Theory Quicksort

(******************************************************************************
 * Clean
 *
 * Copyright (c) 2018-2019 Université Paris-Saclay, Univ. Paris-Sud, France
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 *
 *     * Neither the name of the copyright holders nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 ******************************************************************************)

(*
 * Quicksort : all at a glance. 
 *
 * Authors : Burkhart Wolff, Frédéric Tuong
 *)

chapter ‹ Clean Semantics : A Coding-Concept Example›

text‹The following show-case introduces subsequently a non-trivial example involving
local and global variable declarations, declarations of operations with pre-post conditions as
well as direct-recursive operations (i.e. C-like functions with side-effects on global and
local variables. ›

theory Quicksort
  imports Clean.Clean
          Clean.Hoare_Clean
          Clean.Clean_Symbex
begin

section‹The Quicksort Example - At a Glance›

text‹ We present the following quicksort algorithm in some conceptual, high-level notation:

\begin{isar}
algorithm (A,i,j) =
    tmp := A[i];
    A[i]:=A[j];
    A[j]:=tmp

algorithm partition(A, lo, hi) is
    pivot := A[hi]
    i := lo
    for j := lo to hi - 1 do
        if A[j] < pivot then
            swap A[i] with A[j]
            i := i + 1
    swap A[i] with A[hi]
    return i

algorithm quicksort(A, lo, hi) is
    if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)

\end{isar}
›


section‹Clean Encoding of the Global State of Quicksort›


global_vars (state)
    A :: "int list"

function_spec swap (i::nat,j::nat) ― ‹TODO: the hovering on parameters produces a number of report equal to the number of MLProof_Context.add_fixes called in MLFunction_Specification_Parser.checkNsem_function_spec
pre          "‹i < length A ∧ j < length A›"    
post         "‹λres. length A = length(old A) ∧ res = ()›" 
local_vars   tmp :: int 
defines      " ‹ tmp := A ! i›  ;-
               ‹ A := list_update A i (A ! j)› ;- 
               ‹ A := list_update A j tmp› " 


function_spec partition (lo::nat, hi::nat) returns nat
pre          "‹lo < length A ∧ hi < length A›"    
post         "‹λres::nat. length A = length(old A) ∧ res = 3›" 
local_vars   pivot  :: int
             i      :: nat
             j      :: nat
defines      " ‹pivot := A ! hi ›  ;- ‹i := lo › ;- ‹j := lo › ;-
               whileC ‹j ≤ hi - 1 › 
                do ifC ‹A ! j < pivot›  
                     then callC swap ‹(i , j) ›  ;-
                          ‹i := i + 1 ›
                     else skipSE 
                   fi ;-
                    ‹j := j + 1 › 
                od;-
                callC swap ‹(i, j)›  ;-
                returnlocal_partition_state.result_value_update‹i›" 

thm partition_core_def


rec_function_spec quicksort (lo::nat, hi::nat) returns unit
pre          "‹lo ≤ hi ∧ hi < length A›"
post         "‹λres::unit. ∀i∈{lo .. hi}. ∀j∈{lo .. hi}. i ≤ j ⟶ A!i ≤ A!j›"
variant      "hi - lo" 
local_vars   p :: "nat" 
defines      " ifC ‹lo < hi›  
               then (ptmp  callC partition ‹(lo, hi)› ; assign_local p_update (λσ. ptmp)) ;-
                     callC quicksort ‹(lo, p - 1)› ;-
                     callC quicksort ‹(lo, p + 1)›  
               else skipSE 
               fi"


thm quicksort_core_def
thm quicksort_def
thm quicksort_pre_def
thm quicksort_post_def

section‹Possible Application Sketch›

lemma quicksort_correct : 
  "λσ.    σ  quicksort_pre (lo, hi)(σ)  σ = σpre  
     quicksort (lo, hi) 
   λr σ.  σ  quicksort_post(lo, hi)(σpre)(σ)(r) "
   oops



end