Theory Complex_Vector_Spaces
section ‹‹Complex_Vector_Spaces› -- Complex Vector Spaces›
theory Complex_Vector_Spaces
imports
"HOL-Analysis.Elementary_Topology"
"HOL-Analysis.Operator_Norm"
"HOL-Analysis.Elementary_Normed_Spaces"
"HOL-Library.Set_Algebras"
"HOL-Analysis.Starlike"
"HOL-Types_To_Sets.Types_To_Sets"
"HOL-Library.Complemented_Lattices"
"HOL-Library.Function_Algebras"
Extra_Vector_Spaces
Extra_Ordered_Fields
Extra_Operator_Norm
Extra_General
Complex_Vector_Spaces0
begin
bundle notation_norm begin
notation norm ("∥_∥")
end
unbundle lattice_syntax
subsection ‹Misc›
lemma (in vector_space) span_image_scale':
assumes nz: "⋀x. x ∈ S ⟹ c x ≠ 0"
shows "span ((λx. c x *s x) ` S) = span S"
proof
have ‹((λx. c x *s x) ` S) ⊆ span S›
by (metis (mono_tags, lifting) image_subsetI in_mono local.span_superset local.subspace_scale local.subspace_span)
then show ‹span ((λx. c x *s x) ` S) ⊆ span S›
by (simp add: local.span_minimal)
next
have ‹x ∈ span ((λx. c x *s x) ` S)› if ‹x ∈ S› for x
proof -
have ‹x = inverse (c x) *s c x *s x›
by (simp add: nz that)
moreover have ‹c x *s x ∈ (λx. c x *s x) ` S›
using that by blast
ultimately show ?thesis
by (metis local.span_base local.span_scale)
qed
then show ‹span S ⊆ span ((λx. c x *s x) ` S)›
by (simp add: local.span_minimal subsetI)
qed
lemma (in scaleC) scaleC_real: assumes "r∈ℝ" shows "r *⇩C x = Re r *⇩R x"
unfolding scaleR_scaleC using assms by simp
lemma of_complex_of_real_eq [simp]: "of_complex (of_real n) = of_real n"
unfolding of_complex_def of_real_def unfolding scaleR_scaleC by simp
lemma Complexs_of_real [simp]: "of_real r ∈ ℂ"
unfolding Complexs_def of_real_def of_complex_def
apply (subst scaleR_scaleC) by simp
lemma Reals_in_Complexs: "ℝ ⊆ ℂ"
unfolding Reals_def by auto
lemma (in bounded_clinear) bounded_linear: "bounded_linear f"
by standard
lemma clinear_times: "clinear (λx. c * x)"
for c :: "'a::complex_algebra"
by (auto simp: clinearI distrib_left)
lemma (in clinear) linear: ‹linear f›
by standard
lemma bounded_clinearI:
assumes ‹⋀b1 b2. f (b1 + b2) = f b1 + f b2›
assumes ‹⋀r b. f (r *⇩C b) = r *⇩C f b›
assumes ‹⋀x. norm (f x) ≤ norm x * K›
shows "bounded_clinear f"
using assms by (auto intro!: exI bounded_clinear.intro clinearI simp: bounded_clinear_axioms_def)
lemma bounded_clinear_id[simp]: ‹bounded_clinear id›
by (simp add: id_def)
lemma bounded_clinear_0[simp]: ‹bounded_clinear 0›
by (auto intro!: bounded_clinearI[where K=0])
definition cbilinear :: ‹('a::complex_vector ⇒ 'b::complex_vector ⇒ 'c::complex_vector) ⇒ bool›
where ‹cbilinear = (λ f. (∀ y. clinear (λ x. f x y)) ∧ (∀ x. clinear (λ y. f x y)) )›
lemma cbilinear_add_left:
assumes ‹cbilinear f›
shows ‹f (a + b) c = f a c + f b c›
by (smt (verit, del_insts) assms cbilinear_def complex_vector.linear_add)
lemma cbilinear_add_right:
assumes ‹cbilinear f›
shows ‹f a (b + c) = f a b + f a c›
by (smt (verit, del_insts) assms cbilinear_def complex_vector.linear_add)
lemma cbilinear_times:
fixes g' :: ‹'a::complex_vector ⇒ complex› and g :: ‹'b::complex_vector ⇒ complex›
assumes ‹⋀ x y. h x y = (g' x)*(g y)› and ‹clinear g› and ‹clinear g'›
shows ‹cbilinear h›
proof -
have w1: "h (b1 + b2) y = h b1 y + h b2 y"
for b1 :: 'a
and b2 :: 'a
and y
proof-
have ‹h (b1 + b2) y = g' (b1 + b2) * g y›
using ‹⋀ x y. h x y = (g' x)*(g y)›
by auto
also have ‹… = (g' b1 + g' b2) * g y›
using ‹clinear g'›
unfolding clinear_def
by (simp add: assms(3) complex_vector.linear_add)
also have ‹… = g' b1 * g y + g' b2 * g y›
by (simp add: ring_class.ring_distribs(2))
also have ‹… = h b1 y + h b2 y›
using assms(1) by auto
finally show ?thesis by blast
qed
have w2: "h (r *⇩C b) y = r *⇩C h b y"
for r :: complex
and b :: 'a
and y
proof-
have ‹h (r *⇩C b) y = g' (r *⇩C b) * g y›
by (simp add: assms(1))
also have ‹… = r *⇩C (g' b * g y)›
by (simp add: assms(3) complex_vector.linear_scale)
also have ‹… = r *⇩C (h b y)›
by (simp add: assms(1))
finally show ?thesis by blast
qed
have "clinear (λx. h x y)"
for y :: 'b
unfolding clinear_def
by (meson clinearI clinear_def w1 w2)
hence t2: "∀y. clinear (λx. h x y)"
by simp
have v1: "h x (b1 + b2) = h x b1 + h x b2"
for b1 :: 'b
and b2 :: 'b
and x
proof-
have ‹h x (b1 + b2) = g' x * g (b1 + b2)›
using ‹⋀ x y. h x y = (g' x)*(g y)›
by auto
also have ‹… = g' x * (g b1 + g b2)›
using ‹clinear g'›
unfolding clinear_def
by (simp add: assms(2) complex_vector.linear_add)
also have ‹… = g' x * g b1 + g' x * g b2›
by (simp add: ring_class.ring_distribs(1))
also have ‹… = h x b1 + h x b2›
using assms(1) by auto
finally show ?thesis by blast
qed
have v2: "h x (r *⇩C b) = r *⇩C h x b"
for r :: complex
and b :: 'b
and x
proof-
have ‹h x (r *⇩C b) = g' x * g (r *⇩C b)›
by (simp add: assms(1))
also have ‹… = r *⇩C (g' x * g b)›
by (simp add: assms(2) complex_vector.linear_scale)
also have ‹… = r *⇩C (h x b)›
by (simp add: assms(1))
finally show ?thesis by blast
qed
have "Vector_Spaces.linear (*⇩C) (*⇩C) (h x)"
for x :: 'a
using v1 v2
by (meson clinearI clinear_def)
hence t1: "∀x. clinear (h x)"
unfolding clinear_def
by simp
show ?thesis
unfolding cbilinear_def
by (simp add: t1 t2)
qed
lemma csubspace_is_subspace: "csubspace A ⟹ subspace A"
apply (rule subspaceI)
by (auto simp: complex_vector.subspace_def scaleR_scaleC)
lemma span_subset_cspan: "span A ⊆ cspan A"
unfolding span_def complex_vector.span_def
by (simp add: csubspace_is_subspace hull_antimono)
lemma cindependent_implies_independent:
assumes "cindependent (S::'a::complex_vector set)"
shows "independent S"
using assms unfolding dependent_def complex_vector.dependent_def
using span_subset_cspan by blast
lemma cspan_singleton: "cspan {x} = {α *⇩C x| α. True}"
proof -
have ‹cspan {x} = {y. y∈cspan {x}}›
by auto
also have ‹… = {α *⇩C x| α. True}›
apply (subst complex_vector.span_breakdown_eq)
by auto
finally show ?thesis
by -
qed
lemma cspan_as_span:
"cspan (B::'a::complex_vector set) = span (B ∪ scaleC 𝗂 ` B)"
proof (intro set_eqI iffI)
let ?cspan = complex_vector.span
let ?rspan = real_vector.span
fix ψ
assume cspan: "ψ ∈ ?cspan B"
have "∃B' r. finite B' ∧ B' ⊆ B ∧ ψ = (∑b∈B'. r b *⇩C b)"
using complex_vector.span_explicit[of B] cspan
by auto
then obtain B' r where "finite B'" and "B' ⊆ B" and ψ_explicit: "ψ = (∑b∈B'. r b *⇩C b)"
by atomize_elim
define R where "R = B ∪ scaleC 𝗂 ` B"
have x2: "(case x of (b, i) ⇒ if i
then Im (r b) *⇩R 𝗂 *⇩C b
else Re (r b) *⇩R b) ∈ span (B ∪ (*⇩C) 𝗂 ` B)"
if "x ∈ B' × (UNIV::bool set)"
for x :: "'a × bool"
using that ‹B' ⊆ B› by (auto simp add: real_vector.span_base real_vector.span_scale subset_iff)
have x1: "ψ = (∑x∈B'. ∑i∈UNIV. if i then Im (r x) *⇩R 𝗂 *⇩C x else Re (r x) *⇩R x)"
if "⋀b. r b *⇩C b = Re (r b) *⇩R b + Im (r b) *⇩R 𝗂 *⇩C b"
using that by (simp add: UNIV_bool ψ_explicit)
moreover have "r b *⇩C b = Re (r b) *⇩R b + Im (r b) *⇩R 𝗂 *⇩C b" for b
using complex_eq scaleC_add_left scaleC_scaleC scaleR_scaleC
by (metis (no_types, lifting) complex_of_real_i i_complex_of_real)
ultimately have "ψ = (∑(b,i)∈(B'×UNIV). if i then Im (r b) *⇩R (𝗂 *⇩C b) else Re (r b) *⇩R b)"
by (simp add: sum.cartesian_product)
also have "… ∈ ?rspan R"
unfolding R_def
using x2
by (rule real_vector.span_sum)
finally show "ψ ∈ ?rspan R" by -
next
let ?cspan = complex_vector.span
let ?rspan = real_vector.span
define R where "R = B ∪ scaleC 𝗂 ` B"
fix ψ
assume rspan: "ψ ∈ ?rspan R"
have "subspace {a. a ∈ cspan B}"
by (rule real_vector.subspaceI, auto simp add: complex_vector.span_zero
complex_vector.span_add_eq2 complex_vector.span_scale scaleR_scaleC)
moreover have "x ∈ cspan B"
if "x ∈ R"
for x :: 'a
using that R_def complex_vector.span_base complex_vector.span_scale by fastforce
ultimately show "ψ ∈ ?cspan B"
using real_vector.span_induct rspan by blast
qed
lemma isomorphic_equal_cdim:
assumes lin_f: ‹clinear f›
assumes inj_f: ‹inj_on f (cspan S)›
assumes im_S: ‹f ` S = T›
shows ‹cdim S = cdim T›
proof -
obtain SB where SB_span: "cspan SB = cspan S" and indep_SB: ‹cindependent SB›
by (metis complex_vector.basis_exists complex_vector.span_mono complex_vector.span_span subset_antisym)
with lin_f inj_f have indep_fSB: ‹cindependent (f ` SB)›
apply (rule_tac complex_vector.linear_independent_injective_image)
by auto
from lin_f have ‹cspan (f ` SB) = f ` cspan SB›
by (meson complex_vector.linear_span_image)
also from SB_span lin_f have ‹… = cspan T›
by (metis complex_vector.linear_span_image im_S)
finally have ‹cdim T = card (f ` SB)›
using indep_fSB complex_vector.dim_eq_card by blast
also have ‹… = card SB›
apply (rule card_image) using inj_f
by (metis SB_span complex_vector.linear_inj_on_span_iff_independent_image indep_fSB lin_f)
also have ‹… = cdim S›
using indep_SB SB_span
by (metis complex_vector.dim_eq_card)
finally show ?thesis by simp
qed
lemma cindependent_inter_scaleC_cindependent:
assumes a1: "cindependent (B::'a::complex_vector set)" and a3: "c ≠ 1"
shows "B ∩ (*⇩C) c ` B = {}"
proof (rule classical, cases ‹c = 0›)
case True
then show ?thesis
using a1 by (auto simp add: complex_vector.dependent_zero)
next
case False
assume "¬(B ∩ (*⇩C) c ` B = {})"
hence "B ∩ (*⇩C) c ` B ≠ {}"
by blast
then obtain x where u1: "x ∈ B ∩ (*⇩C) c ` B"
by blast
then obtain b where u2: "x = b" and u3: "b∈B"
by blast
then obtain b' where u2': "x = c *⇩C b'" and u3': "b'∈B"
using u1
by blast
have g1: "b = c *⇩C b'"
using u2 and u2' by simp
hence "b ∈ complex_vector.span {b'}"
using False
by (simp add: complex_vector.span_base complex_vector.span_scale)
hence "b = b'"
by (metis u3' a1 complex_vector.dependent_def complex_vector.span_base
complex_vector.span_scale insertE insert_Diff u2 u2' u3)
hence "b' = c *⇩C b'"
using g1 by blast
thus ?thesis
by (metis a1 a3 complex_vector.dependent_zero complex_vector.scale_right_imp_eq
mult_cancel_right2 scaleC_scaleC u3')
qed
lemma real_independent_from_complex_independent:
assumes "cindependent (B::'a::complex_vector set)"
defines "B' == ((*⇩C) 𝗂 ` B)"
shows "independent (B ∪ B')"
proof (rule notI)
assume ‹dependent (B ∪ B')›
then obtain T f0 x where [simp]: ‹finite T› and ‹T ⊆ B ∪ B'› and f0_sum: ‹(∑v∈T. f0 v *⇩R v) = 0›
and x: ‹x ∈ T› and f0_x: ‹f0 x ≠ 0›
by (auto simp: real_vector.dependent_explicit)
define f T1 T2 T' f' x' where ‹f v = (if v ∈ T then f0 v else 0)›
and ‹T1 = T ∩ B› and ‹T2 = scaleC (-𝗂) ` (T ∩ B')›
and ‹T' = T1 ∪ T2› and ‹f' v = f v + 𝗂 * f (𝗂 *⇩C v)›
and ‹x' = (if x ∈ T1 then x else -𝗂 *⇩C x)› for v
have ‹B ∩ B' = {}›
by (simp add: assms cindependent_inter_scaleC_cindependent)
have ‹T' ⊆ B›
by (auto simp: T'_def T1_def T2_def B'_def)
have [simp]: ‹finite T'› ‹finite T1› ‹finite T2›
by (auto simp add: T'_def T1_def T2_def)
have f_sum: ‹(∑v∈T. f v *⇩R v) = 0›
unfolding f_def using f0_sum by auto
have f_x: ‹f x ≠ 0›
using f0_x x by (auto simp: f_def)
have f'_sum: ‹(∑v∈T'. f' v *⇩C v) = 0›
proof -
have ‹(∑v∈T'. f' v *⇩C v) = (∑v∈T'. complex_of_real (f v) *⇩C v) + (∑v∈T'. (𝗂 * complex_of_real (f (𝗂 *⇩C v))) *⇩C v)›
by (auto simp: f'_def sum.distrib scaleC_add_left)
also have ‹(∑v∈T'. complex_of_real (f v) *⇩C v) = (∑v∈T1. f v *⇩R v)› (is ‹_ = ?left›)
apply (auto simp: T'_def scaleR_scaleC intro!: sum.mono_neutral_cong_right)
using T'_def T1_def ‹T' ⊆ B› f_def by auto
also have ‹(∑v∈T'. (𝗂 * complex_of_real (f (𝗂 *⇩C v))) *⇩C v) = (∑v∈T2. (𝗂 * complex_of_real (f (𝗂 *⇩C v))) *⇩C v)› (is ‹_ = ?right›)
apply (auto simp: T'_def intro!: sum.mono_neutral_cong_right)
by (smt (z3) B'_def IntE IntI T1_def T2_def ‹f ≡ λv. if v ∈ T then f0 v else 0› add.inverse_inverse complex_vector.vector_space_axioms i_squared imageI mult_minus_left vector_space.vector_space_assms(3) vector_space.vector_space_assms(4))
also have ‹?right = (∑v∈T∩B'. f v *⇩R v)› (is ‹_ = ?right›)
apply (rule sum.reindex_cong[symmetric, where l=‹scaleC 𝗂›])
apply (auto simp: T2_def image_image scaleR_scaleC)
using inj_on_def by fastforce
also have ‹?left + ?right = (∑v∈T. f v *⇩R v)›
apply (subst sum.union_disjoint[symmetric])
using ‹B ∩ B' = {}› ‹T ⊆ B ∪ B'› apply (auto simp: T1_def)
by (metis Int_Un_distrib Un_Int_eq(4) sup.absorb_iff1)
also have ‹… = 0›
by (rule f_sum)
finally show ?thesis
by -
qed
have x': ‹x' ∈ T'›
using ‹T ⊆ B ∪ B'› x by (auto simp: x'_def T'_def T1_def T2_def)
have f'_x': ‹f' x' ≠ 0›
using Complex_eq Complex_eq_0 f'_def f_x x'_def by auto
from ‹finite T'› ‹T' ⊆ B› f'_sum x' f'_x'
have ‹cdependent B›
using complex_vector.independent_explicit_module by blast
with assms show False
by auto
qed
lemma crepresentation_from_representation:
assumes a1: "cindependent B" and a2: "b ∈ B" and a3: "finite B"
shows "crepresentation B ψ b = (representation (B ∪ (*⇩C) 𝗂 ` B) ψ b)
+ 𝗂 *⇩C (representation (B ∪ (*⇩C) 𝗂 ` B) ψ (𝗂 *⇩C b))"
proof (cases "ψ ∈ cspan B")
define B' where "B' = B ∪ (*⇩C) 𝗂 ` B"
case True
define r where "r v = real_vector.representation B' ψ v" for v
define r' where "r' v = real_vector.representation B' ψ (𝗂 *⇩C v)" for v
define f where "f v = r v + 𝗂 *⇩C r' v" for v
define g where "g v = crepresentation B ψ v" for v
have "(∑v | g v ≠ 0. g v *⇩C v) = ψ"
unfolding g_def
using Collect_cong Collect_mono_iff DiffD1 DiffD2 True a1
complex_vector.finite_representation
complex_vector.sum_nonzero_representation_eq sum.mono_neutral_cong_left
by fastforce
moreover have "finite {v. g v ≠ 0}"
unfolding g_def
by (simp add: complex_vector.finite_representation)
moreover have "v ∈ B"
if "g v ≠ 0" for v
using that unfolding g_def
by (simp add: complex_vector.representation_ne_zero)
ultimately have rep1: "(∑v∈B. g v *⇩C v) = ψ"
unfolding g_def
using a3 True a1 complex_vector.sum_representation_eq by blast
have l0': "inj ((*⇩C) 𝗂::'a ⇒'a)"
unfolding inj_def
by simp
have l0: "inj ((*⇩C) (- 𝗂)::'a ⇒'a)"
unfolding inj_def
by simp
have l1: "(*⇩C) (- 𝗂) ` B ∩ B = {}"
using cindependent_inter_scaleC_cindependent[where B=B and c = "- 𝗂"]
by (metis Int_commute a1 add.inverse_inverse complex_i_not_one i_squared mult_cancel_left1
neg_equal_0_iff_equal)
have l2: "B ∩ (*⇩C) 𝗂 ` B = {}"
by (simp add: a1 cindependent_inter_scaleC_cindependent)
have rr1: "r (𝗂 *⇩C v) = r' v" for v
unfolding r_def r'_def
by simp
have k1: "independent B'"
unfolding B'_def using a1 real_independent_from_complex_independent by simp
have "ψ ∈ span B'"
using B'_def True cspan_as_span by blast
have "v ∈ B'"
if "r v ≠ 0"
for v
unfolding r_def
using r_def real_vector.representation_ne_zero that by auto
have "finite B'"
unfolding B'_def using a3
by simp
have "(∑v∈B'. r v *⇩R v) = ψ"
unfolding r_def
using True Real_Vector_Spaces.real_vector.sum_representation_eq[where B = B' and basis = B'
and v = ψ]
by (smt Real_Vector_Spaces.dependent_raw_def ‹ψ ∈ Real_Vector_Spaces.span B'› ‹finite B'›
equalityD2 k1)
have d1: "(∑v∈B. r (𝗂 *⇩C v) *⇩R (𝗂 *⇩C v)) = (∑v∈(*⇩C) 𝗂 ` B. r v *⇩R v)"
using l0'
by (metis (mono_tags, lifting) inj_eq inj_on_def sum.reindex_cong)
have "(∑v∈B. (r v + 𝗂 * (r' v)) *⇩C v) = (∑v∈B. r v *⇩C v + (𝗂 * r' v) *⇩C v)"
by (meson scaleC_left.add)
also have "… = (∑v∈B. r v *⇩C v) + (∑v∈B. (𝗂 * r' v) *⇩C v)"
using sum.distrib by fastforce
also have "… = (∑v∈B. r v *⇩C v) + (∑v∈B. 𝗂 *⇩C (r' v *⇩C v))"
by auto
also have "… = (∑v∈B. r v *⇩R v) + (∑v∈B. 𝗂 *⇩C (r (𝗂 *⇩C v) *⇩R v))"
unfolding r'_def r_def
by (metis (mono_tags, lifting) scaleR_scaleC sum.cong)
also have "… = (∑v∈B. r v *⇩R v) + (∑v∈B. r (𝗂 *⇩C v) *⇩R (𝗂 *⇩C v))"
by (metis (no_types, lifting) complex_vector.scale_left_commute scaleR_scaleC)
also have "… = (∑v∈B. r v *⇩R v) + (∑v∈(*⇩C) 𝗂 ` B. r v *⇩R v)"
using d1
by simp
also have "… = ψ"
using l2 ‹(∑v∈B'. r v *⇩R v) = ψ›
unfolding B'_def
by (simp add: a3 sum.union_disjoint)
finally have "(∑v∈B. f v *⇩C v) = ψ" unfolding r'_def r_def f_def by simp
hence "0 = (∑v∈B. f v *⇩C v) - (∑v∈B. crepresentation B ψ v *⇩C v)"
using rep1
unfolding g_def
by simp
also have "… = (∑v∈B. f v *⇩C v - crepresentation B ψ v *⇩C v)"
by (simp add: sum_subtractf)
also have "… = (∑v∈B. (f v - crepresentation B ψ v) *⇩C v)"
by (metis scaleC_left.diff)
finally have "0 = (∑v∈B. (f v - crepresentation B ψ v) *⇩C v)".
hence "(∑v∈B. (f v - crepresentation B ψ v) *⇩C v) = 0"
by simp
hence "f b - crepresentation B ψ b = 0"
using a1 a2 a3 complex_vector.independentD[where s = B and t = B
and u = "λv. f v - crepresentation B ψ v" and v = b]
order_refl by smt
hence "crepresentation B ψ b = f b"
by simp
thus ?thesis unfolding f_def r_def r'_def B'_def by auto
next
define B' where "B' = B ∪ (*⇩C) 𝗂 ` B"
case False
have b2: "ψ ∉ real_vector.span B'"
unfolding B'_def
using False cspan_as_span by auto
have "ψ ∉ complex_vector.span B"
using False by blast
have "crepresentation B ψ b = 0"
unfolding complex_vector.representation_def
by (simp add: False)
moreover have "real_vector.representation B' ψ b = 0"
unfolding real_vector.representation_def
by (simp add: b2)
moreover have "real_vector.representation B' ψ ((*⇩C) 𝗂 b) = 0"
unfolding real_vector.representation_def
by (simp add: b2)
ultimately show ?thesis unfolding B'_def by simp
qed
lemma CARD_1_vec_0[simp]: ‹(ψ :: _ ::{complex_vector,CARD_1}) = 0›
by auto
lemma scaleC_cindependent:
assumes a1: "cindependent (B::'a::complex_vector set)" and a3: "c ≠ 0"
shows "cindependent ((*⇩C) c ` B)"
proof-
have "u y = 0"
if g1: "y∈S" and g2: "(∑x∈S. u x *⇩C x) = 0" and g3: "finite S" and g4: "S⊆(*⇩C) c ` B"
for u y S
proof-
define v where "v x = u (c *⇩C x)" for x
obtain S' where "S'⊆B" and S_S': "S = (*⇩C) c ` S'"
by (meson g4 subset_imageE)
have "inj ((*⇩C) c::'a⇒_)"
unfolding inj_def
using a3 by auto
hence "finite S'"
using S_S' finite_imageD g3 subset_inj_on by blast
have "t ∈ (*⇩C) (inverse c) ` S"
if "t ∈ S'" for t
proof-
have "c *⇩C t ∈ S"
using ‹S = (*⇩C) c ` S'› that by blast
hence "(inverse c) *⇩C (c *⇩C t) ∈ (*⇩C) (inverse c) ` S"
by blast
moreover have "(inverse c) *⇩C (c *⇩C t) = t"
by (simp add: a3)
ultimately show ?thesis by simp
qed
moreover have "t ∈ S'"
if "t ∈ (*⇩C) (inverse c) ` S" for t
proof-
obtain t' where "t = (inverse c) *⇩C t'" and "t' ∈ S"
using ‹t ∈ (*⇩C) (inverse c) ` S› by auto
have "c *⇩C t = c *⇩C ((inverse c) *⇩C t')"
using ‹t = (inverse c) *⇩C t'› by simp
also have "… = (c * (inverse c)) *⇩C t'"
by simp
also have "… = t'"
by (simp add: a3)
finally have "c *⇩C t = t'".
thus ?thesis using ‹t' ∈ S›
using ‹S = (*⇩C) c ` S'› a3 complex_vector.scale_left_imp_eq by blast
qed
ultimately have "S' = (*⇩C) (inverse c) ` S"
by blast
hence "inverse c *⇩C y ∈ S'"
using that(1) by blast
have t: "inj (((*⇩C) c)::'a ⇒ _)"
using a3 complex_vector.injective_scale[where c = c]
by blast
have "0 = (∑x∈(*⇩C) c ` S'. u x *⇩C x)"
using ‹S = (*⇩C) c ` S'› that(2) by auto
also have "… = (∑x∈S'. v x *⇩C (c *⇩C x))"
unfolding v_def
using t Groups_Big.comm_monoid_add_class.sum.reindex[where h = "((*⇩C) c)" and A = S'
and g = "λx. u x *⇩C x"] subset_inj_on by auto
also have "… = c *⇩C (∑x∈S'. v x *⇩C x)"
by (metis (mono_tags, lifting) complex_vector.scale_left_commute scaleC_right.sum sum.cong)
finally have "0 = c *⇩C (∑x∈S'. v x *⇩C x)".
hence "(∑x∈S'. v x *⇩C x) = 0"
using a3 by auto
hence "v (inverse c *⇩C y) = 0"
using ‹inverse c *⇩C y ∈ S'› ‹finite S'› ‹S' ⊆ B› a1
complex_vector.independentD
by blast
thus "u y = 0"
unfolding v_def
by (simp add: a3)
qed
thus ?thesis
using complex_vector.dependent_explicit
by (simp add: complex_vector.dependent_explicit )
qed
lemma cspan_eqI:
assumes ‹⋀a. a∈A ⟹ a∈cspan B›
assumes ‹⋀b. b∈B ⟹ b∈cspan A›
shows ‹cspan A = cspan B›
apply (rule complex_vector.span_subspace[rotated])
apply (rule complex_vector.span_minimal)
using assms by auto
lemma (in bounded_cbilinear) bounded_bilinear[simp]: "bounded_bilinear prod"
by standard
lemma norm_scaleC_sgn[simp]: ‹complex_of_real (norm ψ) *⇩C sgn ψ = ψ› for ψ :: "'a::complex_normed_vector"
apply (cases ‹ψ = 0›)
by (auto simp: sgn_div_norm scaleR_scaleC)
lemma scaleC_of_complex[simp]: ‹scaleC x (of_complex y) = of_complex (x * y)›
unfolding of_complex_def using scaleC_scaleC by blast
lemma bounded_clinear_inv:
assumes [simp]: ‹bounded_clinear f›
assumes b: ‹b > 0›
assumes bound: ‹⋀x. norm (f x) ≥ b * norm x›
assumes ‹surj f›
shows ‹bounded_clinear (inv f)›
proof (rule bounded_clinear_intro)
fix x y :: 'b and r :: complex
define x' y' where ‹x' = inv f x› and ‹y' = inv f y›
have [simp]: ‹clinear f›
by (simp add: bounded_clinear.clinear)
have [simp]: ‹inj f›
proof (rule injI)
fix x y assume ‹f x = f y›
then have ‹norm (f (x - y)) = 0›
by (simp add: complex_vector.linear_diff)
with bound b have ‹norm (x - y) = 0›
by (metis linorder_not_le mult_le_0_iff nle_le norm_ge_zero)
then show ‹x = y›
by simp
qed
from ‹surj f›
have [simp]: ‹x = f x'› ‹y = f y'›
by (simp_all add: surj_f_inv_f x'_def y'_def)
show "inv f (x + y) = inv f x + inv f y"
by (simp flip: complex_vector.linear_add)
show "inv f (r *⇩C x) = r *⇩C inv f x"
by (simp flip: clinear.scaleC)
from bound have "b * norm (inv f x) ≤ norm x"
by (simp flip: clinear.scaleC)
with b show "norm (inv f x) ≤ norm x * inverse b"
by (smt (verit, ccfv_threshold) left_inverse mult.commute mult_cancel_right1 mult_le_cancel_left_pos vector_space_over_itself.scale_scale)
qed
lemma range_is_csubspace[simp]:
assumes a1: "clinear f"
shows "csubspace (range f)"
using assms complex_vector.linear_subspace_image complex_vector.subspace_UNIV by blast
lemma csubspace_is_convex[simp]:
assumes a1: "csubspace M"
shows "convex M"
proof-
have ‹∀x∈M. ∀y∈ M. ∀u. ∀v. u *⇩C x + v *⇩C y ∈ M›
using a1
by (simp add: complex_vector.subspace_def)
hence ‹∀x∈M. ∀y∈M. ∀u::real. ∀v::real. u *⇩R x + v *⇩R y ∈ M›
by (simp add: scaleR_scaleC)
hence ‹∀x∈M. ∀y∈M. ∀u≥0. ∀v≥0. u + v = 1 ⟶ u *⇩R x + v *⇩R y ∈M›
by blast
thus ?thesis using convex_def by blast
qed
lemma kernel_is_csubspace[simp]:
assumes a1: "clinear f"
shows "csubspace (f -` {0})"
by (simp add: assms complex_vector.linear_subspace_vimage)
lemma bounded_cbilinear_0[simp]: ‹bounded_cbilinear (λ_ _. 0)›
by (auto intro!: bounded_cbilinear.intro exI[where x=0])
lemma bounded_cbilinear_0'[simp]: ‹bounded_cbilinear 0›
by (auto intro!: bounded_cbilinear.intro exI[where x=0])
lemma bounded_cbilinear_apply_bounded_clinear: ‹bounded_clinear (f x)› if ‹bounded_cbilinear f›
proof -
interpret f: bounded_cbilinear f
by (fact that)
from f.bounded obtain K where ‹norm (f a b) ≤ norm a * norm b * K› for a b
by auto
then show ?thesis
by (auto intro!: bounded_clinearI[where K=‹norm x * K›]
simp add: f.add_right f.scaleC_right mult.commute mult.left_commute)
qed
lemma clinear_scaleR[simp]: ‹clinear (scaleR x)›
by (simp add: complex_vector.linear_scale_self scaleR_scaleC)
lemma abs_summable_on_scaleC_left [intro]:
fixes c :: ‹'a :: complex_normed_vector›
assumes "c ≠ 0 ⟹ f abs_summable_on A"
shows "(λx. f x *⇩C c) abs_summable_on A"
apply (cases ‹c = 0›)
apply simp
by (auto intro!: summable_on_cmult_left assms simp: norm_scaleC)
lemma abs_summable_on_scaleC_right [intro]:
fixes f :: ‹'a ⇒ 'b :: complex_normed_vector›
assumes "c ≠ 0 ⟹ f abs_summable_on A"
shows "(λx. c *⇩C f x) abs_summable_on A"
apply (cases ‹c = 0›)
apply simp
by (auto intro!: summable_on_cmult_right assms simp: norm_scaleC)
subsection ‹Antilinear maps and friends›
locale antilinear = additive f for f :: "'a::complex_vector ⇒ 'b::complex_vector" +
assumes scaleC: "f (scaleC r x) = cnj r *⇩C f x"
sublocale antilinear ⊆ linear
proof (rule linearI)
show "f (b1 + b2) = f b1 + f b2"
for b1 :: 'a
and b2 :: 'a
by (simp add: add)
show "f (r *⇩R b) = r *⇩R f b"
for r :: real
and b :: 'a
unfolding scaleR_scaleC by (subst scaleC, simp)
qed
lemma antilinear_imp_scaleC:
fixes D :: "complex ⇒ 'a::complex_vector"
assumes "antilinear D"
obtains d where "D = (λx. cnj x *⇩C d)"
proof -
interpret clinear "D o cnj"
apply standard apply auto
apply (simp add: additive.add assms antilinear.axioms(1))
using assms antilinear.scaleC by fastforce
obtain d where "D o cnj = (λx. x *⇩C d)"
using clinear_axioms complex_vector.linear_imp_scale by blast
then have ‹D = (λx. cnj x *⇩C d)›
by (metis comp_apply complex_cnj_cnj)
then show ?thesis
by (rule that)
qed
corollary complex_antilinearD:
fixes f :: "complex ⇒ complex"
assumes "antilinear f" obtains c where "f = (λx. c * cnj x)"
by (rule antilinear_imp_scaleC [OF assms]) (force simp: scaleC_conv_of_complex)
lemma antilinearI:
assumes "⋀x y. f (x + y) = f x + f y"
and "⋀c x. f (c *⇩C x) = cnj c *⇩C f x"
shows "antilinear f"
by standard (rule assms)+
lemma antilinear_o_antilinear: "antilinear f ⟹ antilinear g ⟹ clinear (g o f)"
apply (rule clinearI)
apply (simp add: additive.add antilinear_def)
by (simp add: antilinear.scaleC)
lemma clinear_o_antilinear: "antilinear f ⟹ clinear g ⟹ antilinear (g o f)"
apply (rule antilinearI)
apply (simp add: additive.add complex_vector.linear_add antilinear_def)
by (simp add: complex_vector.linear_scale antilinear.scaleC)
lemma antilinear_o_clinear: "clinear f ⟹ antilinear g ⟹ antilinear (g o f)"
apply (rule antilinearI)
apply (simp add: additive.add complex_vector.linear_add antilinear_def)
by (simp add: complex_vector.linear_scale antilinear.scaleC)
locale bounded_antilinear = antilinear f for f :: "'a::complex_normed_vector ⇒ 'b::complex_normed_vector" +
assumes bounded: "∃K. ∀x. norm (f x) ≤ norm x * K"
lemma bounded_antilinearI:
assumes ‹⋀b1 b2. f (b1 + b2) = f b1 + f b2›
assumes ‹⋀r b. f (r *⇩C b) = cnj r *⇩C f b›
assumes ‹∀x. norm (f x) ≤ norm x * K›
shows "bounded_antilinear f"
using assms by (auto intro!: exI bounded_antilinear.intro antilinearI simp: bounded_antilinear_axioms_def)
sublocale bounded_antilinear ⊆ real: bounded_linear
apply standard by (fact bounded)
lemma (in bounded_antilinear) bounded_linear: "bounded_linear f"
by (fact real.bounded_linear)
lemma (in bounded_antilinear) antilinear: "antilinear f"
by (fact antilinear_axioms)
lemma bounded_antilinear_intro:
assumes "⋀x y. f (x + y) = f x + f y"
and "⋀r x. f (scaleC r x) = scaleC (cnj r) (f x)"
and "⋀x. norm (f x) ≤ norm x * K"
shows "bounded_antilinear f"
by standard (blast intro: assms)+
lemma bounded_antilinear_0[simp]: ‹bounded_antilinear (λ_. 0)›
by (auto intro!: bounded_antilinearI[where K=0])
lemma bounded_antilinear_0'[simp]: ‹bounded_antilinear 0›
by (auto intro!: bounded_antilinearI[where K=0])
lemma cnj_bounded_antilinear[simp]: "bounded_antilinear cnj"
apply (rule bounded_antilinear_intro [where K = 1])
by auto
lemma bounded_antilinear_o_bounded_antilinear:
assumes "bounded_antilinear f"
and "bounded_antilinear g"
shows "bounded_clinear (λx. f (g x))"
proof
interpret f: bounded_antilinear f by fact
interpret g: bounded_antilinear g by fact
fix b1 b2 b r
show "f (g (b1 + b2)) = f (g b1) + f (g b2)"
by (simp add: f.add g.add)
show "f (g (r *⇩C b)) = r *⇩C f (g b)"
by (simp add: f.scaleC g.scaleC)
have "bounded_linear (λx. f (g x))"
using f.bounded_linear g.bounded_linear by (rule bounded_linear_compose)
then show "∃K. ∀x. norm (f (g x)) ≤ norm x * K"
by (rule bounded_linear.bounded)
qed
lemma bounded_antilinear_o_bounded_antilinear':
assumes "bounded_antilinear f"
and "bounded_antilinear g"
shows "bounded_clinear (g o f)"
using assms by (simp add: o_def bounded_antilinear_o_bounded_antilinear)
lemma bounded_antilinear_o_bounded_clinear:
assumes "bounded_antilinear f"
and "bounded_clinear g"
shows "bounded_antilinear (λx. f (g x))"
proof
interpret f: bounded_antilinear f by fact
interpret g: bounded_clinear g by fact
show "f (g (x + y)) = f (g x) + f (g y)" for x y
by (simp only: f.add g.add)
show "f (g (scaleC r x)) = scaleC (cnj r) (f (g x))" for r x
by (simp add: f.scaleC g.scaleC)
have "bounded_linear (λx. f (g x))"
using f.bounded_linear g.bounded_linear by (rule bounded_linear_compose)
then show "∃K. ∀x. norm (f (g x)) ≤ norm x * K"
by (rule bounded_linear.bounded)
qed
lemma bounded_antilinear_o_bounded_clinear':
assumes "bounded_clinear f"
and "bounded_antilinear g"
shows "bounded_antilinear (g o f)"
using assms by (simp add: o_def bounded_antilinear_o_bounded_clinear)
lemma bounded_clinear_o_bounded_antilinear:
assumes "bounded_clinear f"
and "bounded_antilinear g"
shows "bounded_antilinear (λx. f (g x))"
proof
interpret f: bounded_clinear f by fact
interpret g: bounded_antilinear g by fact
show "f (g (x + y)) = f (g x) + f (g y)" for x y
by (simp only: f.add g.add)
show "f (g (scaleC r x)) = scaleC (cnj r) (f (g x))" for r x
using f.scaleC g.scaleC by fastforce
have "bounded_linear (λx. f (g x))"
using f.bounded_linear g.bounded_linear by (rule bounded_linear_compose)
then show "∃K. ∀x. norm (f (g x)) ≤ norm x * K"
by (rule bounded_linear.bounded)
qed
lemma bounded_clinear_o_bounded_antilinear':
assumes "bounded_antilinear f"
and "bounded_clinear g"
shows "bounded_antilinear (g o f)"
using assms by (simp add: o_def bounded_clinear_o_bounded_antilinear)
lemma bij_clinear_imp_inv_clinear: "clinear (inv f)"
if a1: "clinear f" and a2: "bij f"
proof
fix b1 b2 r b
show "inv f (b1 + b2) = inv f b1 + inv f b2"
by (simp add: a1 a2 bij_is_inj bij_is_surj complex_vector.linear_add inv_f_eq surj_f_inv_f)
show "inv f (r *⇩C b) = r *⇩C inv f b"
using that
by (smt bij_inv_eq_iff clinear_def complex_vector.linear_scale)
qed
locale bounded_sesquilinear =
fixes
prod :: "'a::complex_normed_vector ⇒ 'b::complex_normed_vector ⇒ 'c::complex_normed_vector"
(infixl "**" 70)
assumes add_left: "prod (a + a') b = prod a b + prod a' b"
and add_right: "prod a (b + b') = prod a b + prod a b'"
and scaleC_left: "prod (r *⇩C a) b = (cnj r) *⇩C (prod a b)"
and scaleC_right: "prod a (r *⇩C b) = r *⇩C (prod a b)"
and bounded: "∃K. ∀a b. norm (prod a b) ≤ norm a * norm b * K"
sublocale bounded_sesquilinear ⊆ real: bounded_bilinear
apply standard
by (auto simp: add_left add_right scaleC_left scaleC_right bounded scaleR_scaleC)
lemma (in bounded_sesquilinear) bounded_bilinear[simp]: "bounded_bilinear prod"
by intro_locales
lemma (in bounded_sesquilinear) bounded_antilinear_left: "bounded_antilinear (λa. prod a b)"
apply standard
apply (auto simp add: scaleC_left add_left)
by (metis ab_semigroup_mult_class.mult_ac(1) bounded)
lemma (in bounded_sesquilinear) bounded_clinear_right: "bounded_clinear (λb. prod a b)"
apply standard
apply (auto simp add: scaleC_right add_right)
by (metis ab_semigroup_mult_class.mult_ac(1) ordered_field_class.sign_simps(34) real.pos_bounded)
lemma (in bounded_sesquilinear) comp1:
assumes ‹bounded_clinear g›
shows ‹bounded_sesquilinear (λx. prod (g x))›
proof
interpret bounded_clinear g by fact
fix a a' b b' r
show "prod (g (a + a')) b = prod (g a) b + prod (g a') b"
by (simp add: add add_left)
show "prod (g a) (b + b') = prod (g a) b + prod (g a) b'"
by (simp add: add add_right)
show "prod (g (r *⇩C a)) b = cnj r *⇩C prod (g a) b"
by (simp add: scaleC scaleC_left)
show "prod (g a) (r *⇩C b) = r *⇩C prod (g a) b"
by (simp add: scaleC_right)
interpret bi: bounded_bilinear ‹(λx. prod (g x))›
by (simp add: bounded_linear real.comp1)
show "∃K. ∀a b. norm (prod (g a) b) ≤ norm a * norm b * K"
using bi.bounded by blast
qed
lemma (in bounded_sesquilinear) comp2:
assumes ‹bounded_clinear g›
shows ‹bounded_sesquilinear (λx y. prod x (g y))›
proof
interpret bounded_clinear g by fact
fix a a' b b' r
show "prod (a + a') (g b) = prod a (g b) + prod a' (g b)"
by (simp add: add add_left)
show "prod a (g (b + b')) = prod a (g b) + prod a (g b')"
by (simp add: add add_right)
show "prod (r *⇩C a) (g b) = cnj r *⇩C prod a (g b)"
by (simp add: scaleC scaleC_left)
show "prod a (g (r *⇩C b)) = r *⇩C prod a (g b)"
by (simp add: scaleC scaleC_right)
interpret bi: bounded_bilinear ‹(λx y. prod x (g y))›
apply (rule bounded_bilinear.flip)
using _ bounded_linear apply (rule bounded_bilinear.comp1)
using bounded_bilinear by (rule bounded_bilinear.flip)
show "∃K. ∀a b. norm (prod a (g b)) ≤ norm a * norm b * K"
using bi.bounded by blast
qed
lemma (in bounded_sesquilinear) comp: "bounded_clinear f ⟹ bounded_clinear g ⟹ bounded_sesquilinear (λx y. prod (f x) (g y))"
using comp1 bounded_sesquilinear.comp2 by auto
lemma bounded_clinear_const_scaleR:
fixes c :: real
assumes ‹bounded_clinear f›
shows ‹bounded_clinear (λ x. c *⇩R f x )›
proof-
have ‹bounded_clinear (λ x. (complex_of_real c) *⇩C f x )›
by (simp add: assms bounded_clinear_const_scaleC)
thus ?thesis
by (simp add: scaleR_scaleC)
qed
lemma bounded_linear_bounded_clinear:
‹bounded_linear A ⟹ ∀c x. A (c *⇩C x) = c *⇩C A x ⟹ bounded_clinear A›
apply standard
by (simp_all add: linear_simps bounded_linear.bounded)
lemma comp_bounded_clinear:
fixes A :: ‹'b::complex_normed_vector ⇒ 'c::complex_normed_vector›
and B :: ‹'a::complex_normed_vector ⇒ 'b›
assumes ‹bounded_clinear A› and ‹bounded_clinear B›
shows ‹bounded_clinear (A ∘ B)›
by (metis clinear_compose assms(1) assms(2) bounded_clinear_axioms_def bounded_clinear_compose bounded_clinear_def o_def)
lemma bounded_sesquilinear_add:
‹bounded_sesquilinear (λ x y. A x y + B x y)› if ‹bounded_sesquilinear A› and ‹bounded_sesquilinear B›
proof
fix a a' :: 'a and b b' :: 'b and r :: complex
show "A (a + a') b + B (a + a') b = (A a b + B a b) + (A a' b + B a' b)"
by (simp add: bounded_sesquilinear.add_left that(1) that(2))
show ‹A a (b + b') + B a (b + b') = (A a b + B a b) + (A a b' + B a b')›
by (simp add: bounded_sesquilinear.add_right that(1) that(2))
show ‹A (r *⇩C a) b + B (r *⇩C a) b = cnj r *⇩C (A a b + B a b)›
by (simp add: bounded_sesquilinear.scaleC_left scaleC_add_right that(1) that(2))
show ‹A a (r *⇩C b) + B a (r *⇩C b) = r *⇩C (A a b + B a b)›
by (simp add: bounded_sesquilinear.scaleC_right scaleC_add_right that(1) that(2))
show ‹∃K. ∀a b. norm (A a b + B a b) ≤ norm a * norm b * K›
proof-
have ‹∃ KA. ∀ a b. norm (A a b) ≤ norm a * norm b * KA›
by (simp add: bounded_sesquilinear.bounded that(1))
then obtain KA where ‹∀ a b. norm (A a b) ≤ norm a * norm b * KA›
by blast
have ‹∃ KB. ∀ a b. norm (B a b) ≤ norm a * norm b * KB›
by (simp add: bounded_sesquilinear.bounded that(2))
then obtain KB where ‹∀ a b. norm (B a b) ≤ norm a * norm b * KB›
by blast
have ‹norm (A a b + B a b) ≤ norm a * norm b * (KA + KB)›
for a b
proof-
have ‹norm (A a b + B a b) ≤ norm (A a b) + norm (B a b)›
using norm_triangle_ineq by blast
also have ‹… ≤ norm a * norm b * KA + norm a * norm b * KB›
using ‹∀ a b. norm (A a b) ≤ norm a * norm b * KA›
‹∀ a b. norm (B a b) ≤ norm a * norm b * KB›
using add_mono by blast
also have ‹…= norm a * norm b * (KA + KB)›
by (simp add: mult.commute ring_class.ring_distribs(2))
finally show ?thesis
by blast
qed
thus ?thesis by blast
qed
qed
lemma bounded_sesquilinear_uminus:
‹bounded_sesquilinear (λ x y. - A x y)› if ‹bounded_sesquilinear A›
proof
fix a a' :: 'a and b b' :: 'b and r :: complex
show "- A (a + a') b = (- A a b) + (- A a' b)"
by (simp add: bounded_sesquilinear.add_left that)
show ‹- A a (b + b') = (- A a b) + (- A a b')›
by (simp add: bounded_sesquilinear.add_right that)
show ‹- A (r *⇩C a) b = cnj r *⇩C (- A a b)›
by (simp add: bounded_sesquilinear.scaleC_left that)
show ‹- A a (r *⇩C b) = r *⇩C (- A a b)›
by (simp add: bounded_sesquilinear.scaleC_right that)
show ‹∃K. ∀a b. norm (- A a b) ≤ norm a * norm b * K›
proof-
have ‹∃ KA. ∀ a b. norm (A a b) ≤ norm a * norm b * KA›
by (simp add: bounded_sesquilinear.bounded that(1))
then obtain KA where ‹∀ a b. norm (A a b) ≤ norm a * norm b * KA›
by blast
have ‹norm (- A a b) ≤ norm a * norm b * KA›
for a b
by (simp add: ‹∀a b. norm (A a b) ≤ norm a * norm b * KA›)
thus ?thesis by blast
qed
qed
lemma bounded_sesquilinear_diff:
‹bounded_sesquilinear (λ x y. A x y - B x y)› if ‹bounded_sesquilinear A› and ‹bounded_sesquilinear B›
proof -
have ‹bounded_sesquilinear (λ x y. - B x y)›
using that(2) by (rule bounded_sesquilinear_uminus)
then have ‹bounded_sesquilinear (λ x y. A x y + (- B x y))›
using that(1) by (rule bounded_sesquilinear_add[rotated])
then show ?thesis
by auto
qed
lemmas isCont_scaleC [simp] =
bounded_bilinear.isCont [OF bounded_cbilinear_scaleC[THEN bounded_cbilinear.bounded_bilinear]]
lemma bounded_sesquilinear_0[simp]: ‹bounded_sesquilinear (λ_ _.0)›
by (auto intro!: bounded_sesquilinear.intro exI[where x=0])
lemma bounded_sesquilinear_0'[simp]: ‹bounded_sesquilinear 0›
by (auto intro!: bounded_sesquilinear.intro exI[where x=0])
lemma bounded_sesquilinear_apply_bounded_clinear: ‹bounded_clinear (f x)› if ‹bounded_sesquilinear f›
proof -
interpret f: bounded_sesquilinear f
by (fact that)
from f.bounded obtain K where ‹norm (f a b) ≤ norm a * norm b * K› for a b
by auto
then show ?thesis
by (auto intro!: bounded_clinearI[where K=‹norm x * K›]
simp add: f.add_right f.scaleC_right mult.commute mult.left_commute)
qed
subsection ‹Misc 2›
lemma summable_on_scaleC_left [intro]:
fixes c :: ‹'a :: complex_normed_vector›
assumes "c ≠ 0 ⟹ f summable_on A"
shows "(λx. f x *⇩C c) summable_on A"
apply (cases ‹c ≠ 0›)
apply (subst asm_rl[of ‹(λx. f x *⇩C c) = (λy. y *⇩C c) o f›], simp add: o_def)
apply (rule summable_on_comm_additive)
using assms by (auto simp add: scaleC_left.additive_axioms)
lemma summable_on_scaleC_right [intro]:
fixes f :: ‹'a ⇒ 'b :: complex_normed_vector›
assumes "c ≠ 0 ⟹ f summable_on A"
shows "(λx. c *⇩C f x) summable_on A"
apply (cases ‹c ≠ 0›)
apply (subst asm_rl[of ‹(λx. c *⇩C f x) = (λy. c *⇩C y) o f›], simp add: o_def)
apply (rule summable_on_comm_additive)
using assms by (auto simp add: scaleC_right.additive_axioms)
lemma infsum_scaleC_left:
fixes c :: ‹'a :: complex_normed_vector›
assumes "c ≠ 0 ⟹ f summable_on A"
shows "infsum (λx. f x *⇩C c) A = infsum f A *⇩C c"
apply (cases ‹c ≠ 0›)
apply (subst asm_rl[of ‹(λx. f x *⇩C c) = (λy. y *⇩C c) o f›], simp add: o_def)
apply (rule infsum_comm_additive)
using assms by (auto simp add: scaleC_left.additive_axioms)
lemma infsum_scaleC_right:
fixes f :: ‹'a ⇒ 'b :: complex_normed_vector›
shows "infsum (λx. c *⇩C f x) A = c *⇩C infsum f A"
proof -
consider (summable) ‹f summable_on A› | (c0) ‹c = 0› | (not_summable) ‹¬ f summable_on A› ‹c ≠ 0›
by auto
then show ?thesis
proof cases
case summable
then show ?thesis
apply (subst asm_rl[of ‹(λx. c *⇩C f x) = (λy. c *⇩C y) o f›], simp add: o_def)
apply (rule infsum_comm_additive)
using summable by (auto simp add: scaleC_right.additive_axioms)
next
case c0
then show ?thesis by auto
next
case not_summable
have ‹¬ (λx. c *⇩C f x) summable_on A›
proof (rule notI)
assume ‹(λx. c *⇩C f x) summable_on A›
then have ‹(λx. inverse c *⇩C c *⇩C f x) summable_on A›
using summable_on_scaleC_right by blast
then have ‹f summable_on A›
using not_summable by auto
with not_summable show False
by simp
qed
then show ?thesis
by (simp add: infsum_not_exists not_summable(1))
qed
qed
lemmas sums_of_complex = bounded_linear.sums [OF bounded_clinear_of_complex[THEN bounded_clinear.bounded_linear]]
lemmas summable_of_complex = bounded_linear.summable [OF bounded_clinear_of_complex[THEN bounded_clinear.bounded_linear]]
lemmas suminf_of_complex = bounded_linear.suminf [OF bounded_clinear_of_complex[THEN bounded_clinear.bounded_linear]]
lemmas sums_scaleC_left = bounded_linear.sums[OF bounded_clinear_scaleC_left[THEN bounded_clinear.bounded_linear]]
lemmas summable_scaleC_left = bounded_linear.summable[OF bounded_clinear_scaleC_left[THEN bounded_clinear.bounded_linear]]
lemmas suminf_scaleC_left = bounded_linear.suminf[OF bounded_clinear_scaleC_left[THEN bounded_clinear.bounded_linear]]
lemmas sums_scaleC_right = bounded_linear.sums[OF bounded_clinear_scaleC_right[THEN bounded_clinear.bounded_linear]]
lemmas summable_scaleC_right = bounded_linear.summable[OF bounded_clinear_scaleC_right[THEN bounded_clinear.bounded_linear]]
lemmas suminf_scaleC_right = bounded_linear.suminf[OF bounded_clinear_scaleC_right[THEN bounded_clinear.bounded_linear]]
lemma closed_scaleC:
fixes S::‹'a::complex_normed_vector set› and a :: complex
assumes ‹closed S›
shows ‹closed ((*⇩C) a ` S)›
proof (cases ‹a = 0›)
case True
then show ?thesis
apply (cases ‹S = {}›)
by (auto simp: image_constant)
next
case False
then have ‹(*⇩C) a ` S = (*⇩C) (inverse a) -` S›
by (auto simp add: rev_image_eqI)
moreover have ‹closed ((*⇩C) (inverse a) -` S)›
by (simp add: assms continuous_closed_vimage)
ultimately show ?thesis
by simp
qed
lemma closure_scaleC:
fixes S::‹'a::complex_normed_vector set›
shows ‹closure ((*⇩C) a ` S) = (*⇩C) a ` closure S›
proof
have ‹closed (closure S)›
by simp
show "closure ((*⇩C) a ` S) ⊆ (*⇩C) a ` closure S"
by (simp add: closed_scaleC closure_minimal closure_subset image_mono)
have "x ∈ closure ((*⇩C) a ` S)"
if "x ∈ (*⇩C) a ` closure S"
for x :: 'a
proof-
obtain t where ‹x = ((*⇩C) a) t› and ‹t ∈ closure S›
using ‹x ∈ (*⇩C) a ` closure S› by auto
have ‹∃s. (∀n. s n ∈ S) ∧ s ⇢ t›
using ‹t ∈ closure S› Elementary_Topology.closure_sequential
by blast
then obtain s where ‹∀n. s n ∈ S› and ‹s ⇢ t›
by blast
have ‹(∀ n. scaleC a (s n) ∈ ((*⇩C) a ` S))›
using ‹∀n. s n ∈ S› by blast
moreover have ‹(λ n. scaleC a (s n)) ⇢ x›
proof-
have ‹isCont (scaleC a) t›
by simp
thus ?thesis
using ‹s ⇢ t› ‹x = ((*⇩C) a) t›
by (simp add: isCont_tendsto_compose)
qed
ultimately show ?thesis using Elementary_Topology.closure_sequential
by metis
qed
thus "(*⇩C) a ` closure S ⊆ closure ((*⇩C) a ` S)" by blast
qed
lemma onorm_scalarC:
fixes f :: ‹'a::complex_normed_vector ⇒ 'b::complex_normed_vector›
assumes a1: ‹bounded_clinear f›
shows ‹onorm (λ x. r *⇩C (f x)) = (cmod r) * onorm f›
proof-
have ‹(norm (f x)) / norm x ≤ onorm f›
for x
using a1
by (simp add: bounded_clinear.bounded_linear le_onorm)
hence t2: ‹bdd_above {(norm (f x)) / norm x | x. True}›
by fastforce
have ‹continuous_on UNIV ( (*) w ) ›
for w::real
by simp
hence ‹isCont ( ((*) (cmod r)) ) x›
for x
by simp
hence t3: ‹continuous (at_left (Sup {(norm (f x)) / norm x | x. True})) ((*) (cmod r))›
using Elementary_Topology.continuous_at_imp_continuous_within
by blast
have ‹{(norm (f x)) / norm x | x. True} ≠ {}›
by blast
moreover have ‹mono ((*) (cmod r))›
by (simp add: monoI ordered_comm_semiring_class.comm_mult_left_mono)
ultimately have ‹Sup {((*) (cmod r)) ((norm (f x)) / norm x) | x. True}
= ((*) (cmod r)) (Sup {(norm (f x)) / norm x | x. True})›
using t2 t3
by (simp add: continuous_at_Sup_mono full_SetCompr_eq image_image)
hence ‹Sup {(cmod r) * ((norm (f x)) / norm x) | x. True}
= (cmod r) * (Sup {(norm (f x)) / norm x | x. True})›
by blast
moreover have ‹Sup {(cmod r) * ((norm (f x)) / norm x) | x. True}
= (SUP x. cmod r * norm (f x) / norm x)›
by (simp add: full_SetCompr_eq)
moreover have ‹(Sup {(norm (f x)) / norm x | x. True})
= (SUP x. norm (f x) / norm x)›
by (simp add: full_SetCompr_eq)
ultimately have t1: "(SUP x. cmod r * norm (f x) / norm x)
= cmod r * (SUP x. norm (f x) / norm x)"
by simp
have ‹onorm (λ x. r *⇩C (f x)) = (SUP x. norm ( (λ t. r *⇩C (f t)) x) / norm x)›
by (simp add: onorm_def)
hence ‹onorm (λ x. r *⇩C (f x)) = (SUP x. (cmod r) * (norm (f x)) / norm x)›
by simp
also have ‹... = (cmod r) * (SUP x. (norm (f x)) / norm x)›
using t1.
finally show ?thesis
by (simp add: onorm_def)
qed
lemma onorm_scaleC_left_lemma:
fixes f :: "'a::complex_normed_vector"
assumes r: "bounded_clinear r"
shows "onorm (λx. r x *⇩C f) ≤ onorm r * norm f"
proof (rule onorm_bound)
fix x
have "norm (r x *⇩C f) = norm (r x) * norm f"
by simp
also have "… ≤ onorm r * norm x * norm f"
by (simp add: bounded_clinear.bounded_linear mult.commute mult_left_mono onorm r)
finally show "norm (r x *⇩C f) ≤ onorm r * norm f * norm x"
by (simp add: ac_simps)
show "0 ≤ onorm r * norm f"
by (simp add: bounded_clinear.bounded_linear onorm_pos_le r)
qed
lemma onorm_scaleC_left:
fixes f :: "'a::complex_normed_vector"
assumes f: "bounded_clinear r"
shows "onorm (λx. r x *⇩C f) = onorm r * norm f"
proof (cases "f = 0")
assume "f ≠ 0"
show ?thesis
proof (rule order_antisym)
show "onorm (λx. r x *⇩C f) ≤ onorm r * norm f"
using f by (rule onorm_scaleC_left_lemma)
next
have bl1: "bounded_clinear (λx. r x *⇩C f)"
by (metis bounded_clinear_scaleC_const f)
have x1:"bounded_clinear (λx. r x * norm f)"
by (metis bounded_clinear_mult_const f)
have "onorm r ≤ onorm (λx. r x * complex_of_real (norm f)) / norm f"
if "onorm r ≤ onorm (λx. r x * complex_of_real (norm f)) * cmod (1 / complex_of_real (norm f))"
and "f ≠ 0"
using that
by (smt (verit) divide_inverse mult_1 norm_divide norm_ge_zero norm_of_real of_real_1 of_real_eq_iff of_real_mult)
hence "onorm r ≤ onorm (λx. r x * norm f) * inverse (norm f)"
using ‹f ≠ 0› onorm_scaleC_left_lemma[OF x1, of "inverse (norm f)"]
by (simp add: inverse_eq_divide)
also have "onorm (λx. r x * norm f) ≤ onorm (λx. r x *⇩C f)"
proof (rule onorm_bound)
have "bounded_linear (λx. r x *⇩C f)"
using bl1 bounded_clinear.bounded_linear by auto
thus "0 ≤ onorm (λx. r x *⇩C f)"
by (rule Operator_Norm.onorm_pos_le)
show "cmod (r x * complex_of_real (norm f)) ≤ onorm (λx. r x *⇩C f) * norm x"
for x :: 'b
by (smt (verit) ‹bounded_linear (λx. r x *⇩C f)› norm_ge_zero norm_mult norm_of_real norm_scaleC onorm)
qed
finally show "onorm r * norm f ≤ onorm (λx. r x *⇩C f)"
using ‹f ≠ 0›
by (simp add: inverse_eq_divide pos_le_divide_eq mult.commute)
qed
qed (simp add: onorm_zero)
subsection ‹Finite dimension and canonical basis›
lemma vector_finitely_spanned:
assumes ‹z ∈ cspan T›
shows ‹∃ S. finite S ∧ S ⊆ T ∧ z ∈ cspan S›
proof-
have ‹∃ S r. finite S ∧ S ⊆ T ∧ z = (∑a∈S. r a *⇩C a)›
using complex_vector.span_explicit[where b = "T"]
assms by auto
then obtain S r where ‹finite S› and ‹S ⊆ T› and ‹z = (∑a∈S. r a *⇩C a)›
by blast
thus ?thesis
by (meson complex_vector.span_scale complex_vector.span_sum complex_vector.span_superset subset_iff)
qed
setup ‹Sign.add_const_constraint ("Complex_Vector_Spaces0.cindependent", SOME \<^typ>‹'a set ⇒ bool›)›
setup ‹Sign.add_const_constraint (\<^const_name>‹cdependent›, SOME \<^typ>‹'a set ⇒ bool›)›
setup ‹Sign.add_const_constraint (\<^const_name>‹cspan›, SOME \<^typ>‹'a set ⇒ 'a set›)›
class cfinite_dim = complex_vector +
assumes cfinitely_spanned: "∃S::'a set. finite S ∧ cspan S = UNIV"
class basis_enum = complex_vector +
fixes canonical_basis :: ‹'a list›
and canonical_basis_length :: ‹'a itself ⇒ nat›
assumes distinct_canonical_basis[simp]:
"distinct canonical_basis"
and is_cindependent_set[simp]:
"cindependent (set canonical_basis)"
and is_generator_set[simp]:
"cspan (set canonical_basis) = UNIV"
and canonical_basis_length:
‹canonical_basis_length TYPE('a) = length canonical_basis›
setup ‹Sign.add_const_constraint ("Complex_Vector_Spaces0.cindependent", SOME \<^typ>‹'a::complex_vector set ⇒ bool›)›
setup ‹Sign.add_const_constraint (\<^const_name>‹cdependent›, SOME \<^typ>‹'a::complex_vector set ⇒ bool›)›
setup ‹Sign.add_const_constraint (\<^const_name>‹cspan›, SOME \<^typ>‹'a::complex_vector set ⇒ 'a set›)›
instantiation complex :: basis_enum begin
definition "canonical_basis = [1::complex]"
definition ‹canonical_basis_length (_::complex itself) = 1›
instance
proof
show "distinct (canonical_basis::complex list)"
by (simp add: canonical_basis_complex_def)
show "cindependent (set (canonical_basis::complex list))"
unfolding canonical_basis_complex_def
by auto
show "cspan (set (canonical_basis::complex list)) = UNIV"
unfolding canonical_basis_complex_def
apply (auto simp add: cspan_raw_def vector_space_over_itself.span_Basis)
by (metis complex_scaleC_def complex_vector.span_base complex_vector.span_scale cspan_raw_def insertI1 mult.right_neutral)
show ‹canonical_basis_length TYPE(complex) = length (canonical_basis :: complex list)›
by (simp add: canonical_basis_length_complex_def canonical_basis_complex_def)
qed
end
lemma cdim_UNIV_basis_enum[simp]: ‹cdim (UNIV::'a::basis_enum set) = length (canonical_basis::'a list)›
apply (subst is_generator_set[symmetric])
apply (subst complex_vector.dim_span_eq_card_independent)
apply (rule is_cindependent_set)
using distinct_canonical_basis distinct_card by blast
lemma finite_basis: "∃basis::'a::cfinite_dim set. finite basis ∧ cindependent basis ∧ cspan basis = UNIV"
proof -
from cfinitely_spanned
obtain S :: ‹'a set› where ‹finite S› and ‹cspan S = UNIV›
by auto
from complex_vector.maximal_independent_subset
obtain B :: ‹'a set› where ‹B ⊆ S› and ‹cindependent B› and ‹S ⊆ cspan B›
by metis
moreover have ‹finite B›
using ‹B ⊆ S› ‹finite S›
by (meson finite_subset)
moreover have ‹cspan B = UNIV›
using ‹cspan S = UNIV› ‹S ⊆ cspan B›
by (metis complex_vector.span_eq top_greatest)
ultimately show ?thesis
by auto
qed
instance basis_enum ⊆ cfinite_dim
apply intro_classes
apply (rule exI[of _ ‹set canonical_basis›])
using is_cindependent_set is_generator_set by auto
lemma cindependent_cfinite_dim_finite:
assumes ‹cindependent (S::'a::cfinite_dim set)›
shows ‹finite S›
by (metis assms cfinitely_spanned complex_vector.independent_span_bound top_greatest)
lemma cfinite_dim_finite_subspace_basis:
assumes ‹csubspace X›
shows "∃basis::'a::cfinite_dim set. finite basis ∧ cindependent basis ∧ cspan basis = X"
by (meson assms cindependent_cfinite_dim_finite complex_vector.basis_exists complex_vector.span_subspace)
text ‹The following auxiliary lemma (‹finite_span_complete_aux›) shows more or less the same as ‹finite_span_representation_bounded›,
‹finite_span_complete› below (see there for an intuition about the mathematical
content of the lemmas). However, there is one difference: Here we additionally assume here
that there is a bijection rep/abs between a finite type \<^typ>‹'basis› and the set $B$.
This is needed to be able to use results about euclidean spaces that are formulated w.r.t.
the type class \<^class>‹finite›
Since we anyway assume that $B$ is finite, this added assumption does not make the lemma
weaker. However, we cannot derive the existence of \<^typ>‹'basis› inside the proof
(HOL does not support such reasoning). Therefore we have the type \<^typ>‹'basis› as
an explicit assumption and remove it using @{attribute internalize_sort} after the proof.›
lemma finite_span_complete_aux:
fixes b :: "'b::real_normed_vector" and B :: "'b set"
and rep :: "'basis::finite ⇒ 'b" and abs :: "'b ⇒ 'basis"
assumes t: "type_definition rep abs B"
and t1: "finite B" and t2: "b∈B" and t3: "independent B"
shows "∃D>0. ∀ψ. norm (representation B ψ b) ≤ norm ψ * D"
and "complete (span B)"
proof -
define repr where "repr = real_vector.representation B"
define repr' where "repr' ψ = Abs_euclidean_space (repr ψ o rep)" for ψ
define comb where "comb l = (∑b∈B. l b *⇩R b)" for l
define comb' where "comb' l = comb (Rep_euclidean_space l o abs)" for l
have comb_cong: "comb x = comb y" if "⋀z. z∈B ⟹ x z = y z" for x y
unfolding comb_def using that by auto
have comb_repr[simp]: "comb (repr ψ) = ψ" if "ψ ∈ real_vector.span B" for ψ
using ‹comb ≡ λl. ∑b∈B. l b *⇩R b› local.repr_def real_vector.sum_representation_eq t1 t3 that
by fastforce
have w5:"(∑b | (b ∈ B ⟶ x b ≠ 0) ∧ b ∈ B. x b *⇩R b) =
(∑b∈B. x b *⇩R b)" for x
using ‹finite B›
by (smt DiffD1 DiffD2 mem_Collect_eq real_vector.scale_eq_0_iff subset_eq sum.mono_neutral_left)
have "representation B (∑b∈B. x b *⇩R b) = (λb. if b ∈ B then x b else 0)"
for x
proof (rule real_vector.representation_eqI)
show "independent B"
by (simp add: t3)
show "(∑b∈B. x b *⇩R b) ∈ span B"
by (meson real_vector.span_scale real_vector.span_sum real_vector.span_superset subset_iff)
show "b ∈ B"
if "(if b ∈ B then x b else 0) ≠ 0"
for b :: 'b
using that
by meson
show "finite {b. (if b ∈ B then x b else 0) ≠ 0}"
using t1 by auto
show "(∑b | (if b ∈ B then x b else 0) ≠ 0. (if b ∈ B then x b else 0) *⇩R b) = (∑b∈B. x b *⇩R b)"
using w5
by simp
qed
hence repr_comb[simp]: "repr (comb x) = (λb. if b∈B then x b else 0)" for x
unfolding repr_def comb_def.
have repr_bad[simp]: "repr ψ = (λ_. 0)" if "ψ ∉ real_vector.span B" for ψ
unfolding repr_def using that
by (simp add: real_vector.representation_def)
have [simp]: "repr' ψ = 0" if "ψ ∉ real_vector.span B" for ψ
unfolding repr'_def repr_bad[OF that]
apply transfer
by auto
have comb'_repr'[simp]: "comb' (repr' ψ) = ψ"
if "ψ ∈ real_vector.span B" for ψ
proof -
have x1: "(repr ψ ∘ rep ∘ abs) z = repr ψ z"
if "z ∈ B"
for z
unfolding o_def
using t that type_definition.Abs_inverse by fastforce
have "comb' (repr' ψ) = comb ((repr ψ ∘ rep) ∘ abs)"
unfolding comb'_def repr'_def
by (subst Abs_euclidean_space_inverse; simp)
also have "… = comb (repr ψ)"
using x1 comb_cong by blast
also have "… = ψ"
using that by simp
finally show ?thesis by -
qed
have t1: "Abs_euclidean_space (Rep_euclidean_space t) = t"
if "⋀x. rep x ∈ B"
for t::"'a euclidean_space"
apply (subst Rep_euclidean_space_inverse)
by simp
have "Abs_euclidean_space
(λy. if rep y ∈ B
then Rep_euclidean_space x y
else 0) = x"
for x
using type_definition.Rep[OF t] apply simp
using t1 by blast
hence "Abs_euclidean_space
(λy. if rep y ∈ B
then Rep_euclidean_space x (abs (rep y))
else 0) = x"
for x
apply (subst type_definition.Rep_inverse[OF t])
by simp
hence repr'_comb'[simp]: "repr' (comb' x) = x" for x
unfolding comb'_def repr'_def o_def
by simp
have sphere: "compact (sphere 0 d :: 'basis euclidean_space set)" for d
using compact_sphere by blast
have "complete (UNIV :: 'basis euclidean_space set)"
by (simp add: complete_UNIV)
have "(∑b∈B. (Rep_euclidean_space (x + y) ∘ abs) b *⇩R b) = (∑b∈B. (Rep_euclidean_space x ∘ abs) b *⇩R b) + (∑b∈B. (Rep_euclidean_space y ∘ abs) b *⇩R b)"
for x :: "'basis euclidean_space"
and y :: "'basis euclidean_space"
apply (transfer fixing: abs)
by (simp add: scaleR_add_left sum.distrib)
moreover have "(∑b∈B. (Rep_euclidean_space (c *⇩R x) ∘ abs) b *⇩R b) = c *⇩R (∑b∈B. (Rep_euclidean_space x ∘ abs) b *⇩R b)"
for c :: real
and x :: "'basis euclidean_space"
apply (transfer fixing: abs)
by (simp add: real_vector.scale_sum_right)
ultimately have blin_comb': "bounded_linear comb'"
unfolding comb_def comb'_def
by (rule bounded_linearI')
hence "continuous_on X comb'" for X
by (simp add: linear_continuous_on)
hence "compact (comb' ` sphere 0 d)" for d
using sphere
by (rule compact_continuous_image)
hence compact_norm_comb': "compact (norm ` comb' ` sphere 0 1)"
using compact_continuous_image continuous_on_norm_id by blast
have not0: "0 ∉ norm ` comb' ` sphere 0 1"
proof (rule ccontr, simp)
assume "0 ∈ norm ` comb' ` sphere 0 1"
then obtain x where nc0: "norm (comb' x) = 0" and x: "x ∈ sphere 0 1"
by auto
hence "comb' x = 0"
by simp
hence "repr' (comb' x) = 0"
unfolding repr'_def o_def repr_def apply simp
by (smt repr'_comb' blin_comb' dist_0_norm linear_simps(3) mem_sphere norm_zero x)
hence "x = 0"
by auto
with x show False
by simp
qed
have "closed (norm ` comb' ` sphere 0 1)"
using compact_imp_closed compact_norm_comb' by blast
moreover have "0 ∉ norm ` comb' ` sphere 0 1"
by (simp add: not0)
ultimately have "∃d>0. ∀x∈norm ` comb' ` sphere 0 1. d ≤ dist 0 x"
by (meson separate_point_closed)
then obtain d where d: "x∈norm ` comb' ` sphere 0 1 ⟹ d ≤ dist 0 x"
and "d > 0" for x
by metis
define D where "D = 1/d"
hence "D > 0"
using ‹d>0› unfolding D_def by auto
have "x ≥ d"
if "x∈norm ` comb' ` sphere 0 1"
for x
using d that
apply auto
by fastforce
hence *: "norm (comb' x) ≥ d" if "norm x = 1" for x
using that by auto
have norm_comb': "norm (comb' x) ≥ d * norm x" for x
proof (cases "x=0")
show "d * norm x ≤ norm (comb' x)"
if "x = 0"
using that
by simp
show "d * norm x ≤ norm (comb' x)"
if "x ≠ 0"
using that
using *[of "(1/norm x) *⇩R x"]
unfolding linear_simps(5)[OF blin_comb']
apply auto
by (simp add: le_divide_eq)
qed
have *: "norm (repr' ψ) ≤ norm ψ * D" for ψ
proof (cases "ψ ∈ real_vector.span B")
show "norm (repr' ψ) ≤ norm ψ * D"
if "ψ ∈ span B"
using that unfolding D_def
using norm_comb'[of "repr' ψ"] ‹d>0›
by (simp_all add: linordered_field_class.mult_imp_le_div_pos mult.commute)
show "norm (repr' ψ) ≤ norm ψ * D"
if "ψ ∉ span B"
using that ‹0 < D› by auto
qed
hence "norm (Rep_euclidean_space (repr' ψ) (abs b)) ≤ norm ψ * D" for ψ
proof -
have "(Rep_euclidean_space (repr' ψ) (abs b)) = repr' ψ ∙ euclidean_space_basis_vector (abs b)"
apply (transfer fixing: abs b)
by auto
also have "¦…¦ ≤ norm (repr' ψ)"
apply (rule Basis_le_norm)
unfolding Basis_euclidean_space_def by simp
also have "… ≤ norm ψ * D"
using * by auto
finally show ?thesis by simp
qed
hence "norm (repr ψ b) ≤ norm ψ * D" for ψ
unfolding repr'_def
by (smt ‹comb' ≡ λl. comb (Rep_euclidean_space l ∘ abs)›
‹repr' ≡ λψ. Abs_euclidean_space (repr ψ ∘ rep)› comb'_repr' comp_apply norm_le_zero_iff
repr_bad repr_comb)
thus "∃D>0. ∀ψ. norm (repr ψ b) ≤ norm ψ * D"
using ‹D>0› by auto
from ‹d>0›
have complete_comb': "complete (comb' ` UNIV)"
proof (rule complete_isometric_image)
show "subspace (UNIV::'basis euclidean_space set)"
by simp
show "bounded_linear comb'"
by (simp add: blin_comb')
show "∀x∈UNIV. d * norm x ≤ norm (comb' x)"
by (simp add: norm_comb')
show "complete (UNIV::'basis euclidean_space set)"
by (simp add: ‹complete UNIV›)
qed
have range_comb': "comb' ` UNIV = real_vector.span B"
proof (auto simp: image_def)
show "comb' x ∈ real_vector.span B" for x
by (metis comb'_def comb_cong comb_repr local.repr_def repr_bad repr_comb real_vector.representation_zero real_vector.span_zero)
next
fix ψ assume "ψ ∈ real_vector.span B"
then obtain f where f: "comb f = ψ"
apply atomize_elim
unfolding span_finite[OF ‹finite B›] comb_def
by auto
define f' where "f' b = (if b∈B then f b else 0)" for b :: 'b
have f': "comb f' = ψ"
unfolding f[symmetric]
apply (rule comb_cong)
unfolding f'_def by simp
define x :: "'basis euclidean_space" where "x = Abs_euclidean_space (f' o rep)"
have "ψ = comb' x"
by (metis (no_types, lifting) ‹ψ ∈ span B› ‹repr' ≡ λψ. Abs_euclidean_space (repr ψ ∘ rep)›
comb'_repr' f' fun.map_cong repr_comb t type_definition.Rep_range x_def)
thus "∃x. ψ = comb' x"
by auto
qed
from range_comb' complete_comb'
show "complete (real_vector.span B)"
by simp
qed
lemma finite_span_complete[simp]:
fixes A :: "'a::real_normed_vector set"
assumes "finite A"
shows "complete (span A)"
text ‹The span of a finite set is complete.›
proof (cases "A ≠ {} ∧ A ≠ {0}")
case True
obtain B where
BT: "real_vector.span B = real_vector.span A"
and "independent B"
and "finite B"
by (meson True assms finite_subset real_vector.maximal_independent_subset real_vector.span_eq
real_vector.span_superset subset_trans)
have "B≠{}"
apply (rule ccontr, simp)
using BT True
by (metis real_vector.span_superset real_vector.span_empty subset_singletonD)
{
assume "∃(Rep :: 'basisT⇒'a) Abs. type_definition Rep Abs B"
then obtain rep :: "'basisT ⇒ 'a" and abs :: "'a ⇒ 'basisT" where t: "type_definition rep abs B"
by auto
have basisT_finite: "class.finite TYPE('basisT)"
apply intro_classes
using ‹finite B› t
by (metis (mono_tags, opaque_lifting) ex_new_if_finite finite_imageI image_eqI type_definition_def)
note finite_span_complete_aux(2)[internalize_sort "'basis::finite"]
note this[OF basisT_finite t]
}
note this[cancel_type_definition, OF ‹B≠{}› ‹finite B› _ ‹independent B›]
hence "complete (real_vector.span B)"
using ‹B≠{}› by auto
thus "complete (real_vector.span A)"
unfolding BT by simp
next
case False
thus ?thesis
using complete_singleton by auto
qed
lemma finite_span_representation_bounded:
fixes B :: "'a::real_normed_vector set"
assumes "finite B" and "independent B"
shows "∃D>0. ∀ψ b. abs (representation B ψ b) ≤ norm ψ * D"
text ‹
Assume $B$ is a finite linear independent set of vectors (in a real normed vector space).
Let $\alpha^\psi_b$ be the coefficients of $\psi$ expressed as a linear combination over $B$.
Then $\alpha$ is is uniformly cblinfun (i.e., $\lvert\alpha^\psi_b \leq D \lVert\psi\rVert\psi$
for some $D$ independent of $\psi,b$).
(This also holds when $b$ is not in the span of $B$ because of the way ‹real_vector.representation›
is defined in this corner case.)›
proof (cases "B≠{}")
case True
define repr where "repr = real_vector.representation B"
{
assume "∃(Rep :: 'basisT⇒'a) Abs. type_definition Rep Abs B"
then obtain rep :: "'basisT ⇒ 'a" and abs :: "'a ⇒ 'basisT" where t: "type_definition rep abs B"
by auto
have basisT_finite: "class.finite TYPE('basisT)"
apply intro_classes
using ‹finite B› t
by (metis (mono_tags, opaque_lifting) ex_new_if_finite finite_imageI image_eqI type_definition_def)
note finite_span_complete_aux(1)[internalize_sort "'basis::finite"]
note this[OF basisT_finite t]
}
note this[cancel_type_definition, OF True ‹finite B› _ ‹independent B›]
hence d2:"∃D. ∀ψ. D>0 ∧ norm (repr ψ b) ≤ norm ψ * D" if ‹b∈B› for b
by (simp add: repr_def that True)
have d1: " (⋀b. b ∈ B ⟹
∃D. ∀ψ. 0 < D ∧ norm (repr ψ b) ≤ norm ψ * D) ⟹
∃D. ∀b ψ. b ∈ B ⟶
0 < D b ∧ norm (repr ψ b) ≤ norm ψ * D b"
apply (rule choice) by auto
then obtain D where D: "D b > 0 ∧ norm (repr ψ b) ≤ norm ψ * D b" if "b∈B" for b ψ
apply atomize_elim
using d2 by blast
hence Dpos: "D b > 0" and Dbound: "norm (repr ψ b) ≤ norm ψ * D b"
if "b∈B" for b ψ
using that by auto
define Dall where "Dall = Max (D`B)"
have "Dall > 0"
unfolding Dall_def using ‹finite B› ‹B≠{}› Dpos
by (metis (mono_tags, lifting) Max_in finite_imageI image_iff image_is_empty)
have "Dall ≥ D b" if "b∈B" for b
unfolding Dall_def using ‹finite B› that by auto
with Dbound
have "norm (repr ψ b) ≤ norm ψ * Dall" if "b∈B" for b ψ
using that
by (smt mult_left_mono norm_not_less_zero)
moreover have "norm (repr ψ b) ≤ norm ψ * Dall" if "b∉B" for b ψ
unfolding repr_def using real_vector.representation_ne_zero True
by (metis calculation empty_subsetI less_le_trans local.repr_def norm_ge_zero norm_zero not_less
subsetI subset_antisym)
ultimately show "∃D>0. ∀ψ b. abs (repr ψ b) ≤ norm ψ * D"
using ‹Dall > 0› real_norm_def by metis
next
case False
thus ?thesis
unfolding repr_def using real_vector.representation_ne_zero[of B]
using nice_ordered_field_class.linordered_field_no_ub by fastforce
qed
hide_fact finite_span_complete_aux
lemma finite_cspan_complete[simp]:
fixes B :: "'a::complex_normed_vector set"
assumes "finite B"
shows "complete (cspan B)"
by (simp add: assms cspan_as_span)
lemma finite_span_closed[simp]:
fixes B :: "'a::real_normed_vector set"
assumes "finite B"
shows "closed (real_vector.span B)"
by (simp add: assms complete_imp_closed)
lemma finite_cspan_closed[simp]:
fixes S::‹'a::complex_normed_vector set›
assumes a1: ‹finite S›
shows ‹closed (cspan S)›
by (simp add: assms complete_imp_closed)
lemma closure_finite_cspan:
fixes T::‹'a::complex_normed_vector set›
assumes ‹finite T›
shows ‹closure (cspan T) = cspan T›
by (simp add: assms)
lemma finite_cspan_crepresentation_bounded:
fixes B :: "'a::complex_normed_vector set"
assumes a1: "finite B" and a2: "cindependent B"
shows "∃D>0. ∀ψ b. cmod (crepresentation B ψ b) ≤ norm ψ * D"
proof -
define B' where "B' = (B ∪ scaleC 𝗂 ` B)"
have independent_B': "independent B'"
using B'_def ‹cindependent B›
by (simp add: real_independent_from_complex_independent a1)
have "finite B'"
unfolding B'_def using ‹finite B› by simp
obtain D' where "D' > 0" and D': "norm (real_vector.representation B' ψ b) ≤ norm ψ * D'"
for ψ b
apply atomize_elim
using independent_B' ‹finite B'›
by (simp add: finite_span_representation_bounded)
define D where "D = 2*D'"
from ‹D' > 0› have ‹D > 0›
unfolding D_def by simp
have "norm (crepresentation B ψ b) ≤ norm ψ * D" for ψ b
proof (cases "b∈B")
case True
have d3: "norm 𝗂 = 1"
by simp
have "norm (𝗂 *⇩C complex_of_real (real_vector.representation B' ψ (𝗂 *⇩C b)))
= norm 𝗂 * norm (complex_of_real (real_vector.representation B' ψ (𝗂 *⇩C b)))"
using norm_scaleC by blast
also have "… = norm (complex_of_real (real_vector.representation B' ψ (𝗂 *⇩C b)))"
using d3 by simp
finally have d2:"norm (𝗂 *⇩C complex_of_real (real_vector.representation B' ψ (𝗂 *⇩C b)))
= norm (complex_of_real (real_vector.representation B' ψ (𝗂 *⇩C b)))".
have "norm (crepresentation B ψ b)
= norm (complex_of_real (real_vector.representation B' ψ b)
+ 𝗂 *⇩C complex_of_real (real_vector.representation B' ψ (𝗂 *⇩C b)))"
by (simp add: B'_def True a1 a2 crepresentation_from_representation)
also have "… ≤ norm (complex_of_real (real_vector.representation B' ψ b))
+ norm (𝗂 *⇩C complex_of_real (real_vector.representation B' ψ (𝗂 *⇩C b)))"
using norm_triangle_ineq by blast
also have "… = norm (complex_of_real (real_vector.representation B' ψ b))
+ norm (complex_of_real (real_vector.representation B' ψ (𝗂 *⇩C b)))"
using d2 by simp
also have "… = norm (real_vector.representation B' ψ b)
+ norm (real_vector.representation B' ψ (𝗂 *⇩C b))"
by simp
also have "… ≤ norm ψ * D' + norm ψ * D'"
by (rule add_mono; rule D')
also have "… ≤ norm ψ * D"
unfolding D_def by linarith
finally show ?thesis
by auto
next
case False
hence "crepresentation B ψ b = 0"
using complex_vector.representation_ne_zero by blast
thus ?thesis
by (smt ‹0 < D› norm_ge_zero norm_zero split_mult_pos_le)
qed
with ‹D > 0›
show ?thesis
by auto
qed
lemma bounded_clinear_finite_dim[simp]:
fixes f :: ‹'a::{cfinite_dim,complex_normed_vector} ⇒ 'b::complex_normed_vector›
assumes ‹clinear f›
shows ‹bounded_clinear f›
proof -
include notation_norm
obtain basis :: ‹'a set› where b1: "complex_vector.span basis = UNIV"
and b2: "cindependent basis"
and b3:"finite basis"
using finite_basis by auto
have "∃C>0. ∀ψ b. cmod (crepresentation basis ψ b) ≤ ∥ψ∥ * C"
using finite_cspan_crepresentation_bounded[where B = basis] b2 b3 by blast
then obtain C where s1: "cmod (crepresentation basis ψ b) ≤ ∥ψ∥ * C"
and s2: "C > 0"
for ψ b by blast
define M where "M = C * (∑a∈basis. ∥f a∥)"
have "∥f x∥ ≤ ∥x∥ * M"
for x
proof-
define r where "r b = crepresentation basis x b" for b
have x_span: "x ∈ complex_vector.span basis"
by (simp add: b1)
have f0: "v ∈ basis"
if "r v ≠ 0" for v
using complex_vector.representation_ne_zero r_def that by auto
have w:"{a|a. r a ≠ 0} ⊆ basis"
using f0 by blast
hence f1: "finite {a|a. r a ≠ 0}"
using b3 rev_finite_subset by auto
have f2: "(∑a| r a ≠ 0. r a *⇩C a) = x"
unfolding r_def
using b2 complex_vector.sum_nonzero_representation_eq x_span
Collect_cong by fastforce
have g1: "(∑a∈basis. crepresentation basis x a *⇩C a) = x"
by (simp add: b2 b3 complex_vector.sum_representation_eq x_span)
have f3: "(∑a∈basis. r a *⇩C a) = x"
unfolding r_def
by (simp add: g1)
hence "f x = f (∑a∈basis. r a *⇩C a)"
by simp
also have "… = (∑a∈basis. r a *⇩C f a)"
by (smt (verit, ccfv_SIG) assms complex_vector.linear_scale complex_vector.linear_sum sum.cong)
finally have "f x = (∑a∈basis. r a *⇩C f a)".
hence "∥f x∥ = ∥(∑a∈basis. r a *⇩C f a)∥"
by simp
also have "… ≤ (∑a∈basis. ∥r a *⇩C f a∥)"
by (simp add: sum_norm_le)
also have "… ≤ (∑a∈basis. ∥r a∥ * ∥f a∥)"
by simp
also have "… ≤ (∑a∈basis. ∥x∥ * C * ∥f a∥)"
using sum_mono s1 unfolding r_def
by (simp add: sum_mono mult_right_mono)
also have "… ≤ ∥x∥ * C * (∑a∈basis. ∥f a∥)"
using sum_distrib_left
by (smt sum.cong)
also have "… = ∥x∥ * M"
unfolding M_def
by linarith
finally show ?thesis .
qed
thus ?thesis
using assms bounded_clinear_def bounded_clinear_axioms_def by blast
qed
lemma summable_on_scaleR_left_converse:
fixes f :: ‹'b ⇒ real›
and c :: ‹'a :: real_normed_vector›
assumes ‹c ≠ 0›
assumes ‹(λx. f x *⇩R c) summable_on A›
shows ‹f summable_on A›
proof -
define fromR toR T where ‹fromR x = x *⇩R c› and ‹toR = inv fromR› and ‹T = range fromR› for x :: real
have ‹additive fromR›
by (simp add: fromR_def additive.intro scaleR_left_distrib)
have ‹inj fromR›
by (simp add: fromR_def ‹c ≠ 0› inj_def)
have toR_fromR: ‹toR (fromR x) = x› for x
by (simp add: ‹inj fromR› toR_def)
have fromR_toR: ‹fromR (toR x) = x› if ‹x ∈ T› for x
by (metis T_def f_inv_into_f that toR_def)
have 1: ‹sum (toR ∘ (fromR ∘ f)) F = toR (sum (fromR ∘ f) F)› if ‹finite F› for F
by (simp add: o_def additive.sum[OF ‹additive fromR›, symmetric] toR_fromR)
have 2: ‹sum (fromR ∘ f) F ∈ T› if ‹finite F› for F
by (simp add: o_def additive.sum[OF ‹additive fromR›, symmetric] T_def)
have 3: ‹(toR ⤏ toR x) (at x within T)› for x
proof (cases ‹x ∈ T›)
case True
have ‹dist (toR y) (toR x) < e› if ‹y∈T› ‹e>0› ‹dist y x < e * norm c› for e y
proof -
obtain x' y' where x: ‹x = fromR x'› and y: ‹y = fromR y'›
using T_def True ‹y ∈ T› by blast
have ‹dist (toR y) (toR x) = dist (fromR (toR y)) (fromR (toR x)) / norm c›
by (auto simp: dist_real_def fromR_def ‹c ≠ 0›)
also have ‹… = dist y x / norm c›
using ‹x∈T› ‹y∈T› by (simp add: fromR_toR)
also have ‹… < e›
using ‹dist y x < e * norm c›
by (simp add: divide_less_eq that(2))
finally show ?thesis
by (simp add: x y toR_fromR)
qed
then show ?thesis
apply (auto simp: tendsto_iff at_within_def eventually_inf_principal eventually_nhds_metric)
by (metis assms(1) div_0 divide_less_eq zero_less_norm_iff)
next
case False
have ‹T = span {c}›
by (simp add: T_def fromR_def span_singleton)
then have ‹closed T›
by simp
with False have ‹x ∉ closure T›
by simp
then have ‹(at x within T) = bot›
by (rule not_in_closure_trivial_limitI)
then show ?thesis
by simp
qed
have 4: ‹(fromR ∘ f) summable_on A›
by (simp add: assms(2) fromR_def summable_on_cong)
have ‹(toR o (fromR o f)) summable_on A›
using 1 2 3 4
by (rule summable_on_comm_additive_general[where T=T])
with toR_fromR
show ?thesis
by (auto simp: o_def)
qed
lemma infsum_scaleR_left:
fixes c :: ‹'a :: real_normed_vector›
shows "infsum (λx. f x *⇩R c) A = infsum f A *⇩R c"
proof (cases ‹f summable_on A›)
case True
then show ?thesis
apply (subst asm_rl[of ‹(λx. f x *⇩R c) = (λy. y *⇩R c) o f›], simp add: o_def)
apply (rule infsum_comm_additive)
using True by (auto simp add: scaleR_left.additive_axioms)
next
case False
then have ‹¬ (λx. f x *⇩R c) summable_on A› if ‹c ≠ 0›
using summable_on_scaleR_left_converse[where A=A and f=f and c=c]
using that by auto
with False show ?thesis
apply (cases ‹c = 0›)
by (auto simp add: infsum_not_exists)
qed
lemma infsum_of_real:
shows ‹(∑⇩∞x∈A. of_real (f x) :: 'b::{real_normed_vector, real_algebra_1}) = of_real (∑⇩∞x∈A. f x)›
unfolding of_real_def
by (rule infsum_scaleR_left)
subsection ‹Closed subspaces›
lemma csubspace_INF[simp]: "(⋀x. x ∈ A ⟹ csubspace x) ⟹ csubspace (⋂A)"
by (simp add: complex_vector.subspace_Inter)
locale closed_csubspace =
fixes A::"('a::{complex_vector,topological_space}) set"
assumes subspace: "csubspace A"
assumes closed: "closed A"
declare closed_csubspace.subspace[simp]
lemma closure_is_csubspace[simp]:
fixes A::"('a::complex_normed_vector) set"
assumes ‹csubspace A›
shows ‹csubspace (closure A)›
proof-
have "x ∈ closure A ⟹ y ∈ closure A ⟹ x+y ∈ closure A" for x y
proof-
assume ‹x∈(closure A)›
then obtain xx where ‹∀ n::nat. xx n ∈ A› and ‹xx ⇢ x›
using closure_sequential by blast
assume ‹y∈(closure A)›
then obtain yy where ‹∀ n::nat. yy n ∈ A› and ‹yy ⇢ y›
using closure_sequential by blast
have ‹∀ n::nat. (xx n) + (yy n) ∈ A›
using ‹∀n. xx n ∈ A› ‹∀n. yy n ∈ A› assms complex_vector.subspace_def
by (simp add: complex_vector.subspace_def)
hence ‹(λ n. (xx n) + (yy n)) ⇢ x + y› using ‹xx ⇢ x› ‹yy ⇢ y›
by (simp add: tendsto_add)
thus ?thesis using ‹∀ n::nat. (xx n) + (yy n) ∈ A›
by (meson closure_sequential)
qed
moreover have "x∈(closure A) ⟹ c *⇩C x ∈ (closure A)" for x c
proof-
assume ‹x∈(closure A)›
then obtain xx where ‹∀ n::nat. xx n ∈ A› and ‹xx ⇢ x›
using closure_sequential by blast
have ‹∀ n::nat. c *⇩C (xx n) ∈ A›
using ‹∀n. xx n ∈ A› assms complex_vector.subspace_def
by (simp add: complex_vector.subspace_def)
have ‹isCont (λ t. c *⇩C t) x›
using bounded_clinear.bounded_linear bounded_clinear_scaleC_right linear_continuous_at by auto
hence ‹(λ n. c *⇩C (xx n)) ⇢ c *⇩C x› using ‹xx ⇢ x›
by (simp add: isCont_tendsto_compose)
thus ?thesis using ‹∀ n::nat. c *⇩C (xx n) ∈ A›
by (meson closure_sequential)
qed
moreover have "0 ∈ (closure A)"
using assms closure_subset complex_vector.subspace_def
by (metis in_mono)
ultimately show ?thesis
by (simp add: complex_vector.subspaceI)
qed
lemma csubspace_set_plus:
assumes ‹csubspace A› and ‹csubspace B›
shows ‹csubspace (A + B)›
proof -
define C where ‹C = {ψ+φ| ψ φ. ψ∈A ∧ φ∈B}›
have "x∈C ⟹ y∈C ⟹ x+y∈C" for x y
using C_def assms(1) assms(2) complex_vector.subspace_add complex_vector.subspace_sums by blast
moreover have "c *⇩C x ∈ C" if ‹x∈C› for x c
proof -
have "csubspace C"
by (simp add: C_def assms(1) assms(2) complex_vector.subspace_sums)
then show ?thesis
using that by (simp add: complex_vector.subspace_def)
qed
moreover have "0 ∈ C"
using ‹C = {ψ + φ |ψ φ. ψ ∈ A ∧ φ ∈ B}› add.inverse_neutral add_uminus_conv_diff assms(1) assms(2) diff_0 mem_Collect_eq
add.right_inverse
by (metis (mono_tags, lifting) complex_vector.subspace_0)
ultimately show ?thesis
unfolding C_def complex_vector.subspace_def
by (smt mem_Collect_eq set_plus_elim set_plus_intro)
qed
lemma closed_csubspace_0[simp]:
"closed_csubspace ({0} :: ('a::{complex_vector,t1_space}) set)"
proof-
have ‹csubspace {0}›
using add.right_neutral complex_vector.subspace_def scaleC_right.zero
by blast
moreover have "closed ({0} :: 'a set)"
by simp
ultimately show ?thesis
by (simp add: closed_csubspace_def)
qed
lemma closed_csubspace_UNIV[simp]: "closed_csubspace (UNIV::('a::{complex_vector,topological_space}) set)"
proof-
have ‹csubspace UNIV›
by simp
moreover have ‹closed UNIV›
by simp
ultimately show ?thesis
unfolding closed_csubspace_def by auto
qed
lemma closed_csubspace_inter[simp]:
assumes "closed_csubspace A" and "closed_csubspace B"
shows "closed_csubspace (A∩B)"
proof-
obtain C where ‹C = A ∩ B› by blast
have ‹csubspace C›
proof-
have "x∈C ⟹ y∈C ⟹ x+y∈C" for x y
by (metis IntD1 IntD2 IntI ‹C = A ∩ B› assms(1) assms(2) complex_vector.subspace_def closed_csubspace_def)
moreover have "x∈C ⟹ c *⇩C x ∈ C" for x c
by (metis IntD1 IntD2 IntI ‹C = A ∩ B› assms(1) assms(2) complex_vector.subspace_def closed_csubspace_def)
moreover have "0 ∈ C"
using ‹C = A ∩ B› assms(1) assms(2) complex_vector.subspace_def closed_csubspace_def by fastforce
ultimately show ?thesis
by (simp add: complex_vector.subspace_def)
qed
moreover have ‹closed C›
using ‹C = A ∩ B›
by (simp add: assms(1) assms(2) closed_Int closed_csubspace.closed)
ultimately show ?thesis
using ‹C = A ∩ B›
by (simp add: closed_csubspace_def)
qed
lemma closed_csubspace_INF[simp]:
assumes a1: "∀A∈𝒜. closed_csubspace A"
shows "closed_csubspace (⋂𝒜)"
proof-
have ‹csubspace (⋂𝒜)›
by (simp add: assms closed_csubspace.subspace complex_vector.subspace_Inter)
moreover have ‹closed (⋂𝒜)›
by (simp add: assms closed_Inter closed_csubspace.closed)
ultimately show ?thesis
by (simp add: closed_csubspace.intro)
qed
typedef (overloaded) ('a::"{complex_vector,topological_space}")
ccsubspace = ‹{S::'a set. closed_csubspace S}›
morphisms space_as_set Abs_ccsubspace
using Complex_Vector_Spaces.closed_csubspace_UNIV by blast
setup_lifting type_definition_ccsubspace
lemma csubspace_space_as_set[simp]: ‹csubspace (space_as_set S)›
by (metis closed_csubspace_def mem_Collect_eq space_as_set)
lemma closed_space_as_set[simp]: ‹closed (space_as_set S)›
apply transfer by (simp add: closed_csubspace.closed)
lemma zero_space_as_set[simp]: ‹0 ∈ space_as_set A›
by (simp add: complex_vector.subspace_0)
instantiation ccsubspace :: (complex_normed_vector) scaleC begin
lift_definition scaleC_ccsubspace :: "complex ⇒ 'a ccsubspace ⇒ 'a ccsubspace" is
"λc S. (*⇩C) c ` S"
proof
show "csubspace ((*⇩C) c ` S)" if "closed_csubspace S" for c :: complex and S :: "'a set"
using that
by (simp add: complex_vector.linear_subspace_image)
show "closed ((*⇩C) c ` S)" if "closed_csubspace S" for c :: complex and S :: "'a set"
using that
by (simp add: closed_scaleC closed_csubspace.closed)
qed
lift_definition scaleR_ccsubspace :: "real ⇒ 'a ccsubspace ⇒ 'a ccsubspace" is
"λc S. (*⇩R) c ` S"
proof
show "csubspace ((*⇩R) r ` S)"
if "closed_csubspace S"
for r :: real
and S :: "'a set"
using that using bounded_clinear_def bounded_clinear_scaleC_right scaleR_scaleC
by (simp add: scaleR_scaleC complex_vector.linear_subspace_image)
show "closed ((*⇩R) r ` S)"
if "closed_csubspace S"
for r :: real
and S :: "'a set"
using that
by (simp add: closed_scaling closed_csubspace.closed)
qed
instance
proof
show "((*⇩R) r::'a ccsubspace ⇒ _) = (*⇩C) (complex_of_real r)" for r :: real
by (simp add: scaleR_scaleC scaleC_ccsubspace_def scaleR_ccsubspace_def)
qed
end
instantiation ccsubspace :: ("{complex_vector,t1_space}") bot begin
lift_definition bot_ccsubspace :: ‹'a ccsubspace› is ‹{0}›
by simp
instance..
end
lemma zero_cblinfun_image[simp]: "0 *⇩C S = bot" for S :: "_ ccsubspace"
proof transfer
have "(0::'b) ∈ (λx. 0) ` S"
if "closed_csubspace S"
for S::"'b set"
using that unfolding closed_csubspace_def
by (simp add: complex_vector.linear_subspace_image complex_vector.module_hom_zero
complex_vector.subspace_0)
thus "(*⇩C) 0 ` S = {0::'b}"
if "closed_csubspace (S::'b set)"
for S :: "'b set"
using that
by (auto intro !: exI [of _ 0])
qed
lemma csubspace_scaleC_invariant:
fixes a S
assumes ‹a ≠ 0› and ‹csubspace S›
shows ‹(*⇩C) a ` S = S›
proof-
have ‹x ∈ (*⇩C) a ` S ⟹ x ∈ S›
for x
using assms(2) complex_vector.subspace_scale by blast
moreover have ‹x ∈ S ⟹ x ∈ (*⇩C) a ` S›
for x
proof -
assume "x ∈ S"
hence "∃c aa. (c / a) *⇩C aa ∈ S ∧ c *⇩C aa = x"
using assms(2) complex_vector.subspace_def scaleC_one by metis
hence "∃aa. aa ∈ S ∧ a *⇩C aa = x"
using assms(1) by auto
thus ?thesis
by (meson image_iff)
qed
ultimately show ?thesis by blast
qed
lemma ccsubspace_scaleC_invariant[simp]: "a ≠ 0 ⟹ a *⇩C S = S" for S :: "_ ccsubspace"
apply transfer
by (simp add: closed_csubspace.subspace csubspace_scaleC_invariant)
instantiation ccsubspace :: ("{complex_vector,topological_space}") "top"
begin
lift_definition top_ccsubspace :: ‹'a ccsubspace› is ‹UNIV›
by simp
instance ..
end
lemma space_as_set_bot[simp]: ‹space_as_set bot = {0}›
by (rule bot_ccsubspace.rep_eq)
lemma ccsubspace_top_not_bot[simp]:
"(top::'a::{complex_vector,t1_space,not_singleton} ccsubspace) ≠ bot"
by (metis UNIV_not_singleton bot_ccsubspace.rep_eq top_ccsubspace.rep_eq)
lemma ccsubspace_bot_not_top[simp]:
"(bot::'a::{complex_vector,t1_space,not_singleton} ccsubspace) ≠ top"
using ccsubspace_top_not_bot by metis
instantiation ccsubspace :: ("{complex_vector,topological_space}") "Inf"
begin
lift_definition Inf_ccsubspace::‹'a ccsubspace set ⇒ 'a ccsubspace›
is ‹λ S. ⋂ S›
proof
fix S :: "'a set set"
assume closed: "closed_csubspace x" if ‹x ∈ S› for x
show "csubspace (⋂ S::'a set)"
by (simp add: closed closed_csubspace.subspace)
show "closed (⋂ S::'a set)"
by (simp add: closed closed_csubspace.closed)
qed
instance ..
end
lift_definition ccspan :: "'a::complex_normed_vector set ⇒ 'a ccsubspace"
is "λG. closure (cspan G)"
proof (rule closed_csubspace.intro)
fix S :: "'a set"
show "csubspace (closure (cspan S))"
by (simp add: closure_is_csubspace)
show "closed (closure (cspan S))"
by simp
qed
lemma ccspan_superset:
‹A ⊆ space_as_set (ccspan A)›
for A :: ‹'a::complex_normed_vector set›
apply transfer
by (meson closure_subset complex_vector.span_superset subset_trans)
lemma ccspan_superset': ‹x ∈ X ⟹ x ∈ space_as_set (ccspan X)›
using ccspan_superset by auto
lemma ccspan_canonical_basis[simp]: "ccspan (set canonical_basis) = top"
using ccspan.rep_eq space_as_set_inject top_ccsubspace.rep_eq
closure_UNIV is_generator_set
by metis
lemma ccspan_Inf_def: ‹ccspan A = Inf {S. A ⊆ space_as_set S}›
for A::‹('a::cbanach) set›
proof -
have ‹x ∈ space_as_set (ccspan A)
⟹ x ∈ space_as_set (Inf {S. A ⊆ space_as_set S})›
for x::'a
proof-
assume ‹x ∈ space_as_set (ccspan A)›
hence "x ∈ closure (cspan A)"
by (simp add: ccspan.rep_eq)
hence ‹x ∈ closure (complex_vector.span A)›
unfolding ccspan_def
by simp
hence ‹∃ y::nat ⇒ 'a. (∀ n. y n ∈ (complex_vector.span A)) ∧ y ⇢ x›
by (simp add: closure_sequential)
then obtain y where ‹∀ n. y n ∈ (complex_vector.span A)› and ‹y ⇢ x›
by blast
have ‹y n ∈ ⋂ {S. (complex_vector.span A) ⊆ S ∧ closed_csubspace S}›
for n
using ‹∀ n. y n ∈ (complex_vector.span A)›
by auto
have ‹closed_csubspace S ⟹ closed S›
for S::‹'a set›
by (simp add: closed_csubspace.closed)
hence ‹closed ( ⋂ {S. (complex_vector.span A) ⊆ S ∧ closed_csubspace S})›
by simp
hence ‹x ∈ ⋂ {S. (complex_vector.span A) ⊆ S ∧ closed_csubspace S}› using ‹y ⇢ x›
using ‹⋀n. y n ∈ ⋂ {S. complex_vector.span A ⊆ S ∧ closed_csubspace S}› closed_sequentially
by blast
moreover have ‹{S. A ⊆ S ∧ closed_csubspace S} ⊆ {S. (complex_vector.span A) ⊆ S ∧ closed_csubspace S}›
using Collect_mono_iff
by (simp add: Collect_mono_iff closed_csubspace.subspace complex_vector.span_minimal)
ultimately have ‹x ∈ ⋂ {S. A ⊆ S ∧ closed_csubspace S}›
by blast
moreover have "(x::'a) ∈ ⋂ {x. A ⊆ x ∧ closed_csubspace x}"
if "(x::'a) ∈ ⋂ {S. A ⊆ S ∧ closed_csubspace S}"
for x :: 'a
and A :: "'a set"
using that
by simp
ultimately show ‹x ∈ space_as_set (Inf {S. A ⊆ space_as_set S})›
apply transfer.
qed
moreover have ‹x ∈ space_as_set (Inf {S. A ⊆ space_as_set S})
⟹ x ∈ space_as_set (ccspan A)›
for x::'a
proof-
assume ‹x ∈ space_as_set (Inf {S. A ⊆ space_as_set S})›
hence ‹x ∈ ⋂ {S. A ⊆ S ∧ closed_csubspace S}›
apply transfer
by blast
moreover have ‹{S. (complex_vector.span A) ⊆ S ∧ closed_csubspace S} ⊆ {S. A ⊆ S ∧ closed_csubspace S}›
using Collect_mono_iff complex_vector.span_superset by fastforce
ultimately have ‹x ∈ ⋂ {S. (complex_vector.span A) ⊆ S ∧ closed_csubspace S}›
by blast
thus ‹x ∈ space_as_set (ccspan A)›
by (metis (no_types, lifting) Inter_iff space_as_set closure_subset mem_Collect_eq ccspan.rep_eq)
qed
ultimately have ‹space_as_set (ccspan A) = space_as_set (Inf {S. A ⊆ space_as_set S})›
by blast
thus ?thesis
using space_as_set_inject by auto
qed
lemma cspan_singleton_scaleC[simp]: "(a::complex)≠0 ⟹ cspan { a *⇩C ψ } = cspan {ψ}"
for ψ::"'a::complex_vector"
by (smt complex_vector.dependent_single complex_vector.independent_insert
complex_vector.scale_eq_0_iff complex_vector.span_base complex_vector.span_redundant
complex_vector.span_scale doubleton_eq_iff insert_absorb insert_absorb2 insert_commute
singletonI)
lemma closure_is_closed_csubspace[simp]:
fixes S::‹'a::complex_normed_vector set›
assumes ‹csubspace S›
shows ‹closed_csubspace (closure S)›
using assms closed_csubspace.intro closure_is_csubspace by blast
lemma ccspan_singleton_scaleC[simp]: "(a::complex)≠0 ⟹ ccspan {a *⇩C ψ} = ccspan {ψ}"
apply transfer by simp
lemma clinear_continuous_at:
assumes ‹bounded_clinear f›
shows ‹isCont f x›
by (simp add: assms bounded_clinear.bounded_linear linear_continuous_at)
lemma clinear_continuous_within:
assumes ‹bounded_clinear f›
shows ‹continuous (at x within s) f›
by (simp add: assms bounded_clinear.bounded_linear linear_continuous_within)
lemma antilinear_continuous_at:
assumes ‹bounded_antilinear f›
shows ‹isCont f x›
by (simp add: assms bounded_antilinear.bounded_linear linear_continuous_at)
lemma antilinear_continuous_within:
assumes ‹bounded_antilinear f›
shows ‹continuous (at x within s) f›
by (simp add: assms bounded_antilinear.bounded_linear linear_continuous_within)
lemma bounded_clinear_eq_on_closure:
fixes A B :: "'a::complex_normed_vector ⇒ 'b::complex_normed_vector"
assumes ‹bounded_clinear A› and ‹bounded_clinear B› and
eq: ‹⋀x. x ∈ G ⟹ A x = B x› and t: ‹t ∈ closure (cspan G)›
shows ‹A t = B t›
proof -
have eq': ‹A t = B t› if ‹t ∈ cspan G› for t
using _ _ that eq apply (rule complex_vector.linear_eq_on)
by (auto simp: assms bounded_clinear.clinear)
have ‹A t - B t = 0›
using _ _ t apply (rule continuous_constant_on_closure)
by (auto simp add: eq' assms(1) assms(2) clinear_continuous_at continuous_at_imp_continuous_on)
then show ?thesis
by auto
qed
instantiation ccsubspace :: ("{complex_vector,topological_space}") "order"
begin
lift_definition less_eq_ccsubspace :: ‹'a ccsubspace ⇒ 'a ccsubspace ⇒ bool›
is ‹(⊆)›.
declare less_eq_ccsubspace_def[code del]
lift_definition less_ccsubspace :: ‹'a ccsubspace ⇒ 'a ccsubspace ⇒ bool›
is ‹(⊂)›.
declare less_ccsubspace_def[code del]
instance
proof
fix x y z :: "'a ccsubspace"
show "(x < y) = (x ≤ y ∧ ¬ y ≤ x)"
by (simp add: less_eq_ccsubspace.rep_eq less_le_not_le less_ccsubspace.rep_eq)
show "x ≤ x"
by (simp add: less_eq_ccsubspace.rep_eq)
show "x ≤ z" if "x ≤ y" and "y ≤ z"
using that less_eq_ccsubspace.rep_eq by auto
show "x = y" if "x ≤ y" and "y ≤ x"
using that by (simp add: space_as_set_inject less_eq_ccsubspace.rep_eq)
qed
end
lemma ccspan_leqI:
assumes ‹M ⊆ space_as_set S›
shows ‹ccspan M ≤ S›
using assms apply transfer
by (simp add: closed_csubspace.closed closure_minimal complex_vector.span_minimal)
lemma ccspan_mono:
assumes ‹A ⊆ B›
shows ‹ccspan A ≤ ccspan B›
apply (transfer fixing: A B)
by (simp add: assms closure_mono complex_vector.span_mono)
lemma ccsubspace_leI:
assumes t1: "space_as_set A ⊆ space_as_set B"
shows "A ≤ B"
using t1 apply transfer by -
lemma ccspan_of_empty[simp]: "ccspan {} = bot"
proof transfer
show "closure (cspan {}) = {0::'a}"
by simp
qed
instantiation ccsubspace :: ("{complex_vector,topological_space}") inf begin
lift_definition inf_ccsubspace :: "'a ccsubspace ⇒ 'a ccsubspace ⇒ 'a ccsubspace"
is "(∩)" by simp
instance .. end
lemma space_as_set_inf[simp]: "space_as_set (A ⊓ B) = space_as_set A ∩ space_as_set B"
by (rule inf_ccsubspace.rep_eq)
instantiation ccsubspace :: ("{complex_vector,topological_space}") order_top begin
instance
proof
show "a ≤ ⊤"
for a :: "'a ccsubspace"
apply transfer
by simp
qed
end
instantiation ccsubspace :: ("{complex_vector,t1_space}") order_bot begin
instance
proof
show "(⊥::'a ccsubspace) ≤ a"
for a :: "'a ccsubspace"
apply transfer
apply auto
using closed_csubspace.subspace complex_vector.subspace_0 by blast
qed
end
instantiation ccsubspace :: ("{complex_vector,topological_space}") semilattice_inf begin
instance
proof
fix x y z :: ‹'a ccsubspace›
show "x ⊓ y ≤ x"
apply transfer by simp
show "x ⊓ y ≤ y"
apply transfer by simp
show "x ≤ y ⊓ z" if "x ≤ y" and "x ≤ z"
using that apply transfer by simp
qed
end
instantiation ccsubspace :: ("{complex_vector,t1_space}") zero begin
definition zero_ccsubspace :: "'a ccsubspace" where [simp]: "zero_ccsubspace = bot"
lemma zero_ccsubspace_transfer[transfer_rule]: ‹pcr_ccsubspace (=) {0} 0›
unfolding zero_ccsubspace_def by transfer_prover
instance ..
end
lemma ccspan_0[simp]: ‹ccspan {0} = 0›
apply transfer
by simp
definition ‹rel_ccsubspace R x y = rel_set R (space_as_set x) (space_as_set y)›
lemma left_unique_rel_ccsubspace[transfer_rule]: ‹left_unique (rel_ccsubspace R)› if ‹left_unique R›
proof (rule left_uniqueI)
fix S T :: ‹'a ccsubspace› and U
assume assms: ‹rel_ccsubspace R S U› ‹rel_ccsubspace R T U›
have ‹space_as_set S = space_as_set T›
apply (rule left_uniqueD)
using that apply (rule left_unique_rel_set)
using assms unfolding rel_ccsubspace_def by auto
then show ‹S = T›
by (simp add: space_as_set_inject)
qed
lemma right_unique_rel_ccsubspace[transfer_rule]: ‹right_unique (rel_ccsubspace R)› if ‹right_unique R›
by (metis rel_ccsubspace_def right_unique_def right_unique_rel_set space_as_set_inject that)
lemma bi_unique_rel_ccsubspace[transfer_rule]: ‹bi_unique (rel_ccsubspace R)› if ‹bi_unique R›
by (metis (no_types, lifting) bi_unique_def bi_unique_rel_set rel_ccsubspace_def space_as_set_inject that)
lemma converse_rel_ccsubspace: ‹conversep (rel_ccsubspace R) = rel_ccsubspace (conversep R)›
by (auto simp: rel_ccsubspace_def[abs_def])
lemma space_as_set_top[simp]: ‹space_as_set top = UNIV›
by (rule top_ccsubspace.rep_eq)
lemma ccsubspace_eqI:
assumes ‹⋀x. x ∈ space_as_set S ⟷ x ∈ space_as_set T›
shows ‹S = T›
by (metis Abs_ccsubspace_cases Abs_ccsubspace_inverse antisym assms subsetI)
lemma ccspan_remove_0: ‹ccspan (A - {0}) = ccspan A›
apply transfer
by auto
lemma sgn_in_spaceD: ‹ψ ∈ space_as_set A› if ‹sgn ψ ∈ space_as_set A› and ‹ψ ≠ 0›
for ψ :: ‹_ :: complex_normed_vector›
using that
apply (transfer fixing: ψ)
by (metis closed_csubspace.subspace complex_vector.subspace_scale divideC_field_simps(1) scaleR_eq_0_iff scaleR_scaleC sgn_div_norm sgn_zero_iff)
lemma sgn_in_spaceI: ‹sgn ψ ∈ space_as_set A› if ‹ψ ∈ space_as_set A›
for ψ :: ‹_ :: complex_normed_vector›
using that by (auto simp: sgn_div_norm scaleR_scaleC complex_vector.subspace_scale)
lemma ccsubspace_leI_unit:
fixes A B :: ‹_ :: complex_normed_vector ccsubspace›
assumes "⋀ψ. norm ψ = 1 ⟹ ψ ∈ space_as_set A ⟹ ψ ∈ space_as_set B"
shows "A ≤ B"
proof (rule ccsubspace_leI, rule subsetI)
fix ψ assume ψA: ‹ψ ∈ space_as_set A›
show ‹ψ ∈ space_as_set B›
apply (cases ‹ψ = 0›)
apply simp
using assms[of ‹sgn ψ›] ψA sgn_in_spaceD sgn_in_spaceI
by (auto simp: norm_sgn)
qed
lemma kernel_is_closed_csubspace[simp]:
assumes a1: "bounded_clinear f"
shows "closed_csubspace (f -` {0})"
proof-
have ‹csubspace (f -` {0})›
using assms bounded_clinear.clinear complex_vector.linear_subspace_vimage complex_vector.subspace_single_0 by blast
have "L ∈ {x. f x = 0}"
if "r ⇢ L" and "∀ n. r n ∈ {x. f x = 0}"
for r and L
proof-
have d1: ‹∀ n. f (r n) = 0›
using that(2) by auto
have ‹(λ n. f (r n)) ⇢ f L›
using assms clinear_continuous_at continuous_within_tendsto_compose' that(1)
by fastforce
hence ‹(λ n. 0) ⇢ f L›
using d1 by simp
hence ‹f L = 0›
using limI by fastforce
thus ?thesis by blast
qed
then have s3: ‹closed (f -` {0})›
using closed_sequential_limits by force
with ‹csubspace (f -` {0})›
show ?thesis
using closed_csubspace.intro by blast
qed
lemma ccspan_closure[simp]: ‹ccspan (closure X) = ccspan X›
by (simp add: basic_trans_rules(24) ccspan.rep_eq ccspan_leqI ccspan_mono closure_mono closure_subset complex_vector.span_superset)
lemma ccspan_finite: ‹space_as_set (ccspan X) = cspan X› if ‹finite X›
by (simp add: ccspan.rep_eq that)
lemma ccspan_UNIV[simp]: ‹ccspan UNIV = ⊤›
by (simp add: ccspan.abs_eq top_ccsubspace_def)
lemma infsum_in_closed_csubspaceI:
assumes ‹⋀x. x∈X ⟹ f x ∈ A›
assumes ‹closed_csubspace A›
shows ‹infsum f X ∈ A›
proof (cases ‹f summable_on X›)
case True
then have lim: ‹(sum f ⤏ infsum f X) (finite_subsets_at_top X)›
by (simp add: infsum_tendsto)
have sumA: ‹sum f F ∈ A› if ‹finite F› and ‹F ⊆ X› for F
apply (rule complex_vector.subspace_sum)
using that assms by auto
from lim show ‹infsum f X ∈ A›
apply (rule Lim_in_closed_set[rotated -1])
using assms sumA by (auto intro!: closed_csubspace.closed eventually_finite_subsets_at_top_weakI)
next
case False
then show ?thesis
using assms by (auto intro!: closed_csubspace.closed complex_vector.subspace_0 simp add: infsum_not_exists)
qed
lemma closed_csubspace_space_as_set[simp]: ‹closed_csubspace (space_as_set X)›
using space_as_set by simp
subsection ‹Closed sums›
definition closed_sum:: ‹'a::{semigroup_add,topological_space} set ⇒ 'a set ⇒ 'a set› where
‹closed_sum A B = closure (A + B)›
notation closed_sum (infixl "+⇩M" 65)
lemma closed_sum_comm: ‹A +⇩M B = B +⇩M A› for A B :: "_::ab_semigroup_add"
by (simp add: add.commute closed_sum_def)
lemma closed_sum_left_subset: ‹0 ∈ B ⟹ A ⊆ A +⇩M B› for A B :: "_::monoid_add"
by (metis add.right_neutral closed_sum_def closure_subset in_mono set_plus_intro subsetI)
lemma closed_sum_right_subset: ‹0 ∈ A ⟹ B ⊆ A +⇩M B› for A B :: "_::monoid_add"
by (metis add.left_neutral closed_sum_def closure_subset set_plus_intro subset_iff)
lemma finite_cspan_closed_csubspace:
assumes "finite (S::'a::complex_normed_vector set)"
shows "closed_csubspace (cspan S)"
by (simp add: assms closed_csubspace.intro)
lemma closed_sum_is_sup:
fixes A B C:: ‹('a::{complex_vector,topological_space}) set›
assumes ‹closed_csubspace C›
assumes ‹A ⊆ C› and ‹B ⊆ C›
shows ‹(A +⇩M B) ⊆ C›
proof -
have ‹A + B ⊆ C›
using assms unfolding set_plus_def
using closed_csubspace.subspace complex_vector.subspace_add by blast
then show ‹(A +⇩M B) ⊆ C›
unfolding closed_sum_def
using ‹closed_csubspace C›
by (simp add: closed_csubspace.closed closure_minimal)
qed
lemma closed_subspace_closed_sum:
fixes A B::"('a::complex_normed_vector) set"
assumes a1: ‹csubspace A› and a2: ‹csubspace B›
shows ‹closed_csubspace (A +⇩M B)›
using a1 a2 closed_sum_def
by (metis closure_is_closed_csubspace csubspace_set_plus)
lemma closed_sum_assoc:
fixes A B C::"'a::real_normed_vector set"
shows ‹A +⇩M (B +⇩M C) = (A +⇩M B) +⇩M C›
proof -
have ‹A + closure B ⊆ closure (A + B)› for A B :: "'a set"
by (meson closure_subset closure_sum dual_order.trans order_refl set_plus_mono2)
then have ‹A +⇩M (B +⇩M C) = closure (A + (B + C))›
unfolding closed_sum_def
by (meson antisym_conv closed_closure closure_minimal closure_mono closure_subset equalityD1 set_plus_mono2)
moreover
have ‹closure A + B ⊆ closure (A + B)› for A B :: "'a set"
by (meson closure_subset closure_sum dual_order.trans order_refl set_plus_mono2)
then have ‹(A +⇩M B) +⇩M C = closure ((A + B) + C)›
unfolding closed_sum_def
by (meson closed_closure closure_minimal closure_mono closure_subset eq_iff set_plus_mono2)
ultimately show ?thesis
by (simp add: ab_semigroup_add_class.add_ac(1))
qed
lemma closed_sum_zero_left[simp]:
fixes A :: ‹('a::{monoid_add, topological_space}) set›
shows ‹{0} +⇩M A = closure A›
unfolding closed_sum_def
by (metis add.left_neutral set_zero)
lemma closed_sum_zero_right[simp]:
fixes A :: ‹('a::{monoid_add, topological_space}) set›
shows ‹A +⇩M {0} = closure A›
unfolding closed_sum_def
by (metis add.right_neutral set_zero)
lemma closed_sum_closure_right[simp]:
fixes A B :: ‹'a::real_normed_vector set›
shows ‹A +⇩M closure B = A +⇩M B›
by (metis closed_sum_assoc closed_sum_def closed_sum_zero_right closure_closure)
lemma closed_sum_closure_left[simp]:
fixes A B :: ‹'a::real_normed_vector set›
shows ‹closure A +⇩M B = A +⇩M B›
by (simp add: closed_sum_comm)
lemma closed_sum_mono_left:
assumes ‹A ⊆ B›
shows ‹A +⇩M C ⊆ B +⇩M C›
by (simp add: assms closed_sum_def closure_mono set_plus_mono2)
lemma closed_sum_mono_right:
assumes ‹A ⊆ B›
shows ‹C +⇩M A ⊆ C +⇩M B›
by (simp add: assms closed_sum_def closure_mono set_plus_mono2)
instantiation ccsubspace :: (complex_normed_vector) sup begin
lift_definition sup_ccsubspace :: "'a ccsubspace ⇒ 'a ccsubspace ⇒ 'a ccsubspace"
is "λA B::'a set. A +⇩M B"
by (simp add: closed_subspace_closed_sum)
instance ..
end
lemma closed_sum_cspan[simp]:
shows ‹cspan X +⇩M cspan Y = closure (cspan (X ∪ Y))›
by (smt (verit, best) Collect_cong closed_sum_def complex_vector.span_Un set_plus_def)
lemma closure_image_closed_sum:
assumes ‹bounded_linear U›
shows ‹closure (U ` (A +⇩M B)) = closure (U ` A) +⇩M closure (U ` B)›
proof -
have ‹closure (U ` (A +⇩M B)) = closure (U ` closure (closure A + closure B))›
unfolding closed_sum_def
by (smt (verit, best) closed_closure closure_minimal closure_mono closure_subset closure_sum set_plus_mono2 subset_antisym)
also have ‹… = closure (U ` (closure A + closure B))›
using assms closure_bounded_linear_image_subset_eq by blast
also have ‹… = closure (U ` closure A + U ` closure B)›
apply (subst image_set_plus)
by (simp_all add: assms bounded_linear.linear)
also have ‹… = closure (closure (U ` A) + closure (U ` B))›
by (smt (verit, ccfv_SIG) assms closed_closure closure_bounded_linear_image_subset closure_bounded_linear_image_subset_eq closure_minimal closure_mono closure_sum dual_order.eq_iff set_plus_mono2)
also have ‹… = closure (U ` A) +⇩M closure (U ` B)›
using closed_sum_def by blast
finally show ?thesis
by -
qed
lemma ccspan_union: "ccspan A ⊔ ccspan B = ccspan (A ∪ B)"
apply transfer by simp
instantiation ccsubspace :: (complex_normed_vector) "Sup"
begin
lift_definition Sup_ccsubspace::‹'a ccsubspace set ⇒ 'a ccsubspace›
is ‹λS. closure (complex_vector.span (Union S))›
proof
show "csubspace (closure (complex_vector.span (⋃ S::'a set)))"
if "⋀x::'a set. x ∈ S ⟹ closed_csubspace x"
for S :: "'a set set"
using that
by (simp add: closure_is_closed_csubspace)
show "closed (closure (complex_vector.span (⋃ S::'a set)))"
if "⋀x. (x::'a set) ∈ S ⟹ closed_csubspace x"
for S :: "'a set set"
using that
by simp
qed
instance..
end
instance ccsubspace :: ("{complex_normed_vector}") semilattice_sup
proof
fix x y z :: ‹'a ccsubspace›
show ‹x ≤ sup x y›
apply transfer
by (simp add: closed_csubspace_def closed_sum_left_subset complex_vector.subspace_0)
show "y ≤ sup x y"
apply transfer
by (simp add: closed_csubspace_def closed_sum_right_subset complex_vector.subspace_0)
show "sup x y ≤ z" if "x ≤ z" and "y ≤ z"
using that apply transfer
apply (rule closed_sum_is_sup) by auto
qed
instance ccsubspace :: (complex_normed_vector) complete_lattice
proof
show "Inf A ≤ x" if "x ∈ A"
for x :: "'a ccsubspace" and A :: "'a ccsubspace set"
using that
apply transfer
by auto
have b1: "z ⊆ ⋂ A"
if "Ball A closed_csubspace" and
"closed_csubspace z" and
"(⋀x. closed_csubspace x ⟹ x ∈ A ⟹ z ⊆ x)"
for z::"'a set" and A
using that
by auto
show "z ≤ Inf A"
if "⋀x::'a ccsubspace. x ∈ A ⟹ z ≤ x"
for A :: "'a ccsubspace set"
and z :: "'a ccsubspace"
using that
apply transfer
using b1 by blast
show "x ≤ Sup A"
if "x ∈ A"
for x :: "'a ccsubspace"
and A :: "'a ccsubspace set"
using that
apply transfer
by (meson Union_upper closure_subset complex_vector.span_superset dual_order.trans)
show "Sup A ≤ z"
if "⋀x::'a ccsubspace. x ∈ A ⟹ x ≤ z"
for A :: "'a ccsubspace set"
and z :: "'a ccsubspace"
using that apply transfer
proof -
fix A :: "'a set set" and z :: "'a set"
assume A_closed: "Ball A closed_csubspace"
assume "closed_csubspace z"
assume in_z: "⋀x. closed_csubspace x ⟹ x ∈ A ⟹ x ⊆ z"
from A_closed in_z
have ‹V ⊆ z› if ‹V ∈ A› for V
by (simp add: that)
then have ‹⋃ A ⊆ z›
by (simp add: Sup_le_iff)
with ‹closed_csubspace z›
show "closure (cspan (⋃ A)) ⊆ z"
by (simp add: closed_csubspace_def closure_minimal complex_vector.span_def subset_hull)
qed
show "Inf {} = (top::'a ccsubspace)"
using ‹⋀z A. (⋀x. x ∈ A ⟹ z ≤ x) ⟹ z ≤ Inf A› top.extremum_uniqueI by auto
show "Sup {} = (bot::'a ccsubspace)"
using ‹⋀z A. (⋀x. x ∈ A ⟹ x ≤ z) ⟹ Sup A ≤ z› bot.extremum_uniqueI by auto
qed
instantiation ccsubspace :: (complex_normed_vector) comm_monoid_add begin
definition plus_ccsubspace :: "'a ccsubspace ⇒ _ ⇒ _"
where [simp]: "plus_ccsubspace = sup"
instance
proof
fix a b c :: ‹'a ccsubspace›
show "a + b + c = a + (b + c)"
using sup.assoc by auto
show "a + b = b + a"
by (simp add: sup.commute)
show "0 + a = a"
by (simp add: zero_ccsubspace_def)
qed
end
lemma SUP_ccspan: ‹(SUP x∈X. ccspan (S x)) = ccspan (⋃x∈X. S x)›
proof (rule SUP_eqI)
show ‹ccspan (S x) ≤ ccspan (⋃x∈X. S x)› if ‹x ∈ X› for x
apply (rule ccspan_mono)
using that by auto
show ‹ccspan (⋃x∈X. S x) ≤ y› if ‹⋀x. x ∈ X ⟹ ccspan (S x) ≤ y› for y
apply (intro ccspan_leqI UN_least)
using that ccspan_superset by (auto simp: less_eq_ccsubspace.rep_eq)
qed
lemma ccsubspace_plus_sup: "y ≤ x ⟹ z ≤ x ⟹ y + z ≤ x"
for x y z :: "'a::complex_normed_vector ccsubspace"
unfolding plus_ccsubspace_def by auto
lemma ccsubspace_Sup_empty: "Sup {} = (0::_ ccsubspace)"
unfolding zero_ccsubspace_def by auto
lemma ccsubspace_add_right_incr[simp]: "a ≤ a + c" for a::"_ ccsubspace"
by (simp add: add_increasing2)
lemma ccsubspace_add_left_incr[simp]: "a ≤ c + a" for a::"_ ccsubspace"
by (simp add: add_increasing)
lemma sum_bot_ccsubspace[simp]: ‹(∑x∈X. ⊥) = (⊥ :: _ ccsubspace)›
by (simp flip: zero_ccsubspace_def)
subsection ‹Conjugate space›
typedef 'a conjugate_space = "UNIV :: 'a set"
morphisms from_conjugate_space to_conjugate_space ..
setup_lifting type_definition_conjugate_space
instantiation conjugate_space :: (complex_vector) complex_vector begin
lift_definition scaleC_conjugate_space :: ‹complex ⇒ 'a conjugate_space ⇒ 'a conjugate_space› is ‹λc x. cnj c *⇩C x›.
lift_definition scaleR_conjugate_space :: ‹real ⇒ 'a conjugate_space ⇒ 'a conjugate_space› is ‹λr x. r *⇩R x›.
lift_definition plus_conjugate_space :: "'a conjugate_space ⇒ 'a conjugate_space ⇒ 'a conjugate_space" is "(+)".
lift_definition uminus_conjugate_space :: "'a conjugate_space ⇒ 'a conjugate_space" is ‹λx. -x›.
lift_definition zero_conjugate_space :: "'a conjugate_space" is 0.
lift_definition minus_conjugate_space :: "'a conjugate_space ⇒ 'a conjugate_space ⇒ 'a conjugate_space" is "(-)".
instance
apply (intro_classes; transfer)
by (simp_all add: scaleR_scaleC scaleC_add_right scaleC_left.add)
end
instantiation conjugate_space :: (complex_normed_vector) complex_normed_vector begin
lift_definition sgn_conjugate_space :: "'a conjugate_space ⇒ 'a conjugate_space" is "sgn".
lift_definition norm_conjugate_space :: "'a conjugate_space ⇒ real" is norm.
lift_definition dist_conjugate_space :: "'a conjugate_space ⇒ 'a conjugate_space ⇒ real" is dist.
lift_definition uniformity_conjugate_space :: "('a conjugate_space × 'a conjugate_space) filter" is uniformity.
lift_definition open_conjugate_space :: "'a conjugate_space set ⇒ bool" is "open".
instance
apply (intro_classes; transfer)
by (simp_all add: dist_norm sgn_div_norm open_uniformity uniformity_dist norm_triangle_ineq)
end
instantiation conjugate_space :: (cbanach) cbanach begin
instance
apply intro_classes
unfolding Cauchy_def convergent_def LIMSEQ_def apply transfer
using Cauchy_convergent unfolding Cauchy_def convergent_def LIMSEQ_def by metis
end
lemma bounded_antilinear_to_conjugate_space[simp]: ‹bounded_antilinear to_conjugate_space›
by (rule bounded_antilinear_intro[where K=1]; transfer; auto)
lemma bounded_antilinear_from_conjugate_space[simp]: ‹bounded_antilinear from_conjugate_space›
by (rule bounded_antilinear_intro[where K=1]; transfer; auto)
lemma antilinear_to_conjugate_space[simp]: ‹antilinear to_conjugate_space›
by (rule antilinearI; transfer, auto)
lemma antilinear_from_conjugate_space[simp]: ‹antilinear from_conjugate_space›
by (rule antilinearI; transfer, auto)
lemma cspan_to_conjugate_space[simp]: "cspan (to_conjugate_space ` X) = to_conjugate_space ` cspan X"
unfolding complex_vector.span_def complex_vector.subspace_def hull_def
apply transfer
apply simp
by (metis (no_types, opaque_lifting) complex_cnj_cnj)
lemma surj_to_conjugate_space[simp]: "surj to_conjugate_space"
by (meson surj_def to_conjugate_space_cases)
lemmas has_derivative_scaleC[simp, derivative_intros] =
bounded_bilinear.FDERIV[OF bounded_cbilinear_scaleC[THEN bounded_cbilinear.bounded_bilinear]]
lemma norm_to_conjugate_space[simp]: ‹norm (to_conjugate_space x) = norm x›
by (fact norm_conjugate_space.abs_eq)
lemma norm_from_conjugate_space[simp]: ‹norm (from_conjugate_space x) = norm x›
by (simp add: norm_conjugate_space.rep_eq)
lemma closure_to_conjugate_space: ‹closure (to_conjugate_space ` X) = to_conjugate_space ` closure X›
proof -
have 1: ‹to_conjugate_space ` closure X ⊆ closure (to_conjugate_space ` X)›
apply (rule closure_bounded_linear_image_subset)
by (simp add: bounded_antilinear.bounded_linear)
have ‹… = to_conjugate_space ` from_conjugate_space ` closure (to_conjugate_space ` X)›
by (simp add: from_conjugate_space_inverse image_image)
also have ‹… ⊆ to_conjugate_space ` closure (from_conjugate_space ` to_conjugate_space ` X)›
apply (rule image_mono)
apply (rule closure_bounded_linear_image_subset)
by (simp add: bounded_antilinear.bounded_linear)
also have ‹… = to_conjugate_space ` closure X›
by (simp add: to_conjugate_space_inverse image_image)
finally show ?thesis
using 1 by simp
qed
lemma closure_from_conjugate_space: ‹closure (from_conjugate_space ` X) = from_conjugate_space ` closure X›
proof -
have 1: ‹from_conjugate_space ` closure X ⊆ closure (from_conjugate_space ` X)›
apply (rule closure_bounded_linear_image_subset)
by (simp add: bounded_antilinear.bounded_linear)
have ‹… = from_conjugate_space ` to_conjugate_space ` closure (from_conjugate_space ` X)›
by (simp add: to_conjugate_space_inverse image_image)
also have ‹… ⊆ from_conjugate_space ` closure (to_conjugate_space ` from_conjugate_space ` X)›
apply (rule image_mono)
apply (rule closure_bounded_linear_image_subset)
by (simp add: bounded_antilinear.bounded_linear)
also have ‹… = from_conjugate_space ` closure X›
by (simp add: from_conjugate_space_inverse image_image)
finally show ?thesis
using 1 by simp
qed
lemma bounded_antilinear_eq_on:
fixes A B :: "'a::complex_normed_vector ⇒ 'b::complex_normed_vector"
assumes ‹bounded_antilinear A› and ‹bounded_antilinear B› and
eq: ‹⋀x. x ∈ G ⟹ A x = B x› and t: ‹t ∈ closure (cspan G)›
shows ‹A t = B t›
proof -
let ?A = ‹λx. A (from_conjugate_space x)› and ?B = ‹λx. B (from_conjugate_space x)›
and ?G = ‹to_conjugate_space ` G› and ?t = ‹to_conjugate_space t›
have ‹bounded_clinear ?A› and ‹bounded_clinear ?B›
by (auto intro!: bounded_antilinear_o_bounded_antilinear[OF ‹bounded_antilinear A›]
bounded_antilinear_o_bounded_antilinear[OF ‹bounded_antilinear B›])
moreover from eq have ‹⋀x. x ∈ ?G ⟹ ?A x = ?B x›
by (metis image_iff iso_tuple_UNIV_I to_conjugate_space_inverse)
moreover from t have ‹?t ∈ closure (cspan ?G)›
by (metis bounded_antilinear.bounded_linear bounded_antilinear_to_conjugate_space closure_bounded_linear_image_subset cspan_to_conjugate_space imageI subsetD)
ultimately have ‹?A ?t = ?B ?t›
by (rule bounded_clinear_eq_on_closure)
then show ‹A t = B t›
by (simp add: to_conjugate_space_inverse)
qed
subsection ‹Product is a Complex Vector Space›
instantiation prod :: (complex_vector, complex_vector) complex_vector
begin
definition scaleC_prod_def:
"scaleC r A = (scaleC r (fst A), scaleC r (snd A))"
lemma fst_scaleC [simp]: "fst (scaleC r A) = scaleC r (fst A)"
unfolding scaleC_prod_def by simp
lemma snd_scaleC [simp]: "snd (scaleC r A) = scaleC r (snd A)"
unfolding scaleC_prod_def by simp
proposition scaleC_Pair [simp]: "scaleC r (a, b) = (scaleC r a, scaleC r b)"
unfolding scaleC_prod_def by simp
instance
proof
fix a b :: complex and x y :: "'a × 'b"
show "scaleC a (x + y) = scaleC a x + scaleC a y"
by (simp add: scaleC_add_right scaleC_prod_def)
show "scaleC (a + b) x = scaleC a x + scaleC b x"
by (simp add: Complex_Vector_Spaces.scaleC_prod_def scaleC_left.add)
show "scaleC a (scaleC b x) = scaleC (a * b) x"
by (simp add: prod_eq_iff)
show "scaleC 1 x = x"
by (simp add: prod_eq_iff)
show ‹(scaleR :: _ ⇒ _ ⇒ 'a*'b) r = (*⇩C) (complex_of_real r)› for r
by (auto intro!: ext simp: scaleR_scaleC scaleC_prod_def scaleR_prod_def)
qed
end
lemma module_prod_scale_eq_scaleC: "module_prod.scale (*⇩C) (*⇩C) = scaleC"
apply (rule ext) apply (rule ext)
apply (subst module_prod.scale_def)
subgoal by unfold_locales
by (simp add: scaleC_prod_def)
interpretation complex_vector?: vector_space_prod "scaleC::_⇒_⇒'a::complex_vector" "scaleC::_⇒_⇒'b::complex_vector"
rewrites "scale = ((*⇩C)::_⇒_⇒('a × 'b))"
and "module.dependent (*⇩C) = cdependent"
and "module.representation (*⇩C) = crepresentation"
and "module.subspace (*⇩C) = csubspace"
and "module.span (*⇩C) = cspan"
and "vector_space.extend_basis (*⇩C) = cextend_basis"
and "vector_space.dim (*⇩C) = cdim"
and "Vector_Spaces.linear (*⇩C) (*⇩C) = clinear"
subgoal by unfold_locales
subgoal by (fact module_prod_scale_eq_scaleC)
unfolding cdependent_raw_def crepresentation_raw_def csubspace_raw_def cspan_raw_def
cextend_basis_raw_def cdim_raw_def clinear_def
by (rule refl)+
instance prod :: (complex_normed_vector, complex_normed_vector) complex_normed_vector
proof
fix c :: complex and x y :: "'a × 'b"
show "norm (c *⇩C x) = cmod c * norm x"
unfolding norm_prod_def
apply (simp add: power_mult_distrib)
apply (simp add: distrib_left [symmetric])
by (simp add: real_sqrt_mult)
qed
lemma cspan_Times: ‹cspan (S × T) = cspan S × cspan T› if ‹0 ∈ S› and ‹0 ∈ T›
proof
have ‹fst ` cspan (S × T) ⊆ cspan S›
apply (subst complex_vector.linear_span_image[symmetric])
using that complex_vector.module_hom_fst by auto
moreover have ‹snd ` cspan (S × T) ⊆ cspan T›
apply (subst complex_vector.linear_span_image[symmetric])
using that complex_vector.module_hom_snd by auto
ultimately show ‹cspan (S × T) ⊆ cspan S × cspan T›
by auto
show ‹cspan S × cspan T ⊆ cspan (S × T)›
proof
fix x assume assm: ‹x ∈ cspan S × cspan T›
then have ‹fst x ∈ cspan S›
by auto
then obtain t1 r1 where fst_x: ‹fst x = (∑a∈t1. r1 a *⇩C a)› and [simp]: ‹finite t1› and ‹t1 ⊆ S›
by (auto simp add: complex_vector.span_explicit)
from assm
have ‹snd x ∈ cspan T›
by auto
then obtain t2 r2 where snd_x: ‹snd x = (∑a∈t2. r2 a *⇩C a)› and [simp]: ‹finite t2› and ‹t2 ⊆ T›
by (auto simp add: complex_vector.span_explicit)
define t :: ‹('a+'b) set› and r :: ‹('a+'b) ⇒ complex› and f :: ‹('a+'b) ⇒ ('a×'b)›
where ‹t = t1 <+> t2›
and ‹r a = (case a of Inl a1 ⇒ r1 a1 | Inr a2 ⇒ r2 a2)›
and ‹f a = (case a of Inl a1 ⇒ (a1,0) | Inr a2 ⇒ (0,a2))›
for a
have ‹finite t›
by (simp add: t_def)
moreover have ‹f ` t ⊆ S × T›
using ‹t1 ⊆ S› ‹t2 ⊆ T› that
by (auto simp: f_def t_def)
moreover have ‹(fst x, snd x) = (∑a∈t. r a *⇩C f a)›
apply (simp only: fst_x snd_x)
by (auto simp: t_def sum.Plus r_def f_def sum_prod)
ultimately show ‹x ∈ cspan (S × T)›
apply auto
by (smt (verit, best) complex_vector.span_scale complex_vector.span_sum complex_vector.span_superset image_subset_iff subset_iff)
qed
qed
lemma onorm_case_prod_plus: ‹onorm (case_prod plus :: _ ⇒ 'a::{real_normed_vector, not_singleton}) = sqrt 2›
proof -
obtain x :: 'a where ‹x ≠ 0›
apply atomize_elim by auto
show ?thesis
apply (rule onormI[where x=‹(x,x)›])
using norm_plus_leq_norm_prod apply force
using ‹x ≠ 0›
by (auto simp add: zero_prod_def norm_prod_def real_sqrt_mult
simp flip: scaleR_2)
qed
subsection ‹Copying existing theorems into sublocales›
context bounded_clinear begin
interpretation bounded_linear f by (rule bounded_linear)
lemmas continuous = real.continuous
lemmas uniform_limit = real.uniform_limit
lemmas Cauchy = real.Cauchy
end
context bounded_antilinear begin
interpretation bounded_linear f by (rule bounded_linear)
lemmas continuous = real.continuous
lemmas uniform_limit = real.uniform_limit
end
context bounded_cbilinear begin
interpretation bounded_bilinear prod by simp
lemmas tendsto = real.tendsto
lemmas isCont = real.isCont
lemmas scaleR_right = real.scaleR_right
lemmas scaleR_left = real.scaleR_left
end
context bounded_sesquilinear begin
interpretation bounded_bilinear prod by simp
lemmas tendsto = real.tendsto
lemmas isCont = real.isCont
lemmas scaleR_right = real.scaleR_right
lemmas scaleR_left = real.scaleR_left
end
lemmas tendsto_scaleC [tendsto_intros] =
bounded_cbilinear.tendsto [OF bounded_cbilinear_scaleC]
unbundle no_lattice_syntax
end