Theory CZH_UCAT_Limit_Pullback
section‹Pullbacks and pushouts as limits and colimits›
theory CZH_UCAT_Limit_Pullback
imports
CZH_UCAT_Limit
CZH_Elementary_Categories.CZH_ECAT_SS
begin
subsection‹Pullback and pushout›
subsubsection‹Definition and elementary properties›
text‹
The definitions and the elementary properties of the pullbacks and the
pushouts can be found, for example, in Chapter III-3 and Chapter III-4 in
\<^cite>‹"mac_lane_categories_2010"›.
›
locale is_cat_pullback =
is_cat_limit α ‹→∙←⇩C› ℭ ‹⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙› X x +
cf_scospan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ
for α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X x
syntax "_is_cat_pullback" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ <⇩C⇩F⇩.⇩p⇩b _→_→_←_←_ ↦↦⇩Cı _)› [51, 51, 51, 51, 51, 51, 51, 51] 51)
translations "x : X <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_pullback α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X x"
locale is_cat_pushout =
is_cat_colimit α ‹←∙→⇩C› ℭ ‹⟨𝔞←𝔤←𝔬→𝔣→𝔟⟩⇩C⇩F⇘ℭ⇙› X x +
cf_sspan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ
for α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X x
syntax "_is_cat_pushout" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _←_←_→_→_ >⇩C⇩F⇩.⇩p⇩o _ ↦↦⇩Cı _)› [51, 51, 51, 51, 51, 51, 51, 51] 51)
translations "x : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_pushout α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X x"
text‹Rules.›
lemma (in is_cat_pullback) is_cat_pullback_axioms'[cat_lim_cs_intros]:
assumes "α' = α"
and "𝔞' = 𝔞"
and "𝔤' = 𝔤"
and "𝔬' = 𝔬"
and "𝔣' = 𝔣"
and "𝔟' = 𝔟"
and "ℭ' = ℭ"
and "X' = X"
shows "x : X' <⇩C⇩F⇩.⇩p⇩b 𝔞'→𝔤'→𝔬'←𝔣'←𝔟' ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_pullback_axioms)
mk_ide rf is_cat_pullback_def
|intro is_cat_pullbackI|
|dest is_cat_pullbackD[dest]|
|elim is_cat_pullbackE[elim]|
lemmas [cat_lim_cs_intros] = is_cat_pullbackD
lemma (in is_cat_pushout) is_cat_pushout_axioms'[cat_lim_cs_intros]:
assumes "α' = α"
and "𝔞' = 𝔞"
and "𝔤' = 𝔤"
and "𝔬' = 𝔬"
and "𝔣' = 𝔣"
and "𝔟' = 𝔟"
and "ℭ' = ℭ"
and "X' = X"
shows "x : 𝔞'←𝔤'←𝔬'→𝔣'→𝔟' >⇩C⇩F⇩.⇩p⇩o X' ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_pushout_axioms)
mk_ide rf is_cat_pushout_def
|intro is_cat_pushoutI|
|dest is_cat_pushoutD[dest]|
|elim is_cat_pushoutE[elim]|
lemmas [cat_lim_cs_intros] = is_cat_pushoutD
text‹Duality.›
lemma (in is_cat_pullback) is_cat_pushout_op:
"op_ntcf x : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X ↦↦⇩C⇘α⇙ op_cat ℭ"
by (intro is_cat_pushoutI)
(cs_concl cs_shallow cs_simp: cat_op_simps cs_intro: cat_op_intros)+
lemma (in is_cat_pullback) is_cat_pushout_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf x : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_pushout_op)
lemmas [cat_op_intros] = is_cat_pullback.is_cat_pushout_op'
lemma (in is_cat_pushout) is_cat_pullback_op:
"op_ntcf x : X <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ op_cat ℭ"
by (intro is_cat_pullbackI)
(cs_concl cs_shallow cs_simp: cat_op_simps cs_intro: cat_op_intros)+
lemma (in is_cat_pushout) is_cat_pullback_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf x : X <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_pullback_op)
lemmas [cat_op_intros] = is_cat_pushout.is_cat_pullback_op'
text‹Elementary properties.›
lemma cat_cone_cospan:
assumes "x : X <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
and "cf_scospan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ"
shows "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = 𝔤 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈"
and "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = 𝔣 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
and "𝔤 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = 𝔣 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
proof-
interpret x: is_cat_cone α X ‹→∙←⇩C› ℭ ‹⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙› x
by (rule assms(1))
interpret cospan: cf_scospan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ by (rule assms(2))
have 𝔤⇩S⇩S: "𝔤⇩S⇩S : 𝔞⇩S⇩S ↦⇘→∙←⇩C⇙ 𝔬⇩S⇩S" and 𝔣⇩S⇩S: "𝔣⇩S⇩S : 𝔟⇩S⇩S ↦⇘→∙←⇩C⇙ 𝔬⇩S⇩S"
by (cs_concl cs_intro: cat_ss_cs_intros)+
note x.cat_cone_Comp_commute[cat_cs_simps del]
from x.ntcf_Comp_commute[OF 𝔤⇩S⇩S] 𝔤⇩S⇩S 𝔣⇩S⇩S show
"x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = 𝔤 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈"
by
(
cs_prems cs_shallow
cs_simp: cat_ss_cs_simps cat_cs_simps cs_intro: cat_cs_intros
)
moreover from x.ntcf_Comp_commute[OF 𝔣⇩S⇩S] 𝔤⇩S⇩S 𝔣⇩S⇩S show
"x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = 𝔣 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
by
(
cs_prems cs_shallow
cs_simp: cat_ss_cs_simps cat_cs_simps cs_intro: cat_cs_intros
)
ultimately show "𝔤 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = 𝔣 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈" by simp
qed
lemma (in is_cat_pullback) cat_pb_cone_cospan:
shows "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = 𝔤 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈"
and "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = 𝔣 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
and "𝔤 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = 𝔣 ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
by (all‹rule cat_cone_cospan[OF is_cat_cone_axioms cf_scospan_axioms]›)
lemma cat_cocone_span:
assumes "x : ⟨𝔞←𝔤←𝔬→𝔣→𝔟⟩⇩C⇩F⇘ℭ⇙ >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e X : ←∙→⇩C ↦↦⇩C⇘α⇙ ℭ"
and "cf_sspan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ"
shows "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔤"
and "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔣"
and "x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔤 = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔣"
proof-
interpret x: is_cat_cocone α X ‹←∙→⇩C› ℭ ‹⟨𝔞←𝔤←𝔬→𝔣→𝔟⟩⇩C⇩F⇘ℭ⇙› x
by (rule assms(1))
interpret span: cf_sspan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ by (rule assms(2))
note op =
cat_cone_cospan
[
OF
x.is_cat_cone_op[unfolded cat_op_simps]
span.cf_scospan_op,
unfolded cat_op_simps
]
from op(1) show "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔤"
by
(
cs_prems
cs_simp: cat_ss_cs_simps cat_op_simps
cs_intro: cat_cs_intros cat_ss_cs_intros
)
moreover from op(2) show "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔣"
by
(
cs_prems
cs_simp: cat_ss_cs_simps cat_op_simps
cs_intro: cat_cs_intros cat_ss_cs_intros
)
ultimately show "x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔤 = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔣" by auto
qed
lemma (in is_cat_pushout) cat_po_cocone_span:
shows "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔤"
and "x⦇NTMap⦈⦇𝔬⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔣"
and "x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔤 = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ 𝔣"
by (all‹rule cat_cocone_span[OF is_cat_cocone_axioms cf_sspan_axioms]›)
subsubsection‹Universal property›
lemma is_cat_pullbackI':
assumes "x : X <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
and "cf_scospan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ"
and "⋀x' X'. x' : X' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ ℭ ⟹
∃!f'.
f' : X' ↦⇘ℭ⇙ X ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f' ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f'"
shows "x : X <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ"
proof(intro is_cat_pullbackI is_cat_limitI)
show "x : X <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
by (rule assms(1))
interpret x: is_cat_cone α X ‹→∙←⇩C› ℭ ‹⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙› x
by (rule assms(1))
show "cf_scospan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ" by (rule assms(2))
interpret cospan: cf_scospan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ by (rule assms(2))
fix u' r' assume prems:
"u' : r' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
interpret u': is_cat_cone α r' ‹→∙←⇩C› ℭ ‹⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙› u'
by (rule prems)
from assms(3)[OF prems] obtain f'
where f': "f' : r' ↦⇘ℭ⇙ X"
and u'_𝔞⇩S⇩S: "u'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f'"
and u'_𝔟⇩S⇩S: "u'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f'"
and unique_f': "⋀f''.
⟦
f'' : r' ↦⇘ℭ⇙ X;
u'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f'';
u'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f''
⟧ ⟹ f'' = f'"
by metis
show "∃!f'. f' : r' ↦⇘ℭ⇙ X ∧ u' = x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'"
proof(intro ex1I conjI; (elim conjE)?)
show "u' = x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'"
proof(rule ntcf_eqI)
show "u' : cf_const →∙←⇩C ℭ r' ↦⇩C⇩F ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
by (rule u'.is_ntcf_axioms)
from f' show
"x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f' :
cf_const →∙←⇩C ℭ r' ↦⇩C⇩F ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ :
→∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
from f' have dom_rhs:
"𝒟⇩∘ ((x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f')⦇NTMap⦈) = →∙←⇩C⦇Obj⦈"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
show "u'⦇NTMap⦈ = (x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f')⦇NTMap⦈"
proof(rule vsv_eqI, unfold cat_cs_simps dom_rhs)
fix a assume prems': "a ∈⇩∘ →∙←⇩C⦇Obj⦈"
from this f' x.is_ntcf_axioms show
"u'⦇NTMap⦈⦇a⦈ = (x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f')⦇NTMap⦈⦇a⦈"
by (elim the_cat_scospan_ObjE; simp only:)
(
cs_concl
cs_simp:
cat_cs_simps cat_ss_cs_simps
u'_𝔟⇩S⇩S u'_𝔞⇩S⇩S
cat_cone_cospan(1)[OF assms(1,2)]
cat_cone_cospan(1)[OF prems assms(2)]
cs_intro: cat_cs_intros cat_ss_cs_intros
)+
qed (cs_concl cs_intro: cat_cs_intros | auto)+
qed simp_all
fix f'' assume prems:
"f'' : r' ↦⇘ℭ⇙ X" "u' = x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f''"
have 𝔞⇩S⇩S: "𝔞⇩S⇩S ∈⇩∘ →∙←⇩C⦇Obj⦈" and 𝔟⇩S⇩S: "𝔟⇩S⇩S ∈⇩∘ →∙←⇩C⦇Obj⦈"
by (cs_concl cs_intro: cat_ss_cs_intros)+
have "u'⦇NTMap⦈⦇a⦈ = x⦇NTMap⦈⦇a⦈ ∘⇩A⇘ℭ⇙ f''" if "a ∈⇩∘ →∙←⇩C⦇Obj⦈" for a
proof-
from prems(2) have
"u'⦇NTMap⦈⦇a⦈ = (x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'')⦇NTMap⦈⦇a⦈"
by simp
from this that prems(1) show "u'⦇NTMap⦈⦇a⦈ = x⦇NTMap⦈⦇a⦈ ∘⇩A⇘ℭ⇙ f''"
by (cs_prems cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
qed
from unique_f'[OF prems(1) this[OF 𝔞⇩S⇩S] this[OF 𝔟⇩S⇩S]] show "f'' = f'".
qed (intro f')
qed
lemma is_cat_pushoutI':
assumes "x : ⟨𝔞←𝔤←𝔬→𝔣→𝔟⟩⇩C⇩F⇘ℭ⇙ >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e X : ←∙→⇩C ↦↦⇩C⇘α⇙ ℭ"
and "cf_sspan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ"
and "⋀x' X'. x' : ⟨𝔞←𝔤←𝔬→𝔣→𝔟⟩⇩C⇩F⇘ℭ⇙ >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e X' : ←∙→⇩C ↦↦⇩C⇘α⇙ ℭ ⟹
∃!f'.
f' : X ↦⇘ℭ⇙ X' ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
shows "x : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X ↦↦⇩C⇘α⇙ ℭ"
proof-
interpret x: is_cat_cocone α X ‹←∙→⇩C› ℭ ‹⟨𝔞←𝔤←𝔬→𝔣→𝔟⟩⇩C⇩F⇘ℭ⇙› x
by (rule assms(1))
interpret span: cf_sspan α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ by (rule assms(2))
have assms_3':
"∃!f'.
f' : X ↦⇘ℭ⇙ X' ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘op_cat ℭ⇙ f' ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘op_cat ℭ⇙ f'"
if "x' : X' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘op_cat ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ op_cat ℭ"
for x' X'
proof-
from that(1) have [cat_op_simps]:
"f' : X ↦⇘ℭ⇙ X' ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘op_cat ℭ⇙ f' ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘op_cat ℭ⇙ f' ⟷
f' : X ↦⇘ℭ⇙ X' ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
for f'
by (intro iffI conjI; (elim conjE)?)
(
cs_concl
cs_simp: category.op_cat_Comp[symmetric] cat_op_simps cat_cs_simps
cs_intro: cat_cs_intros cat_ss_cs_intros
)+
interpret x':
is_cat_cone α X' ‹→∙←⇩C› ‹op_cat ℭ› ‹⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘op_cat ℭ⇙› x'
by (rule that)
show ?thesis
unfolding cat_op_simps
by
(
rule assms(3)[
OF x'.is_cat_cocone_op[unfolded cat_op_simps],
unfolded cat_op_simps
]
)
qed
interpret op_x: is_cat_pullback α 𝔞 𝔤 𝔬 𝔣 𝔟 ‹op_cat ℭ› X ‹op_ntcf x›
using
is_cat_pullbackI'
[
OF x.is_cat_cone_op[unfolded cat_op_simps]
span.cf_scospan_op,
unfolded cat_op_simps,
OF assms_3'
]
by simp
show "x : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X ↦↦⇩C⇘α⇙ ℭ"
by (rule op_x.is_cat_pushout_op[unfolded cat_op_simps])
qed
lemma (in is_cat_pullback) cat_pb_unique_cone:
assumes "x' : X' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'.
f' : X' ↦⇘ℭ⇙ X ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f' ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f'"
proof-
interpret x': is_cat_cone α X' ‹→∙←⇩C› ℭ ‹⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙› x'
by (rule assms)
from cat_lim_ua_fo[OF assms] obtain f'
where f': "f' : X' ↦⇘ℭ⇙ X"
and x'_def: "x' = x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'"
and unique_f': "⋀f''.
⟦ f'' : X' ↦⇘ℭ⇙ X; x' = x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'' ⟧ ⟹
f'' = f'"
by auto
have 𝔞⇩S⇩S: "𝔞⇩S⇩S ∈⇩∘ →∙←⇩C⦇Obj⦈" and 𝔟⇩S⇩S: "𝔟⇩S⇩S ∈⇩∘ →∙←⇩C⦇Obj⦈"
by (cs_concl cs_intro: cat_ss_cs_intros)+
show ?thesis
proof(intro ex1I conjI; (elim conjE)?)
show "f' : X' ↦⇘ℭ⇙ X" by (rule f')
have "x'⦇NTMap⦈⦇a⦈ = x⦇NTMap⦈⦇a⦈ ∘⇩A⇘ℭ⇙ f'" if "a ∈⇩∘ →∙←⇩C⦇Obj⦈" for a
proof-
from x'_def have
"x'⦇NTMap⦈⦇a⦈ = (x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f')⦇NTMap⦈⦇a⦈"
by simp
from this that f' show "x'⦇NTMap⦈⦇a⦈ = x⦇NTMap⦈⦇a⦈ ∘⇩A⇘ℭ⇙ f'"
by (cs_prems cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
qed
from this[OF 𝔞⇩S⇩S] this[OF 𝔟⇩S⇩S] show
"x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f'"
"x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f'"
by auto
fix f'' assume prems':
"f'' : X' ↦⇘ℭ⇙ X"
"x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f''"
"x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f''"
have "x' = x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f''"
proof(rule ntcf_eqI)
show "x' : cf_const →∙←⇩C ℭ X' ↦⇩C⇩F ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ : →∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
by (rule x'.is_ntcf_axioms)
from prems'(1) show
"x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'' :
cf_const →∙←⇩C ℭ X' ↦⇩C⇩F ⟨𝔞→𝔤→𝔬←𝔣←𝔟⟩⇩C⇩F⇘ℭ⇙ :
→∙←⇩C ↦↦⇩C⇘α⇙ ℭ"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
have dom_lhs: "𝒟⇩∘ (x'⦇NTMap⦈) = →∙←⇩C⦇Obj⦈"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)
from prems'(1) have dom_rhs:
"𝒟⇩∘ ((x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'')⦇NTMap⦈) = →∙←⇩C⦇Obj⦈"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
show "x'⦇NTMap⦈ = (x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'')⦇NTMap⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume prems'': "a ∈⇩∘ →∙←⇩C⦇Obj⦈"
from this prems'(1) show
"x'⦇NTMap⦈⦇a⦈ = (x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'')⦇NTMap⦈⦇a⦈"
by (elim the_cat_scospan_ObjE; simp only:)
(
cs_concl
cs_simp:
prems'(2,3)
cat_cone_cospan(1,2)[OF assms cf_scospan_axioms]
cat_pb_cone_cospan
cat_ss_cs_simps cat_cs_simps
cs_intro: cat_ss_cs_intros cat_cs_intros
)+
qed (auto simp: cat_cs_intros)
qed simp_all
from unique_f'[OF prems'(1) this] show "f'' = f'".
qed
qed
lemma (in is_cat_pullback) cat_pb_unique:
assumes "x' : X' <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : X' ↦⇘ℭ⇙ X ∧ x' = x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f'"
by (rule cat_lim_unique[OF is_cat_pullbackD(1)[OF assms]])
lemma (in is_cat_pullback) cat_pb_unique':
assumes "x' : X' <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'.
f' : X' ↦⇘ℭ⇙ X ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f' ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f'"
proof-
interpret x': is_cat_pullback α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X' x' by (rule assms(1))
show ?thesis by (rule cat_pb_unique_cone[OF x'.is_cat_cone_axioms])
qed
lemma (in is_cat_pushout) cat_po_unique_cocone:
assumes "x' : ⟨𝔞←𝔤←𝔬→𝔣→𝔟⟩⇩C⇩F⇘ℭ⇙ >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e X' : ←∙→⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'.
f' : X ↦⇘ℭ⇙ X' ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
proof-
interpret x': is_cat_cocone α X' ‹←∙→⇩C› ℭ ‹⟨𝔞←𝔤←𝔬→𝔣→𝔟⟩⇩C⇩F⇘ℭ⇙› x'
by (rule assms(1))
have [cat_op_simps]:
"f' : X ↦⇘ℭ⇙ X' ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘op_cat ℭ⇙ f' ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘op_cat ℭ⇙ f' ⟷
f' : X ↦⇘ℭ⇙ X' ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
for f'
by (intro iffI conjI; (elim conjE)?)
(
cs_concl
cs_simp: category.op_cat_Comp[symmetric] cat_op_simps cat_cs_simps
cs_intro: cat_cs_intros cat_ss_cs_intros
)+
show ?thesis
by
(
rule is_cat_pullback.cat_pb_unique_cone[
OF is_cat_pullback_op x'.is_cat_cone_op[unfolded cat_op_simps],
unfolded cat_op_simps
]
)
qed
lemma (in is_cat_pushout) cat_po_unique:
assumes "x' : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X' ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : X ↦⇘ℭ⇙ X' ∧ x' = ntcf_const ←∙→⇩C ℭ f' ∙⇩N⇩T⇩C⇩F x"
by (rule cat_colim_unique[OF is_cat_pushoutD(1)[OF assms]])
lemma (in is_cat_pushout) cat_po_unique':
assumes "x' : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X' ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'.
f' : X ↦⇘ℭ⇙ X' ∧
x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∧
x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = f' ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
proof-
interpret x': is_cat_pushout α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X' x' by (rule assms(1))
show ?thesis by (rule cat_po_unique_cocone[OF x'.is_cat_cocone_axioms])
qed
lemma cat_pullback_ex_is_iso_arr:
assumes "x : X <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ"
and "x' : X' <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : X' ↦⇩i⇩s⇩o⇘ℭ⇙ X"
and "x' = x ∙⇩N⇩T⇩C⇩F ntcf_const →∙←⇩C ℭ f"
proof-
interpret x: is_cat_pullback α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X x by (rule assms(1))
interpret x': is_cat_pullback α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X' x' by (rule assms(2))
from that show ?thesis
by
(
elim cat_lim_ex_is_iso_arr[
OF x.is_cat_limit_axioms x'.is_cat_limit_axioms
]
)
qed
lemma cat_pullback_ex_is_iso_arr':
assumes "x : X <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ"
and "x' : X' <⇩C⇩F⇩.⇩p⇩b 𝔞→𝔤→𝔬←𝔣←𝔟 ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : X' ↦⇩i⇩s⇩o⇘ℭ⇙ X"
and "x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f"
and "x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f"
proof-
interpret x: is_cat_pullback α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X x by (rule assms(1))
interpret x': is_cat_pullback α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X' x' by (rule assms(2))
obtain f where f: "f : X' ↦⇩i⇩s⇩o⇘ℭ⇙ X"
and "j ∈⇩∘ →∙←⇩C⦇Obj⦈ ⟹ x'⦇NTMap⦈⦇j⦈ = x⦇NTMap⦈⦇j⦈ ∘⇩A⇘ℭ⇙ f" for j
by
(
elim cat_lim_ex_is_iso_arr'[
OF x.is_cat_limit_axioms x'.is_cat_limit_axioms
]
)
then have
"x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔞⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f"
"x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = x⦇NTMap⦈⦇𝔟⇩S⇩S⦈ ∘⇩A⇘ℭ⇙ f"
by (auto simp: cat_ss_cs_intros)
with f show ?thesis using that by simp
qed
lemma cat_pushout_ex_is_iso_arr:
assumes "x : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X ↦↦⇩C⇘α⇙ ℭ"
and "x' : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X' ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : X ↦⇩i⇩s⇩o⇘ℭ⇙ X'"
and "x' = ntcf_const ←∙→⇩C ℭ f ∙⇩N⇩T⇩C⇩F x"
proof-
interpret x: is_cat_pushout α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X x by (rule assms(1))
interpret x': is_cat_pushout α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X' x' by (rule assms(2))
from that show ?thesis
by
(
elim cat_colim_ex_is_iso_arr[
OF x.is_cat_colimit_axioms x'.is_cat_colimit_axioms
]
)
qed
lemma cat_pushout_ex_is_iso_arr':
assumes "x : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X ↦↦⇩C⇘α⇙ ℭ"
and "x' : 𝔞←𝔤←𝔬→𝔣→𝔟 >⇩C⇩F⇩.⇩p⇩o X' ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : X ↦⇩i⇩s⇩o⇘ℭ⇙ X'"
and "x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = f ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈"
and "x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = f ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
proof-
interpret x: is_cat_pushout α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X x by (rule assms(1))
interpret x': is_cat_pushout α 𝔞 𝔤 𝔬 𝔣 𝔟 ℭ X' x' by (rule assms(2))
obtain f where f: "f : X ↦⇩i⇩s⇩o⇘ℭ⇙ X'"
and "j ∈⇩∘ ←∙→⇩C⦇Obj⦈ ⟹ x'⦇NTMap⦈⦇j⦈ = f ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇j⦈" for j
by
(
elim cat_colim_ex_is_iso_arr'[
OF x.is_cat_colimit_axioms x'.is_cat_colimit_axioms
]
)
then have "x'⦇NTMap⦈⦇𝔞⇩S⇩S⦈ = f ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔞⇩S⇩S⦈"
and "x'⦇NTMap⦈⦇𝔟⇩S⇩S⦈ = f ∘⇩A⇘ℭ⇙ x⦇NTMap⦈⦇𝔟⇩S⇩S⦈"
by (auto simp: cat_ss_cs_intros)
with f show ?thesis using that by simp
qed
text‹\newpage›
end