Theory DefAss

(*  Title:      JinjaDCI/J/DefAss.thy
    Author:     Tobias Nipkow, Susannah Mansky
    Copyright   2003 Technische Universitaet Muenchen, 2019-20 UIUC

    Based on the Jinja theory J/DefAss.thy by Tobias Nipkow
*)

section ‹ Definite assignment ›

theory DefAss imports BigStep begin

subsection "Hypersets"

type_synonym 'a hyperset = "'a set option"

definition hyperUn :: "'a hyperset  'a hyperset  'a hyperset"   (infixl "" 65)
where
  "A  B    case A of None  None
                 | A  (case B of None  None | B  A  B)"

definition hyperInt :: "'a hyperset  'a hyperset  'a hyperset"   (infixl "" 70)
where
  "A  B    case A of None  B
                 | A  (case B of None  A | B  A  B)"

definition hyperDiff1 :: "'a hyperset  'a  'a hyperset"   (infixl "" 65)
where
  "A  a    case A of None  None | A  A - {a}"

definition hyper_isin :: "'a  'a hyperset  bool"   (infix "∈∈" 50)
where
  "a ∈∈ A    case A of None  True | A  a  A"

definition hyper_subset :: "'a hyperset  'a hyperset  bool"   (infix "" 50)
where
  "A  B    case B of None  True
                 | B  (case A of None  False | A  A  B)"

lemmas hyperset_defs =
 hyperUn_def hyperInt_def hyperDiff1_def hyper_isin_def hyper_subset_def

lemma [simp]: "{}  A = A    A  {} = A"
(*<*)by(simp add:hyperset_defs)(*>*)

lemma [simp]: "A  B = A  B  A  a = A - {a}"
(*<*)by(simp add:hyperset_defs)(*>*)

lemma [simp]: "None  A = None  A  None = None"
(*<*)by(simp add:hyperset_defs)(*>*)

lemma [simp]: "a ∈∈ None  None  a = None"
(*<*)by(simp add:hyperset_defs)(*>*)

lemma hyper_isin_union: "x ∈∈ A  x ∈∈ A  B"
 by(case_tac B, auto simp: hyper_isin_def)

lemma hyperUn_assoc: "(A  B)  C = A  (B  C)"
(*<*)by(simp add:hyperset_defs Un_assoc)(*>*)

lemma hyper_insert_comm: "A  {a} = {a}  A  A  ({a}  B) = {a}  (A  B)"
(*<*)by(simp add:hyperset_defs)(*>*)

lemma hyper_comm: "A  B = B  A  A  B  C = B  A  C"
(*<*)
proof(cases A)
  case SomeA: Some then show ?thesis
  proof(cases B)
    case SomeB: Some with SomeA show ?thesis
    proof(cases C)
      case SomeC: Some with SomeA SomeB show ?thesis
        by(simp add: Un_left_commute Un_commute)
    qed (simp add: Un_commute)
  qed simp
qed simp
(*>*)

subsection "Definite assignment"

primrec
  𝒜  :: "'a exp  'a hyperset"
  and 𝒜s :: "'a exp list  'a hyperset"
where
  "𝒜 (new C) = {}"
| "𝒜 (Cast C e) = 𝒜 e"
| "𝒜 (Val v) = {}"
| "𝒜 (e1 «bop» e2) = 𝒜 e1  𝒜 e2"
| "𝒜 (Var V) = {}"
| "𝒜 (LAss V e) = {V}  𝒜 e"
| "𝒜 (eF{D}) = 𝒜 e"
| "𝒜 (CsF{D}) = {}"
| "𝒜 (e1F{D}:=e2) = 𝒜 e1  𝒜 e2"
| "𝒜 (CsF{D}:=e2) = 𝒜 e2"
| "𝒜 (eM(es)) = 𝒜 e  𝒜s es"
| "𝒜 (CsM(es)) = 𝒜s es"
| "𝒜 ({V:T; e}) = 𝒜 e  V"
| "𝒜 (e1;;e2) = 𝒜 e1  𝒜 e2"
| "𝒜 (if (e) e1 else e2) =  𝒜 e  (𝒜 e1  𝒜 e2)"
| "𝒜 (while (b) e) = 𝒜 b"
| "𝒜 (throw e) = None"
| "𝒜 (try e1 catch(C V) e2) = 𝒜 e1  (𝒜 e2  V)"
| "𝒜 (INIT C (Cs,b)  e) = {}"
| "𝒜 (RI (C,e);Cs  e') = 𝒜 e"

| "𝒜s ([]) = {}"
| "𝒜s (e#es) = 𝒜 e  𝒜s es"

primrec
  𝒟  :: "'a exp  'a hyperset  bool"
  and 𝒟s :: "'a exp list  'a hyperset  bool"
where
  "𝒟 (new C) A = True"
| "𝒟 (Cast C e) A = 𝒟 e A"
| "𝒟 (Val v) A = True"
| "𝒟 (e1 «bop» e2) A = (𝒟 e1 A  𝒟 e2 (A  𝒜 e1))"
| "𝒟 (Var V) A = (V ∈∈ A)"
| "𝒟 (LAss V e) A = 𝒟 e A"
| "𝒟 (eF{D}) A = 𝒟 e A"
| "𝒟 (CsF{D}) A = True"
| "𝒟 (e1F{D}:=e2) A = (𝒟 e1 A  𝒟 e2 (A  𝒜 e1))"
| "𝒟 (CsF{D}:=e2) A = 𝒟 e2 A"
| "𝒟 (eM(es)) A = (𝒟 e A  𝒟s es (A  𝒜 e))"
| "𝒟 (CsM(es)) A = 𝒟s es A"
| "𝒟 ({V:T; e}) A = 𝒟 e (A  V)"
| "𝒟 (e1;;e2) A = (𝒟 e1 A  𝒟 e2 (A  𝒜 e1))"
| "𝒟 (if (e) e1 else e2) A =
  (𝒟 e A  𝒟 e1 (A  𝒜 e)  𝒟 e2 (A  𝒜 e))"
| "𝒟 (while (e) c) A = (𝒟 e A  𝒟 c (A  𝒜 e))"
| "𝒟 (throw e) A = 𝒟 e A"
| "𝒟 (try e1 catch(C V) e2) A = (𝒟 e1 A  𝒟 e2 (A  {V}))"
| "𝒟 (INIT C (Cs,b)  e) A = 𝒟 e A"
| "𝒟 (RI (C,e);Cs  e') A = (𝒟 e A  𝒟 e' A)"

| "𝒟s ([]) A = True"
| "𝒟s (e#es) A = (𝒟 e A  𝒟s es (A  𝒜 e))"

lemma As_map_Val[simp]: "𝒜s (map Val vs) = {}"
(*<*)by (induct vs) simp_all(*>*)

lemma D_append[iff]: "A. 𝒟s (es @ es') A = (𝒟s es A  𝒟s es' (A  𝒜s es))"
(*<*)by (induct es type:list) (auto simp:hyperUn_assoc)(*>*)


lemma A_fv: "A. 𝒜 e = A  A  fv e"
and  "A. 𝒜s es = A  A  fvs es"
(*<*)
by (induct e and es rule: 𝒜.induct 𝒜s.induct)
   (fastforce simp add:hyperset_defs)+
(*>*)


lemma sqUn_lem: "A  A'  A  B  A'  B"
(*<*)by(simp add:hyperset_defs) blast(*>*)

lemma diff_lem: "A  A'  A  b  A'  b"
(*<*)by(simp add:hyperset_defs) blast(*>*)

(* This order of the premises avoids looping of the simplifier *)
lemma D_mono: "A A'. A  A'  𝒟 e A  𝒟 (e::'a exp) A'"
and Ds_mono: "A A'. A  A'  𝒟s es A  𝒟s (es::'a exp list) A'"
(*<*)
proof(induct e and es rule: 𝒟.induct 𝒟s.induct)
  case BinOp then show ?case by simp (iprover dest:sqUn_lem)
next
  case Var then show ?case by (fastforce simp add:hyperset_defs)
next
  case FAss then show ?case by simp (iprover dest:sqUn_lem)
next
  case Call then show ?case by simp (iprover dest:sqUn_lem)
next
  case Block then show ?case by simp (iprover dest:diff_lem)
next
  case Seq then show ?case by simp (iprover dest:sqUn_lem)
next
  case Cond then show ?case by simp (iprover dest:sqUn_lem)
next
  case While then show ?case by simp (iprover dest:sqUn_lem)
next
  case TryCatch then show ?case by simp (iprover dest:sqUn_lem)
next
  case Cons_exp then show ?case by simp (iprover dest:sqUn_lem)
qed simp_all
(*>*)

(* And this is the order of premises preferred during application: *)
lemma D_mono': "𝒟 e A  A  A'  𝒟 e A'"
and Ds_mono': "𝒟s es A  A  A'  𝒟s es A'"
(*<*)by(blast intro:D_mono, blast intro:Ds_mono)(*>*)


lemma Ds_Vals: "𝒟s (map Val vs) A" by(induct vs, auto)

end