Theory execute_WellType
section ‹Code Generation For WellType›
theory execute_WellType
imports
WellType Examples
begin
lemma WTCond1:
"⟦P,E ⊢ e :: Boolean; P,E ⊢ e⇩1::T⇩1; P,E ⊢ e⇩2::T⇩2; P ⊢ T⇩1 ≤ T⇩2;
P ⊢ T⇩2 ≤ T⇩1 ⟶ T⇩2 = T⇩1 ⟧ ⟹ P,E ⊢ if (e) e⇩1 else e⇩2 :: T⇩2"
by (fastforce)
lemma WTCond2:
"⟦P,E ⊢ e :: Boolean; P,E ⊢ e⇩1::T⇩1; P,E ⊢ e⇩2::T⇩2; P ⊢ T⇩2 ≤ T⇩1;
P ⊢ T⇩1 ≤ T⇩2 ⟶ T⇩1 = T⇩2 ⟧ ⟹ P,E ⊢ if (e) e⇩1 else e⇩2 :: T⇩1"
by (fastforce)
lemmas [code_pred_intro] =
WT_WTs.WTNew
WT_WTs.WTCast
WT_WTs.WTVal
WT_WTs.WTVar
WT_WTs.WTBinOpEq
WT_WTs.WTBinOpAdd
WT_WTs.WTLAss
WT_WTs.WTFAcc
WT_WTs.WTFAss
WT_WTs.WTCall
WT_WTs.WTBlock
WT_WTs.WTSeq
declare
WTCond1 [code_pred_intro WTCond1]
WTCond2 [code_pred_intro WTCond2]
lemmas [code_pred_intro] =
WT_WTs.WTWhile
WT_WTs.WTThrow
WT_WTs.WTTry
WT_WTs.WTNil
WT_WTs.WTCons
code_pred
(modes: i ⇒ i ⇒ i ⇒ i ⇒ bool as type_check, i ⇒ i ⇒ i ⇒ o ⇒ bool as infer_type)
WT
proof -
case WT
from WT.prems show thesis
proof(cases (no_simp))
case (WTCond E e e1 T1 e2 T2 T)
from ‹x ⊢ T1 ≤ T2 ∨ x ⊢ T2 ≤ T1› show thesis
proof
assume "x ⊢ T1 ≤ T2"
with ‹x ⊢ T1 ≤ T2 ⟶ T = T2› have "T = T2" ..
from ‹xa = E› ‹xb = if (e) e1 else e2› ‹xc = T› ‹x,E ⊢ e :: Boolean›
‹x,E ⊢ e1 :: T1› ‹x,E ⊢ e2 :: T2› ‹x ⊢ T1 ≤ T2› ‹x ⊢ T2 ≤ T1 ⟶ T = T1›
show ?thesis unfolding ‹T = T2› by(rule WT.WTCond1[OF refl])
next
assume "x ⊢ T2 ≤ T1"
with ‹x ⊢ T2 ≤ T1 ⟶ T = T1› have "T = T1" ..
from ‹xa = E› ‹xb = if (e) e1 else e2› ‹xc = T› ‹x,E ⊢ e :: Boolean›
‹x,E ⊢ e1 :: T1› ‹x,E ⊢ e2 :: T2› ‹x ⊢ T2 ≤ T1› ‹x ⊢ T1 ≤ T2 ⟶ T = T2›
show ?thesis unfolding ‹T = T1› by(rule WT.WTCond2[OF refl])
qed
qed(assumption|erule (2) WT.that[OF refl])+
next
case WTs
from WTs.prems show thesis
by(cases (no_simp))(assumption|erule (2) WTs.that[OF refl])+
qed
notation infer_type ("_,_ ⊢ _ :: '_" [51,51,51]100)
definition test1 where "test1 = [],Map.empty ⊢ testExpr1 :: _"
definition test2 where "test2 = [], Map.empty ⊢ testExpr2 :: _"
definition test3 where "test3 = [], Map.empty(''V'' ↦ Integer) ⊢ testExpr3 :: _"
definition test4 where "test4 = [], Map.empty(''V'' ↦ Integer) ⊢ testExpr4 :: _"
definition test5 where "test5 = [classObject, (''C'',(''Object'',[(''F'',Integer)],[]))], Map.empty ⊢ testExpr5 :: _"
definition test6 where "test6 = [classObject, classI], Map.empty ⊢ testExpr6 :: _"
ML_val ‹
val SOME(@{code Integer}, _) = Predicate.yield @{code test1};
val SOME(@{code Integer}, _) = Predicate.yield @{code test2};
val SOME(@{code Integer}, _) = Predicate.yield @{code test3};
val SOME(@{code Void}, _) = Predicate.yield @{code test4};
val SOME(@{code Void}, _) = Predicate.yield @{code test5};
val SOME(@{code Integer}, _) = Predicate.yield @{code test6};
›
definition testmb_isNull where "testmb_isNull = [classObject, classA], Map.empty([this] [↦] [Class ''A'']) ⊢ mb_isNull :: _"
definition testmb_add where "testmb_add = [classObject, classA], Map.empty([this,''i''] [↦] [Class ''A'',Integer]) ⊢ mb_add :: _"
definition testmb_mult_cond where "testmb_mult_cond = [classObject, classA], Map.empty([this,''j''] [↦] [Class ''A'',Integer]) ⊢ mb_mult_cond :: _"
definition testmb_mult_block where "testmb_mult_block = [classObject, classA], Map.empty([this,''i'',''j'',''temp''] [↦] [Class ''A'',Integer,Integer,Integer]) ⊢ mb_mult_block :: _"
definition testmb_mult where "testmb_mult = [classObject, classA], Map.empty([this,''i'',''j''] [↦] [Class ''A'',Integer,Integer]) ⊢ mb_mult :: _"
ML_val ‹
val SOME(@{code Boolean}, _) = Predicate.yield @{code testmb_isNull};
val SOME(@{code Integer}, _) = Predicate.yield @{code testmb_add};
val SOME(@{code Boolean}, _) = Predicate.yield @{code testmb_mult_cond};
val SOME(@{code Void}, _) = Predicate.yield @{code testmb_mult_block};
val SOME(@{code Integer}, _) = Predicate.yield @{code testmb_mult};
›
definition test where "test = [classObject, classA], Map.empty ⊢ testExpr_ClassA :: _"
ML_val ‹
val SOME(@{code Integer}, _) = Predicate.yield @{code test};
›
end