreover from mbisim have "wset_thread_ok (wset s1) (thr s1)" by(rule mbisim_wset_thread_ok1)
        moreover from tst have "thr s1 t = (x1, no_wait_locks)" by simp
        moreover from tst'' have "thr ?S2' t = (x2, no_wait_locks)" by simp
        moreover note aoe aoe' tasim bisim'
        moreover have "wset s1' t = None  x1' ≈w x2'"
        proof(cases "wset s1' t")
          case None thus ?thesis ..
        next
          case (Some w')
          with redT_updWs_WokenUp_SuspendD[OF _ wakeup, of t "wset s1" "wset s1'" w'] s1'
          obtain w' where Suspend1: "Suspend w'  set ta1w" by(auto)
          with tasim have Suspend2: "Suspend w'  set ta2w" by(simp add: ta_bisim_def)
          with bisim rtranclp.rtrancl_refl red τ rtranclp.rtrancl_refl red2 τ2 bisim' tasim Suspend1
          have "x1' ≈w x2'" by(rule bisim_waitI)
          thus ?thesis ..
        qed
        moreover note rtranclp.rtrancl_refl
        moreover from red have "t  (x1, shr s1) -1-ta1 (x1', M1')" by simp
        moreover note rtranclp.rtrancl_refl
        moreover from red2 have "t  (x2, shr ?S2') -2-ta2 (x2', m2')" by simp
        moreover from bisim have "t  (x1, shr s1)  (x2, shr ?S2')" by simp
        moreover from τ have "¬ τmove1 (x1, shr s1) ta1 (x1', M1')" by simp
        moreover from τ2 have "¬ τmove2 (x2, shr ?S2') ta2 (x2', m2')" by simp
        moreover from tbisim'' have "t'. t  t'  tbisim (wset s1 t' = None) t' (thr s1 t') (shr s1) (thr ?S2' t') (shr ?S2')" by simp
        ultimately have "s1' ≈m ?s2'" by(rule mbisim_redT_upd) }
      moreover from tasim have "tl1 ∼T (t, ta2)" by simp
      ultimately show ?thesis unfolding s1' by blast
    qed
  next
    case (redT_acquire x1 n ln)
    hence [simp]: "ta1 = (K$ [], [], [], [], [], convert_RA ln)"
      and tst: "thr s1 t = (x1, ln)" and wst: "¬ waiting (wset s1 t)"
      and maa: "may_acquire_all (locks s1) t ln" and ln: "0 < ln $ n"
      and s1': "s1' = (acquire_all ls1 t ln, (ts1(t  (x1, no_wait_locks)), m1), ws1, is1)" by auto
    from tst mbisim obtain x2 where tst': "ts2 t = (x2, ln)" 
      and bisim: "t  (x1, m1)  (x2, m2)" by(auto dest: mbisim_thrD1)
    let ?s2' = "(acquire_all ls1 t ln, (ts2(t  (x2, no_wait_locks)), m2), ws1, is1)"
    from tst' wst maa ln have "s2 -2-t(K$ [], [], [], [], [], convert_RA ln) ?s2'"
      by-(rule r2.redT.redT_acquire, auto)
    moreover from tst' ln have "¬ mτmove2 s2 (t, (K$ [], [], [], [], [], convert_RA ln)) ?s2'"
      by(auto simp add: acquire_all_def fun_eq_iff elim!: r2.mτmove.cases)
    moreover have "mbisim s1' ?s2'"
    proof(rule mbisimI)
      from s1' show "locks s1' = locks ?s2'" by auto
    next
      from s1' show "wset s1' = wset ?s2'" by auto
    next
      from s1' show "interrupts s1' = interrupts ?s2'" by auto
    next
      fix t' assume "thr s1' t' = None"
      with s1' have "thr s1 t' = None" by(auto split: if_split_asm)
      with mbisim_thrNone_eq[OF mbisim] have "ts2 t' = None" by simp
      with tst' show "thr ?s2' t' = None" by auto
    next
      fix t' X1 LN
      assume ts't: "thr s1' t' = (X1, LN)"
      show "x2. thr ?s2' t' = (x2, LN)  t'  (X1, shr s1')  (x2, shr ?s2')  (wset ?s2' t' = None  X1 ≈w x2)"
      proof(cases "t' = t")
        case True
        with s1' tst ts't have [simp]: "X1 = x1" "LN = no_wait_locks" by simp_all
        with mbisim_thrD1[OF mbisim tst] bisim tst tst' True s1' wst show ?thesis by(auto)
      next
        case False
        with ts't s1' have "ts1 t' = (X1, LN)" by auto
        with mbisim obtain X2 where "ts2 t' = (X2, LN)" "t'  (X1, m1)  (X2, m2)" "wset ?s2' t' = None  X1 ≈w X2"
          by(auto dest: mbisim_thrD1)
        with False s1' show ?thesis by auto
      qed
    next
      from s1' show "finite (dom (thr s1'))" by auto
    next
      from mbisim_wset_thread_ok1[OF mbisim]
      show "wset_thread_ok (wset s1') (thr s1')" using s1' by(auto intro: wset_thread_ok_upd)
    qed
    moreover have "(t, K$ [], [], [], [], [], convert_RA ln) ∼T (t, K$ [], [], [], [], [], convert_RA ln)"
      by(simp add: ta_bisim_def)
    ultimately show ?thesis by fastforce
  qed
qed

theorem mbisim_simulation2:
  " mbisim s1 s2; r2.redT s2 tl2 s2'; ¬ mτmove2 s2 tl2 s2' 
   s1' s1'' tl1. r1.mthr.silent_moves s1 s1'  r1.redT s1' tl1 s1''  ¬ mτmove1 s1' tl1 s1'' 
                    mbisim s1'' s2'  mta_bisim tl1 tl2"
using FWdelay_bisimulation_obs.mbisim_simulation1[OF FWdelay_bisimulation_obs_flip]
unfolding flip_simps .

end

locale FWdelay_bisimulation_diverge =
  FWdelay_bisimulation_obs _ _ _ _ _ _ _ τmove1 τmove2
  for τmove1 :: "('l,'t,'x1,'m1,'w,'o) τmoves"
  and τmove2 :: "('l,'t,'x2,'m2,'w,'o) τmoves" +
  assumes delay_bisimulation_diverge_locale: "delay_bisimulation_diverge (r1 t) (r2 t) (bisim t) (ta_bisim bisim) τmove1 τmove2"

sublocale FWdelay_bisimulation_diverge <
  delay_bisimulation_diverge "r1 t" "r2 t" "bisim t" "ta_bisim bisim" τmove1 τmove2 for t
by(rule delay_bisimulation_diverge_locale)

context FWdelay_bisimulation_diverge begin

lemma FWdelay_bisimulation_diverge_flip:
  "FWdelay_bisimulation_diverge final2 r2 final1 r1 (λt. flip (bisim t)) (flip bisim_wait) τmove2 τmove1"
apply(rule FWdelay_bisimulation_diverge.intro)
 apply(rule FWdelay_bisimulation_obs_flip)
apply(rule FWdelay_bisimulation_diverge_axioms.intro)
apply(unfold flip_simps)
apply(rule delay_bisimulation_diverge_axioms)
done

end

lemma FWdelay_bisimulation_diverge_flip_simps [flip_simps]:
  "FWdelay_bisimulation_diverge final2 r2 final1 r1 (λt. flip (bisim t)) (flip bisim_wait) τmove2 τmove1 = 
   FWdelay_bisimulation_diverge final1 r1 final2 r2 bisim bisim_wait τmove1 τmove2"
by(auto dest: FWdelay_bisimulation_diverge.FWdelay_bisimulation_diverge_flip simp only: flip_flip)

context FWdelay_bisimulation_diverge begin

lemma bisim_inv1:
  assumes bisim: "t  s1  s2"
  and red: "t  s1 -1-ta1 s1'"
  obtains s2' where "t  s1'  s2'"
proof(atomize_elim)
  show "s2'. t  s1'  s2'"
  proof(cases "τmove1 s1 ta1 s1'")
    case True
    with red have "r1.silent_move t s1 s1'" by auto
    from simulation_silent1[OF bisim this]
    show ?thesis by auto
  next
    case False
    from simulation1[OF bisim red False] show ?thesis by auto
  qed
qed

lemma bisim_inv2:
  assumes "t  s1  s2" "t  s2 -2-ta2 s2'"
  obtains s1' where "t  s1'  s2'"
using assms FWdelay_bisimulation_diverge.bisim_inv1[OF FWdelay_bisimulation_diverge_flip]
unfolding flip_simps by blast

lemma bisim_inv: "bisim_inv"
by(blast intro!: bisim_invI elim: bisim_inv1 bisim_inv2)

lemma bisim_inv_τs1:
  assumes "t  s1  s2" and "r1.silent_moves t s1 s1'"
  obtains s2' where "t  s1'  s2'"
using assms by(rule bisim_inv_τs1_inv[OF bisim_inv])

lemma bisim_inv_τs2:
  assumes "t  s1  s2" and "r2.silent_moves t s2 s2'"
  obtains s1' where "t  s1'  s2'"
using assms by(rule bisim_inv_τs2_inv[OF bisim_inv])

lemma red1_rtrancl_τ_into_RedT_τ:
  assumes "r1.silent_moves t (x1, shr s1) (x1', m1')" "t  (x1, shr s1)  (x2, m2)"
  and "thr s1 t = (x1, no_wait_locks)" "wset s1 t = None"
  shows "τmRed1 s1 (redT_upd_ε s1 t x1' m1')"
using assms by(blast intro: r1.silent_moves_into_RedT_τ_inv)

lemma red2_rtrancl_τ_into_RedT_τ:
  assumes "r2.silent_moves t (x2, shr s2) (x2', m2')"
  and "t  (x1, m1)  (x2, shr s2)" "thr s2 t = (x2, no_wait_locks)" "wset s2 t = None"
  shows "τmRed2 s2 (redT_upd_ε s2 t x2' m2')"
using assms by(blast intro: r2.silent_moves_into_RedT_τ_inv)

lemma red1_rtrancl_τ_heapD:
  " r1.silent_moves t s1 s1'; t  s1  s2   snd s1' = snd s1"
by(blast intro: r1.red_rtrancl_τ_heapD_inv)

lemma red2_rtrancl_τ_heapD:
  " r2.silent_moves t s2 s2'; t  s1  s2   snd s2' = snd s2"
by(blast intro: r2.red_rtrancl_τ_heapD_inv)

lemma mbisim_simulation_silent1:
  assumes mτ': "r1.mthr.silent_move s1 s1'" and mbisim: "s1 ≈m s2"
  shows "s2'. r2.mthr.silent_moves s2 s2'  s1' ≈m s2'"
proof -
  from mτ' obtain tl1 where : "mτmove1 s1 tl1 s1'" "r1.redT s1 tl1 s1'" by auto
  obtain ls1 ts1 m1 ws1 is1 where [simp]: "s1 = (ls1, (ts1, m1), ws1, is1)" by(cases s1) fastforce
  obtain ls1' ts1' m1' ws1' is1' where [simp]: "s1' = (ls1', (ts1', m1'), ws1', is1')" by(cases s1') fastforce
  obtain ls2 ts2 m2 ws2 is2 where [simp]: "s2 = (ls2, (ts2, m2), ws2, is2)" by(cases s2) fastforce
  from  obtain t where "tl1 = (t, ε)" by(auto elim!: r1.mτmove.cases dest: r1.silent_tl)
  with  have : "mτmove1 s1 (t, ε) s1'" and redT1: "s1 -1-tε s1'" by simp_all
  from  obtain x x' ln' where tst: "ts1 t = (x, no_wait_locks)"
    and ts't: "ts1' t = (x', ln')" and τ: "τmove1 (x, m1) ε (x', m1')"
    by(fastforce elim: r1.mτmove.cases)
  from mbisim have [simp]: "ls2 = ls1" "ws2 = ws1" "is2 = is1" "finite (dom ts1)" by(auto simp add: mbisim_def)
  from redT1 show ?thesis
  proof cases
    case (redT_normal x1 x1' M')
    with tst ts't have [simp]: "x = x1" "x' = x1'"
      and red: "t  (x1, m1) -1-ε (x1', M')"
      and tst: "thr s1 t = (x1, no_wait_locks)"
      and wst: "wset s1 t = None"
      and s1': "redT_upd s1 t ε x1' M' s1'" by(auto)
    from s1' tst have [simp]: "ls1' = ls1" "ws1' = ws1" "is1' = is1" "M' = m1'" "ts1' = ts1(t  (x1', no_wait_locks))"
      by(auto simp add: redT_updLs_def redT_updLns_def o_def redT_updWs_def elim!: rtrancl3p_cases)
    from mbisim tst obtain x2 where tst': "ts2 t = (x2, no_wait_locks)"
      and bisim: "t  (x1, m1)  (x2, m2)" by(auto dest: mbisim_thrD1)
    from r1.τmove_heap[OF red] τ have [simp]: "m1 = M'" by simp
    from red τ have "r1.silent_move t (x1, m1) (x1', M')" by auto
    from simulation_silent1[OF bisim this]
    obtain x2' m2' where red: "r2.silent_moves t (x2, m2) (x2', m2')"
      and bisim': "t  (x1', m1)  (x2', m2')" by auto
    from red bisim have [simp]: "m2' = m2" 
      by(auto dest: red2_rtrancl_τ_heapD)
    let ?s2' = "redT_upd_ε s2 t x2' m2'"
    from red tst' wst bisim have "τmRed2 s2 ?s2'"
      by -(rule red2_rtrancl_τ_into_RedT_τ, auto)
    moreover have "mbisim s1' ?s2'"
    proof(rule mbisimI)
      show "locks s1' = locks ?s2'" "wset s1' = wset ?s2'" "interrupts s1' = interrupts ?s2'" by auto
    next
      fix t'
      assume "thr s1' t' = None"
      hence "ts1 t' = None" by(auto split: if_split_asm)
      with mbisim_thrNone_eq[OF mbisim] have "ts2 t' = None" by simp
      with tst' show "thr ?s2' t' = None" by auto
    next
      fix t' X1 LN
      assume ts't': "thr s1' t' = (X1, LN)"
      show "x2. thr ?s2' t' = (x2, LN)  t'  (X1, shr s1')  (x2, shr ?s2')  (wset ?s2' t' = None  X1 ≈w x2)"
      proof(cases "t' = t")
        case True
        note this[simp]
        with s1' tst ts't' have [simp]: "X1 = x1'" "LN = no_wait_locks"
          by(simp_all)(auto simp add: redT_updLns_def o_def finfun_Diag_const2)
        with bisim' tst' wst show ?thesis by(auto simp add: redT_updLns_def o_def finfun_Diag_const2)
      next
        case False
        with ts't' have "ts1 t' = (X1, LN)" by auto
        with mbisim obtain X2 where "ts2 t' = (X2, LN)" "t'  (X1, m1)  (X2, m2)" "ws1 t' = None  X1 ≈w X2"
          by(auto dest: mbisim_thrD1)
        with False show ?thesis by auto
      qed
    next
      show "finite (dom (thr s1'))" by simp
    next
      from mbisim_wset_thread_ok1[OF mbisim]
      show "wset_thread_ok (wset s1') (thr s1')" by(auto intro: wset_thread_ok_upd)
    qed
    ultimately show ?thesis by(auto)
  next
    case redT_acquire
    with tst have False by auto
    thus ?thesis ..
  qed
qed

lemma mbisim_simulation_silent2:
  " mbisim s1 s2; r2.mthr.silent_move s2 s2' 
   s1'. r1.mthr.silent_moves s1 s1'  mbisim s1' s2'"
using FWdelay_bisimulation_diverge.mbisim_simulation_silent1[OF FWdelay_bisimulation_diverge_flip]
unfolding flip_simps .

lemma mbisim_simulation1':
  assumes mbisim: "mbisim s1 s2" and "¬ mτmove1 s1 tl1 s1'" "r1.redT s1 tl1 s1'"
  shows "s2' s2'' tl2. r2.mthr.silent_moves s2 s2'  r2.redT s2' tl2 s2'' 
                        ¬ mτmove2 s2' tl2 s2''  mbisim s1' s2''  mta_bisim tl1 tl2"
using mbisim_simulation1 assms .

lemma mbisim_simulation2':
  " mbisim s1 s2; r2.redT s2 tl2 s2'; ¬ mτmove2 s2 tl2 s2' 
   s1' s1'' tl1. r1.mthr.silent_moves s1 s1'  r1.redT s1' tl1 s1''  ¬ mτmove1 s1' tl1 s1'' 
                    mbisim s1'' s2'  mta_bisim tl1 tl2"
using FWdelay_bisimulation_diverge.mbisim_simulation1'[OF FWdelay_bisimulation_diverge_flip]
unfolding flip_simps .

lemma mτdiverge_simulation1:
  assumes "s1 ≈m s2"
  and "r1.mthr.τdiverge s1"
  shows "r2.mthr.τdiverge s2"
proof -
  from s1 ≈m s2 have "finite (dom (thr s1))"
    by(rule mbisim_finite1)+
  from r1.τdiverge_τmredTD[OF r1.mthr.τdiverge s1 this]
  obtain t x where "thr s1 t = (x, no_wait_locks)" "wset s1 t = None" "r1.τdiverge t (x, shr s1)" by blast
  from s1 ≈m s2 thr s1 t = (x, no_wait_locks) obtain x'
    where "thr s2 t = (x', no_wait_locks)" "t  (x, shr s1)  (x', shr s2)"
    by(auto dest: mbisim_thrD1)
  from s1 ≈m s2 wset s1 t = None have "wset s2 t = None" by(simp add: mbisim_def)
  from t  (x, shr s1)  (x', shr s2) r1.τdiverge t (x, shr s1)
  have "r2.τdiverge t (x', shr s2)" by(simp add: τdiverge_bisim_inv)
  thus ?thesis using thr s2 t = (x', no_wait_locks) wset s2 t = None
    by(rule r2.τdiverge_into_τmredT)
qed

lemma τdiverge_mbisim_inv:
  "s1 ≈m s2  r1.mthr.τdiverge s1  r2.mthr.τdiverge s2"
apply(rule iffI)
 apply(erule (1) mτdiverge_simulation1)
by(rule FWdelay_bisimulation_diverge.mτdiverge_simulation1[OF FWdelay_bisimulation_diverge_flip, unfolded flip_simps])

lemma mbisim_delay_bisimulation:
  "delay_bisimulation_diverge r1.redT r2.redT mbisim mta_bisim mτmove1 mτmove2"
apply(unfold_locales)
apply(rule mbisim_simulation1 mbisim_simulation2 mbisim_simulation_silent1 mbisim_simulation_silent2 τdiverge_mbisim_inv|assumption)+
done

theorem mdelay_bisimulation_final_base:
  "delay_bisimulation_final_base r1.redT r2.redT mbisim mτmove1 mτmove2 r1.mfinal r2.mfinal"
apply(unfold_locales)
apply(blast dest: mfinal1_simulation mfinal2_simulation)+
done

end

sublocale FWdelay_bisimulation_diverge < mthr: delay_bisimulation_diverge r1.redT r2.redT mbisim mta_bisim mτmove1 mτmove2
by(rule mbisim_delay_bisimulation)

sublocale FWdelay_bisimulation_diverge <
  mthr: delay_bisimulation_final_base r1.redT r2.redT mbisim mta_bisim mτmove1 mτmove2 r1.mfinal r2.mfinal
by(rule mdelay_bisimulation_final_base)

context FWdelay_bisimulation_diverge begin

lemma mthr_delay_bisimulation_diverge_final:
  "delay_bisimulation_diverge_final r1.redT r2.redT mbisim mta_bisim mτmove1 mτmove2 r1.mfinal r2.mfinal"
by(unfold_locales)

end

sublocale FWdelay_bisimulation_diverge <
  mthr: delay_bisimulation_diverge_final r1.redT r2.redT mbisim mta_bisim mτmove1 mτmove2 r1.mfinal r2.mfinal
by(rule mthr_delay_bisimulation_diverge_final)

subsection ‹Strong bisimulation as corollary›

locale FWbisimulation = FWbisimulation_base _ _ _ r2 convert_RA bisim "λx1 x2. True" +
  r1: multithreaded final1 r1 convert_RA +
  r2: multithreaded final2 r2 convert_RA
  for r2 :: "('l,'t,'x2,'m2,'w,'o) semantics" ("_  _ -2-_ _" [50,0,0,50] 80)
  and convert_RA :: "'l released_locks  'o list"
  and bisim :: "'t  ('x1 × 'm1, 'x2 × 'm2) bisim" ("_  _/  _" [50, 50, 50] 60) +
  assumes bisimulation_locale: "bisimulation (r1 t) (r2 t) (bisim t) (ta_bisim bisim)"
  and bisim_final: "t  (x1, m1)  (x2, m2)  final1 x1  final2 x2"
  and bisim_inv_red_other:
   " t'  (x, m1)  (xx, m2); t  (x1, m1)  (x2, m2); 
      t  (x1, m1) -1-ta1 (x1', m1'); t  (x2, m2) -2-ta2 (x2', m2'); 
      t  (x1', m1')  (x2', m2'); ta_bisim bisim ta1 ta2 
    t'  (x, m1')  (xx, m2')"
  and ex_final1_conv_ex_final2:
   "(x1. final1 x1)  (x2. final2 x2)"

sublocale FWbisimulation < bisim?: bisimulation "r1 t" "r2 t" "bisim t" "ta_bisim bisim" for t
by(rule bisimulation_locale)

sublocale FWbisimulation < bisim_diverge?:
  FWdelay_bisimulation_diverge final1 r1 final2 r2 convert_RA bisim "λx1 x2. True" "λs ta s'. False" "λs ta s'. False"
proof -
  interpret biw: bisimulation_into_delay "r1 t" "r2 t" "bisim t" "ta_bisim bisim" "λs ta s'. False" "λs ta s'. False"
    for t
    by(unfold_locales) simp
  show "FWdelay_bisimulation_diverge final1 r1 final2 r2 bisim (λx1 x2. True) (λs ta s'. False) (λs ta s'. False)"
  proof(unfold_locales)
    fix t' x m1 xx m2 x1 x2 t x1' ta1 x1'' m1' x2' ta2 x2'' m2'
    assume bisim: "t'  (x, m1)  (xx, m2)" and bisim12: "t  (x1, m1)  (x2, m2)"
      and τ1: "τtrsys.silent_moves (r1 t) (λs ta s'. False) (x1, m1) (x1', m1)" 
      and red1: "t  (x1', m1) -1-ta1 (x1'', m1')"
      and τ2: "τtrsys.silent_moves (r2 t) (λs ta s'. False) (x2, m2) (x2', m2)"
      and red2: "t  (x2', m2) -2-ta2 (x2'', m2')"
      and bisim12': "t  (x1'', m1')  (x2'', m2')" and tasim: "ta1 ∼m ta2"
    from τ1 τ2 have [simp]: "x1' = x1" "x2' = x2" by(simp_all add: rtranclp_False τmoves_False)
    from bisim12 bisim_inv_red_other[OF bisim _ red1 red2 bisim12' tasim]
    show "t'  (x, m1')  (xx, m2')" by simp
  next
    fix t x1 m1 x2 m2 ta1 x1' m1'
    assume "t  (x1, m1)  (x2, m2)" "t  (x1, m1) -1-ta1 (x1', m1')"
    from simulation1[OF this]
    show "ta2 x2' m2'. t  (x2, m2) -2-ta2 (x2', m2')  t  (x1', m1')  (x2', m2')  ta1 ∼m ta2"
      by auto
  next
    fix t x1 m1 x2 m2 ta2 x2' m2'
    assume "t  (x1, m1)  (x2, m2)" "t  (x2, m2) -2-ta2 (x2', m2')"
    from simulation2[OF this]
    show "ta1 x1' m1'. t  (x1, m1) -1-ta1 (x1', m1')  t  (x1', m1')  (x2', m2')  ta1 ∼m ta2"
      by auto
  next
    show "(x1. final1 x1)  (x2. final2 x2)" by(rule ex_final1_conv_ex_final2)
  qed(fastforce simp add: bisim_final)+
qed

context FWbisimulation begin

lemma FWbisimulation_flip: "FWbisimulation final2 r2 final1 r1 (λt. flip (bisim t))"
apply(rule FWbisimulation.intro)
  apply(rule r2.multithreaded_axioms)
 apply(rule r1.multithreaded_axioms)
apply(rule FWbisimulation_axioms.intro)
   apply(unfold flip_simps)
   apply(rule bisimulation_axioms)
  apply(erule bisim_final[symmetric])
 apply(erule (5) bisim_inv_red_other)
apply(rule ex_final1_conv_ex_final2[symmetric])
done

end

lemma FWbisimulation_flip_simps [flip_simps]:
  "FWbisimulation final2 r2 final1 r1 (λt. flip (bisim t)) = FWbisimulation final1 r1 final2 r2 bisim"
by(auto dest: FWbisimulation.FWbisimulation_flip simp only: flip_flip)

context FWbisimulation begin

text ‹
  The notation for mbisim is lost because @{term "bisim_wait"} is instantiated to @{term "λx1 x2. True"}.
  This reintroduces the syntax, but it does not work for output mode. This would require a new abbreviation.
›
notation mbisim ("_ ≈m _" [50, 50] 60)

theorem mbisim_bisimulation:
  "bisimulation r1.redT r2.redT mbisim mta_bisim"
proof
  fix s1 s2 tta1 s1'
  assume mbisim: "s1 ≈m s2" and "r1.redT s1 tta1 s1'"
  from mthr.simulation1[OF this]
  show "s2' tta2. r2.redT s2 tta2 s2'  s1' ≈m s2'  tta1 ∼T tta2"
    by(auto simp add: τmoves_False mτmove_False)
next
  fix s2 s1 tta2 s2'
  assume "s1 ≈m s2" and "r2.redT s2 tta2 s2'"
  from mthr.simulation2[OF this]
  show "s1' tta1. r1.redT s1 tta1 s1'  s1' ≈m s2'  tta1 ∼T tta2"
    by(auto simp add: τmoves_False mτmove_False)
qed

lemma mbisim_wset_eq:
  "s1 ≈m s2  wset s1 = wset s2"
by(simp add: mbisim_def)

lemma mbisim_mfinal:
  "s1 ≈m s2  r1.mfinal s1  r2.mfinal s2"
apply(auto intro!: r2.mfinalI r1.mfinalI dest: mbisim_thrD2 mbisim_thrD1 bisim_final elim: r1.mfinalE r2.mfinalE)
apply(frule (1) mbisim_thrD2, drule mbisim_wset_eq, auto elim: r1.mfinalE)
apply(frule (1) mbisim_thrD1, drule mbisim_wset_eq, auto elim: r2.mfinalE)
done

end

sublocale FWbisimulation < mthr: bisimulation r1.redT r2.redT mbisim mta_bisim
by(rule mbisim_bisimulation)

sublocale FWbisimulation < mthr: bisimulation_final r1.redT r2.redT mbisim mta_bisim r1.mfinal r2.mfinal
by(unfold_locales)(rule mbisim_mfinal)

end