Theory ZFC_Cardinals
section ‹Cartesian products, Disjoint Sums, Ranks, Cardinals›
theory ZFC_Cardinals
imports ZFC_in_HOL
begin
declare [[coercion_enabled]]
declare [[coercion "ord_of_nat :: nat ⇒ V"]]
subsection ‹Ordered Pairs›
lemma singleton_eq_iff [iff]: "set {a} = set {b} ⟷ a=b"
by simp
lemma doubleton_eq_iff: "set {a,b} = set {c,d} ⟷ (a=c ∧ b=d) ∨ (a=d ∧ b=c)"
by (simp add: Set.doubleton_eq_iff)
definition vpair :: "V ⇒ V ⇒ V"
where "vpair a b = set {set {a},set {a,b}}"
definition vfst :: "V ⇒ V"
where "vfst p ≡ THE x. ∃y. p = vpair x y"
definition vsnd :: "V ⇒ V"
where "vsnd p ≡ THE y. ∃x. p = vpair x y"
definition vsplit :: "[[V, V] ⇒ 'a, V] ⇒ 'a::{}"
where "vsplit c ≡ λp. c (vfst p) (vsnd p)"
nonterminal Vs
syntax (ASCII)
"_Tuple" :: "[V, Vs] ⇒ V" ("<(_,/ _)>")
"_hpattern" :: "[pttrn, patterns] ⇒ pttrn" ("<_,/ _>")
syntax
"" :: "V ⇒ Vs" ("_")
"_Enum" :: "[V, Vs] ⇒ Vs" ("_,/ _")
"_Tuple" :: "[V, Vs] ⇒ V" ("⟨(_,/ _)⟩")
"_hpattern" :: "[pttrn, patterns] ⇒ pttrn" ("⟨_,/ _⟩")
translations
"<x, y, z>" ⇌ "<x, <y, z>>"
"<x, y>" ⇌ "CONST vpair x y"
"<x, y, z>" ⇌ "<x, <y, z>>"
"λ<x,y,zs>. b" ⇌ "CONST vsplit(λx <y,zs>. b)"
"λ<x,y>. b" ⇌ "CONST vsplit(λx y. b)"
lemma vpair_def': "vpair a b = set {set {a,a},set {a,b}}"
by (simp add: vpair_def)
lemma vpair_iff [simp]: "vpair a b = vpair a' b' ⟷ a=a' ∧ b=b'"
unfolding vpair_def' doubleton_eq_iff by auto
lemmas vpair_inject = vpair_iff [THEN iffD1, THEN conjE, elim!]
lemma vfst_conv [simp]: "vfst ⟨a,b⟩ = a"
by (simp add: vfst_def)
lemma vsnd_conv [simp]: "vsnd ⟨a,b⟩ = b"
by (simp add: vsnd_def)
lemma vsplit [simp]: "vsplit c ⟨a,b⟩ = c a b"
by (simp add: vsplit_def)
lemma vpair_neq_fst: "⟨a,b⟩ ≠ a"
by (metis elts_of_set insertI1 mem_not_sym small_upair vpair_def')
lemma vpair_neq_snd: "⟨a,b⟩ ≠ b"
by (metis elts_of_set insertI1 mem_not_sym small_upair subsetD subset_insertI vpair_def')
lemma vpair_nonzero [simp]: "⟨x,y⟩ ≠ 0"
by (metis elts_0 elts_of_set empty_not_insert small_upair vpair_def)
lemma zero_notin_vpair: "0 ∉ elts ⟨x,y⟩"
by (auto simp: vpair_def)
lemma inj_on_vpair [simp]: "inj_on (λ(x, y). ⟨x, y⟩) A"
by (auto simp: inj_on_def)
subsection ‹Generalized Cartesian product›
definition VSigma :: "V ⇒ (V ⇒ V) ⇒ V"
where "VSigma A B ≡ set(⋃x ∈ elts A. ⋃y ∈ elts (B x). {⟨x,y⟩})"
abbreviation vtimes where "vtimes A B ≡ VSigma A (λx. B)"
definition pairs :: "V ⇒ (V * V)set"
where "pairs r ≡ {(x,y). ⟨x,y⟩ ∈ elts r} "
lemma pairs_iff_elts: "(x,y) ∈ pairs z ⟷ ⟨x,y⟩ ∈ elts z"
by (simp add: pairs_def)
lemma VSigma_iff [simp]: "⟨a,b⟩ ∈ elts (VSigma A B) ⟷ a ∈ elts A ∧ b ∈ elts (B a)"
by (auto simp: VSigma_def UNION_singleton_eq_range)
lemma VSigmaI [intro!]: "⟦ a ∈ elts A; b ∈ elts (B a)⟧ ⟹ ⟨a,b⟩ ∈ elts (VSigma A B)"
by simp
lemmas VSigmaD1 = VSigma_iff [THEN iffD1, THEN conjunct1]
lemmas VSigmaD2 = VSigma_iff [THEN iffD1, THEN conjunct2]
text ‹The general elimination rule›
lemma VSigmaE [elim!]:
assumes "c ∈ elts (VSigma A B)"
obtains x y where "x ∈ elts A" "y ∈ elts (B x)" "c=⟨x,y⟩"
using assms by (auto simp: VSigma_def split: if_split_asm)
lemma VSigmaE2 [elim!]:
assumes "⟨a,b⟩ ∈ elts (VSigma A B)" obtains "a ∈ elts A" and "b ∈ elts (B a)"
using assms by auto
lemma VSigma_empty1 [simp]: "VSigma 0 B = 0"
by auto
lemma times_iff [simp]: "⟨a,b⟩ ∈ elts (vtimes A B) ⟷ a ∈ elts A ∧ b ∈ elts B"
by simp
lemma timesI [intro!]: "⟦a ∈ elts A; b ∈ elts B⟧ ⟹ ⟨a,b⟩ ∈ elts (vtimes A B)"
by simp
lemma times_empty2 [simp]: "vtimes A 0 = 0"
using elts_0 by blast
lemma times_empty_iff: "VSigma A B = 0 ⟷ A=0 ∨ (∀x ∈ elts A. B x = 0)"
by (metis VSigmaE VSigmaI elts_0 empty_iff trad_foundation)
lemma elts_VSigma: "elts (VSigma A B) = (λ(x,y). vpair x y) ` Sigma (elts A) (λx. elts (B x))"
by auto
lemma small_Sigma [simp]:
assumes A: "small A" and B: "⋀x. x ∈ A ⟹ small (B x)"
shows "small (Sigma A B)"
proof -
obtain a where "elts a ≈ A"
by (meson assms small_eqpoll)
then obtain f where f: "bij_betw f (elts a) A"
using eqpoll_def by blast
have "∃y. elts y ≈ B x" if "x ∈ A" for x
using B small_eqpoll that by blast
then obtain g where g: "⋀x. x ∈ A ⟹ elts (g x) ≈ B x"
by metis
with f have "elts (VSigma a (g ∘ f)) ≈ Sigma A B"
by (simp add: elts_VSigma Sigma_eqpoll_cong bij_betwE)
then show ?thesis
using small_eqpoll by blast
qed
lemma small_Times [simp]:
assumes "small A" "small B" shows "small (A × B)"
by (simp add: assms)
lemma small_Times_iff: "small (A × B) ⟷ small A ∧ small B ∨ A={} ∨ B={}" (is "_ = ?rhs")
proof
assume *: "small (A × B)"
{ have "small A ∧ small B" if "x ∈ A" "y ∈ B" for x y
proof -
have "A ⊆ fst ` (A × B)" "B ⊆ snd ` (A × B)"
using that by auto
with that show ?thesis
by (metis * replacement smaller_than_small)
qed }
then show ?rhs
by (metis equals0I)
next
assume ?rhs
then show "small (A × B)"
by auto
qed
subsection ‹Disjoint Sum›
definition vsum :: "V ⇒ V ⇒ V" (infixl "⨄" 65) where
"A ⨄ B ≡ (VSigma (set {0}) (λx. A)) ⊔ (VSigma (set {1}) (λx. B))"
definition Inl :: "V⇒V" where
"Inl a ≡ ⟨0,a⟩"
definition Inr :: "V⇒V" where
"Inr b ≡ ⟨1,b⟩"
lemmas sum_defs = vsum_def Inl_def Inr_def
lemma Inl_nonzero [simp]:"Inl x ≠ 0"
by (metis Inl_def vpair_nonzero)
lemma Inr_nonzero [simp]:"Inr x ≠ 0"
by (metis Inr_def vpair_nonzero)
subsubsection‹Equivalences for the injections and an elimination rule›
lemma Inl_in_sum_iff [iff]: "Inl a ∈ elts (A ⨄ B) ⟷ a ∈ elts A"
by (auto simp: sum_defs)
lemma Inr_in_sum_iff [iff]: "Inr b ∈ elts (A ⨄ B) ⟷ b ∈ elts B"
by (auto simp: sum_defs)
lemma sumE [elim!]:
assumes u: "u ∈ elts (A ⨄ B)"
obtains x where "x ∈ elts A" "u=Inl x" | y where "y ∈ elts B" "u=Inr y" using u
by (auto simp: sum_defs)
subsubsection ‹Injection and freeness equivalences, for rewriting›
lemma Inl_iff [iff]: "Inl a=Inl b ⟷ a=b"
by (simp add: sum_defs)
lemma Inr_iff [iff]: "Inr a=Inr b ⟷ a=b"
by (simp add: sum_defs)
lemma inj_on_Inl [simp]: "inj_on Inl A"
by (simp add: inj_on_def)
lemma inj_on_Inr [simp]: "inj_on Inr A"
by (simp add: inj_on_def)
lemma Inl_Inr_iff [iff]: "Inl a=Inr b ⟷ False"
by (simp add: sum_defs)
lemma Inr_Inl_iff [iff]: "Inr b=Inl a ⟷ False"
by (simp add: sum_defs)
lemma sum_empty [simp]: "0 ⨄ 0 = 0"
by auto
lemma elts_vsum: "elts (a ⨄ b) = Inl ` (elts a) ∪ Inr ` (elts b)"
by auto
lemma sum_iff: "u ∈ elts (A ⨄ B) ⟷ (∃x. x ∈ elts A ∧ u=Inl x) ∨ (∃y. y ∈ elts B ∧ u=Inr y)"
by blast
lemma sum_subset_iff: "A⨄B ≤ C⨄D ⟷ A≤C ∧ B≤D"
by (auto simp: less_eq_V_def)
lemma sum_equal_iff:
fixes A :: V shows "A⨄B = C⨄D ⟷ A=C ∧ B=D"
by (simp add: eq_iff sum_subset_iff)
definition is_sum :: "V ⇒ bool"
where "is_sum z = (∃x. z = Inl x ∨ z = Inr x)"
definition sum_case :: "(V ⇒ 'a) ⇒ (V ⇒ 'a) ⇒ V ⇒ 'a"
where
"sum_case f g a ≡
THE z. (∀x. a = Inl x ⟶ z = f x) ∧ (∀y. a = Inr y ⟶ z = g y) ∧ (¬ is_sum a ⟶ z = undefined)"
lemma sum_case_Inl [simp]: "sum_case f g (Inl x) = f x"
by (simp add: sum_case_def is_sum_def)
lemma sum_case_Inr [simp]: "sum_case f g (Inr y) = g y"
by (simp add: sum_case_def is_sum_def)
lemma sum_case_non [simp]: "¬ is_sum a ⟹ sum_case f g a = undefined"
by (simp add: sum_case_def is_sum_def)
lemma is_sum_cases: "(∃x. z = Inl x ∨ z = Inr x) ∨ ¬ is_sum z"
by (auto simp: is_sum_def)
lemma sum_case_split:
"P (sum_case f g a) ⟷ (∀x. a = Inl x ⟶ P(f x)) ∧ (∀y. a = Inr y ⟶ P(g y)) ∧ (¬ is_sum a ⟶ P undefined)"
by (cases "is_sum a") (auto simp: is_sum_def)
lemma sum_case_split_asm:
"P (sum_case f g a) ⟷ ¬ ((∃x. a = Inl x ∧ ¬ P(f x)) ∨ (∃y. a = Inr y ∧ ¬ P(g y)) ∨ (¬ is_sum a ∧ ¬ P undefined))"
by (auto simp: sum_case_split)
subsubsection ‹Applications of disjoint sums and pairs: general union theorems for small sets›
lemma small_Un:
assumes X: "small X" and Y: "small Y"
shows "small (X ∪ Y)"
proof -
obtain x y where "elts x ≈ X" "elts y ≈ Y"
by (meson assms small_eqpoll)
then have "X ∪ Y ≲ Inl ` (elts x) ∪ Inr ` (elts y)"
by (metis (mono_tags, lifting) Inr_Inl_iff Un_lepoll_mono disjnt_iff eqpoll_imp_lepoll eqpoll_sym f_inv_into_f inj_on_Inl inj_on_Inr inj_on_image_lepoll_2)
then show ?thesis
by (metis lepoll_iff replacement small_elts small_sup_iff smaller_than_small)
qed
lemma small_UN [simp,intro]:
assumes A: "small A" and B: "⋀x. x ∈ A ⟹ small (B x)"
shows "small (⋃x∈A. B x)"
proof -
obtain a where "elts a ≈ A"
by (meson assms small_eqpoll)
then obtain f where f: "bij_betw f (elts a) A"
using eqpoll_def by blast
have "∃y. elts y ≈ B x" if "x ∈ A" for x
using B small_eqpoll that by blast
then obtain g where g: "⋀x. x ∈ A ⟹ elts (g x) ≈ B x"
by metis
have sm: "small (Sigma (elts a) (elts ∘ g ∘ f))"
by simp
have "(⋃x∈A. B x) ≲ Sigma A B"
by (metis image_lepoll snd_image_Sigma)
also have "... ≲ Sigma (elts a) (elts ∘ g ∘ f)"
by (smt (verit) Sigma_eqpoll_cong bij_betw_iff_bijections comp_apply eqpoll_imp_lepoll eqpoll_sym f g)
finally show ?thesis
using lepoll_small sm by blast
qed
lemma small_Union [simp,intro]:
assumes "𝒜 ⊆ Collect small" "small 𝒜"
shows "small (⋃ 𝒜)"
using small_UN [of 𝒜 "λx. x"] assms by (simp add: subset_iff)
subsection‹Generalised function space and lambda›
definition VLambda :: "V ⇒ (V ⇒ V) ⇒ V"
where "VLambda A b ≡ set ((λx. ⟨x,b x⟩) ` elts A)"
definition app :: "[V,V] ⇒ V"
where "app f x ≡ THE y. ⟨x,y⟩ ∈ elts f"
lemma beta [simp]:
assumes "x ∈ elts A"
shows "app (VLambda A b) x = b x"
using assms by (auto simp: VLambda_def app_def)
definition VPi :: "V ⇒ (V ⇒ V) ⇒ V"
where "VPi A B ≡ set {f ∈ elts (VPow(VSigma A B)). elts A ≤ Domain (pairs f) ∧ single_valued (pairs f)}"
lemma VPi_I:
assumes "⋀x. x ∈ elts A ⟹ b x ∈ elts (B x)"
shows "VLambda A b ∈ elts (VPi A B)"
proof (clarsimp simp: VPi_def, intro conjI impI)
show "VLambda A b ≤ VSigma A B"
by (auto simp: assms VLambda_def split: if_split_asm)
show "elts A ⊆ Domain (pairs (VLambda A b))"
by (force simp: VLambda_def pairs_iff_elts)
show "single_valued (pairs (VLambda A b))"
by (auto simp: VLambda_def single_valued_def pairs_iff_elts)
show "small {f. f ≤ VSigma A B ∧ elts A ⊆ Domain (pairs f) ∧ single_valued (pairs f)}"
by (metis (mono_tags, lifting) down VPow_iff mem_Collect_eq subsetI)
qed
lemma apply_pair:
assumes f: "f ∈ elts (VPi A B)" and x: "x ∈ elts A"
shows "⟨x, app f x⟩ ∈ elts f"
proof -
have "x ∈ Domain (pairs f)"
by (metis (no_types, lifting) VPi_def assms elts_of_set empty_iff mem_Collect_eq subsetD)
then obtain y where y: "⟨x,y⟩ ∈ elts f"
using pairs_iff_elts by auto
show ?thesis
unfolding app_def
proof (rule theI)
show "⟨x, y⟩ ∈ elts f"
by (rule y)
show "z = y" if "⟨x, z⟩ ∈ elts f" for z
using f unfolding VPi_def
by (metis (mono_tags, lifting) that elts_of_set empty_iff mem_Collect_eq pairs_iff_elts single_valued_def y)
qed
qed
lemma VPi_D:
assumes f: "f ∈ elts (VPi A B)" and x: "x ∈ elts A"
shows "app f x ∈ elts (B x)"
proof -
have "f ≤ VSigma A B"
by (metis (no_types, lifting) VPi_def elts_of_set empty_iff f VPow_iff mem_Collect_eq)
then show ?thesis
using apply_pair [OF assms] by blast
qed
lemma VPi_memberD:
assumes f: "f ∈ elts (VPi A B)" and p: "p ∈ elts f"
obtains x where "x ∈ elts A" "p = ⟨x, app f x⟩"
proof -
have "f ≤ VSigma A B"
by (metis (no_types, lifting) VPi_def elts_of_set empty_iff f VPow_iff mem_Collect_eq)
then obtain x y where "p = ⟨x,y⟩" "x ∈ elts A"
using p by blast
then have "y = app f x"
by (metis (no_types, lifting) VPi_def apply_pair elts_of_set equals0D f mem_Collect_eq p pairs_iff_elts single_valuedD)
then show thesis
using ‹p = ⟨x, y⟩› ‹x ∈ elts A› that by blast
qed
lemma fun_ext:
assumes "f ∈ elts (VPi A B)" "g ∈ elts (VPi A B)" "⋀x. x ∈ elts A ⟹ app f x = app g x"
shows "f = g"
by (metis VPi_memberD V_equalityI apply_pair assms)
lemma eta[simp]:
assumes "f ∈ elts (VPi A B)"
shows "VLambda A ((app)f) = f"
proof (rule fun_ext [OF _ assms])
show "VLambda A (app f) ∈ elts (VPi A B)"
using VPi_D VPi_I assms by auto
qed auto
lemma fst_pairs_VLambda: "fst ` pairs (VLambda A f) = elts A"
by (force simp: VLambda_def pairs_def)
lemma snd_pairs_VLambda: "snd ` pairs (VLambda A f) = f ` elts A"
by (force simp: VLambda_def pairs_def)
lemma VLambda_eq_D1: "VLambda A f = VLambda B g ⟹ A = B"
by (metis ZFC_in_HOL.ext fst_pairs_VLambda)
lemma VLambda_eq_D2: "⟦VLambda A f = VLambda A g; x ∈ elts A⟧ ⟹ f x = g x"
by (metis beta)
subsection‹Transitive closure of a set›
definition TC :: "V⇒V"
where "TC ≡ transrec (λf x. x ⊔ ⨆ (f ` elts x))"
lemma TC: "TC a = a ⊔ ⨆ (TC ` elts a)"
by (metis (no_types, lifting) SUP_cong TC_def restrict_apply' transrec)
lemma TC_0 [simp]: "TC 0 = 0"
by (metis TC ZFC_in_HOL.Sup_empty elts_0 image_is_empty sup_V_0_left)
lemma arg_subset_TC: "a ≤ TC a"
by (metis (no_types) TC sup_ge1)
lemma Transset_TC: "Transset(TC a)"
proof (induction a rule: eps_induct)
case (step x)
have 1: "v ∈ elts (TC x)" if "v ∈ elts u" "u ∈ elts x" for u v
using that unfolding TC [of x]
using arg_subset_TC by fastforce
have 2: "v ∈ elts (TC x)" if "v ∈ elts u" "∃x∈elts x. u ∈ elts (TC x)" for u v
using that step unfolding TC [of x] Transset_def by auto
show ?case
unfolding Transset_def
by (subst TC) (force intro: 1 2)
qed
lemma TC_least: "⟦Transset x; a≤x⟧ ⟹ TC a ≤ x"
proof (induction a rule: eps_induct)
case (step y)
show ?case
proof (cases "y=0")
case True
then show ?thesis
by auto
next
case False
have "⨆ (TC ` elts y) ≤ x"
proof (rule cSup_least)
show "TC ` elts y ≠ {}"
using False by auto
show "z ≤ x" if "z ∈ TC ` elts y" for z
using that by (metis Transset_def image_iff step.IH step.prems vsubsetD)
qed
then show ?thesis
by (simp add: step TC [of y])
qed
qed
definition less_TC (infix "⊏" 50)
where "x ⊏ y ≡ x ∈ elts (TC y)"
definition le_TC (infix "⊑" 50)
where "x ⊑ y ≡ x ⊏ y ∨ x=y"
lemma less_TC_imp_not_le: "x ⊏ a ⟹ ¬ a ≤ x"
proof (induction a arbitrary: x rule: eps_induct)
case (step a)
then show ?case
unfolding TC[of a] less_TC_def
using Transset_TC Transset_def by force
qed
lemma non_TC_less_0 [iff]: "¬ (x ⊏ 0)"
using less_TC_imp_not_le by blast
lemma less_TC_iff: "x ⊏ y ⟷ (∃z ∈ elts y. x ⊑ z)"
by (auto simp: less_TC_def le_TC_def TC [of y])
lemma nonzero_less_TC: "x ≠ 0 ⟹ 0 ⊏ x"
by (metis eps_induct le_TC_def less_TC_iff trad_foundation)
lemma less_irrefl_TC [simp]: "¬ x ⊏ x"
using less_TC_imp_not_le by blast
lemma less_asym_TC: "⟦x ⊏ y; y ⊏ x⟧ ⟹ False"
by (metis TC_least Transset_TC Transset_def antisym_conv less_TC_def less_TC_imp_not_le order_refl)
lemma le_antisym_TC: "⟦x ⊑ y; y ⊑ x⟧ ⟹ x = y"
using le_TC_def less_asym_TC by auto
lemma less_le_TC: "x ⊏ y ⟷ x ⊑ y ∧ x ≠ y"
using le_TC_def less_asym_TC by blast
lemma less_imp_le_TC [iff]: "x ⊏ y ⟹ x ⊑ y"
by (simp add: le_TC_def)
lemma le_TC_refl [iff]: "x ⊑ x"
by (simp add: le_TC_def)
lemma le_TC_trans [trans]: "⟦x ⊑ y; y ⊑ z⟧ ⟹ x ⊑ z"
by (smt (verit, best) TC_least Transset_TC Transset_def le_TC_def less_TC_def vsubsetD)
context order
begin
lemma nless_le_TC: "(¬ a ⊏ b) ⟷ (¬ a ⊑ b) ∨ a = b"
using le_TC_def less_asym_TC by blast
lemma eq_refl_TC: "x = y ⟹ x ⊑ y"
by simp
local_setup ‹
HOL_Order_Tac.declare_order {
ops = {eq = @{term ‹(=) :: V ⇒ V ⇒ bool›}, le = @{term ‹(⊑)›}, lt = @{term ‹(⊏)›}},
thms = {trans = @{thm le_TC_trans}, refl = @{thm le_TC_refl}, eqD1 = @{thm eq_refl_TC},
eqD2 = @{thm eq_refl_TC[OF sym]}, antisym = @{thm le_antisym_TC}, contr = @{thm notE}},
conv_thms = {less_le = @{thm eq_reflection[OF less_le_TC]},
nless_le = @{thm eq_reflection[OF nless_le_TC]}}
}
›
end
lemma less_TC_trans [trans]: "⟦x ⊏ y; y ⊏ z⟧ ⟹ x ⊏ z"
and less_le_TC_trans: "⟦x ⊏ y; y ⊑ z⟧ ⟹ x ⊏ z"
and le_less_TC_trans [trans]: "⟦x ⊑ y; y ⊏ z⟧ ⟹ x ⊏ z"
by simp_all
lemma TC_sup_distrib: "TC (x ⊔ y) = TC x ⊔ TC y"
by (simp add: Sup_Un_distrib TC [of "x ⊔ y"] TC [of x] TC [of y] image_Un sup.assoc sup_left_commute)
lemma TC_Sup_distrib:
assumes "small X" shows "TC (⨆X) = ⨆(TC ` X)"
proof -
have "⨆X ≤ ⨆ (TC ` X)"
using arg_subset_TC by fastforce
moreover have "⨆ (⋃x∈X. TC ` elts x) ≤ ⨆ (TC ` X)"
using assms
by clarsimp (meson TC_least Transset_TC Transset_def arg_subset_TC replacement vsubsetD)
ultimately
have "⨆ X ⊔ ⨆ (⋃x∈X. TC ` elts x) ≤ ⨆ (TC ` X)"
by simp
moreover have "⨆ (TC ` X) ≤ ⨆ X ⊔ ⨆ (⋃x∈X. TC ` elts x)"
proof (clarsimp simp add: Sup_le_iff assms)
show "∃x∈X. y ∈ elts x"
if "x ∈ X" "y ∈ elts (TC x)" "∀x∈X. ∀u∈elts x. y ∉ elts (TC u)" for x y
using that by (auto simp: TC [of x])
qed
ultimately show ?thesis
using Sup_Un_distrib TC [of "⨆X"] image_Union assms
by (simp add: image_Union inf_sup_aci(5) sup.absorb_iff2)
qed
lemma TC': "TC x = x ⊔ TC (⨆ (elts x))"
by (simp add: TC [of x] TC_Sup_distrib)
lemma TC_eq_0_iff [simp]: "TC x = 0 ⟷ x=0"
using arg_subset_TC by fastforce
text‹A distinctive induction principle›
lemma TC_induct_down_lemma:
assumes ab: "a ⊏ b" and base: "b ≤ d"
and step: "⋀y z. ⟦y ⊏ b; y ∈ elts d; z ∈ elts y⟧ ⟹ z ∈ elts d"
shows "a ∈ elts d"
proof -
have "Transset (TC b ⊓ d)"
using Transset_TC
unfolding Transset_def
by (metis inf.bounded_iff less_TC_def less_eq_V_def local.step subsetI vsubsetD)
moreover have "b ≤ TC b ⊓ d"
by (simp add: arg_subset_TC base)
ultimately show ?thesis
using TC_least [THEN vsubsetD] ab unfolding less_TC_def
by (meson TC_least le_inf_iff vsubsetD)
qed
lemma TC_induct_down [consumes 1, case_names base step small]:
assumes "a ⊏ b"
and "⋀y. y ∈ elts b ⟹ P y"
and "⋀y z. ⟦y ⊏ b; P y; z ∈ elts y⟧ ⟹ P z"
and "small (Collect P)"
shows "P a"
using TC_induct_down_lemma [of a b "set (Collect P)"] assms
by (metis elts_of_set mem_Collect_eq vsubsetI)
subsection‹Rank of a set›
definition rank :: "V⇒V"
where "rank a ≡ transrec (λf x. set (⋃y∈elts x. elts (succ(f y)))) a"
lemma rank: "rank a = set(⋃y ∈ elts a. elts (succ(rank y)))"
by (subst rank_def [THEN def_transrec], simp)
lemma rank_Sup: "rank a = ⨆((λy. succ(rank y)) ` elts a)"
by (metis elts_Sup image_image rank replacement set_of_elts small_elts)
lemma Ord_rank [simp]: "Ord(rank a)"
proof (induction a rule: eps_induct)
case (step x)
then show ?case
unfolding rank_Sup [of x]
by (metis (mono_tags, lifting) Ord_Sup Ord_succ imageE)
qed
lemma rank_of_Ord: "Ord i ⟹ rank i = i"
by (induction rule: Ord_induct) (metis (no_types, lifting) Ord_equality SUP_cong rank_Sup)
lemma Ord_iff_rank: "Ord x ⟷ rank x = x"
using Ord_rank [of x] rank_of_Ord by fastforce
lemma rank_lt: "a ∈ elts b ⟹ rank a < rank b"
by (metis Ord_linear2 Ord_rank ZFC_in_HOL.SUP_le_iff rank_Sup replacement small_elts succ_le_iff order.irrefl)
lemma rank_0 [simp]: "rank 0 = 0"
using transrec Ord_0 rank_def rank_of_Ord by presburger
lemma rank_succ [simp]: "rank(succ x) = succ(rank x)"
proof (rule order_antisym)
show "rank (succ x) ≤ succ (rank x)"
by (metis (no_types, lifting) Sup_insert elts_of_set elts_succ image_insert rank small_UN small_elts subset_insertI sup.orderE vsubsetI)
show "succ (rank x) ≤ rank (succ x)"
by (metis (mono_tags, lifting) ZFC_in_HOL.Sup_upper elts_succ image_insert insertI1 rank_Sup replacement small_elts)
qed
lemma rank_mono: "a ≤ b ⟹ rank a ≤ rank b"
using rank [of a] rank [of b] small_UN by force
lemma VsetI: "rank b ⊏ i ⟹ b ∈ elts (Vset i)"
proof (induction i arbitrary: b rule: eps_induct)
case (step x)
then consider "rank b ∈ elts x" | "(∃y∈elts x. rank b ∈ elts (TC y))"
using le_TC_def less_TC_def less_TC_iff by fastforce
then have "∃y∈elts x. b ≤ Vset y"
proof cases
case 1
then have "b ≤ Vset (rank b)"
unfolding less_eq_V_def subset_iff
by (meson Ord_mem_iff_lt Ord_rank le_TC_refl less_TC_iff rank_lt step.IH)
then show ?thesis
using "1" by blast
next
case 2
then show ?thesis
using step.IH
unfolding less_eq_V_def subset_iff less_TC_def
by (meson Ord_mem_iff_lt Ord_rank Transset_TC Transset_def rank_lt vsubsetD)
qed
then show ?case
by (simp add: Vset [of x])
qed
lemma Ord_VsetI: "⟦Ord i; rank b < i⟧ ⟹ b ∈ elts (Vset i)"
by (meson Ord_mem_iff_lt Ord_rank VsetI arg_subset_TC less_TC_def vsubsetD)
lemma arg_le_Vset_rank: "a ≤ Vset(rank a)"
by (simp add: Ord_VsetI rank_lt vsubsetI)
lemma two_in_Vset:
obtains α where "x ∈ elts (Vset α)" "y ∈ elts (Vset α)"
by (metis Ord_rank Ord_VsetI elts_of_set insert_iff rank_lt small_elts small_insert_iff)
lemma rank_eq_0_iff [simp]: "rank x = 0 ⟷ x=0"
using arg_le_Vset_rank by fastforce
lemma small_ranks_imp_small:
assumes "small (rank ` A)" shows "small A"
proof -
define i where "i ≡ set (⋃(elts ` (rank ` A)))"
have "Ord i"
unfolding i_def using Ord_Union Ord_rank assms imageE by blast
have *: "Vset (rank x) ≤ (Vset i)" if "x ∈ A" for x
unfolding i_def by (metis Ord_rank Sup_V_def ZFC_in_HOL.Sup_upper Vfrom_mono assms imageI le_less that)
have "A ⊆ elts (VPow (Vset i))"
by (meson "*" VPow_iff arg_le_Vset_rank order.trans subsetI)
then show ?thesis
using down by blast
qed
lemma rank_Union: "rank(⨆ A) = ⨆ (rank ` A)"
proof (rule order_antisym)
have "elts (⨆y∈elts (⨆ A). succ (rank y)) ⊆ elts (⨆ (rank ` A))"
by clarsimp (meson Ord_mem_iff_lt Ord_rank less_V_def rank_lt vsubsetD)
then show "rank (⨆ A) ≤ ⨆ (rank ` A)"
by (metis less_eq_V_def rank_Sup)
show "⨆ (rank ` A) ≤ rank (⨆ A)"
proof (cases "small A")
case True
then show ?thesis
by (simp add: ZFC_in_HOL.SUP_le_iff ZFC_in_HOL.Sup_upper rank_mono)
next
case False
then have "¬ small (rank ` A)"
using small_ranks_imp_small by blast
then show ?thesis
by blast
qed
qed
lemma small_bounded_rank: "small {x. rank x ∈ elts a}"
proof -
have "{x. rank x ∈ elts a} ⊆ {x. rank x ⊏ a}"
using less_TC_iff by auto
also have "… ⊆ elts (Vset a)"
using VsetI by blast
finally show ?thesis
using down by simp
qed
lemma small_bounded_rank_le: "small {x. rank x ≤ a}"
using small_bounded_rank [of "VPow a"] VPow_iff [of _ a] by simp
lemma TC_rank_lt: "a ⊏ b ⟹ rank a < rank b"
proof (induction rule: TC_induct_down)
case (base y)
then show ?case
by (simp add: rank_lt)
next
case (step y z)
then show ?case
using less_trans rank_lt by blast
next
case small
show ?case
using smaller_than_small [OF small_bounded_rank_le [of "rank b"]]
by (simp add: Collect_mono less_V_def)
qed
lemma TC_rank_mem: "x ⊏ y ⟹ rank x ∈ elts (rank y)"
by (simp add: Ord_mem_iff_lt TC_rank_lt)
lemma wf_TC_less: "wf {(x,y). x ⊏ y}"
proof (rule wf_subset [OF wf_inv_image [OF foundation, of rank]])
show "{(x, y). x ⊏ y} ⊆ inv_image {(x, y). x ∈ elts y} rank"
by (auto simp: TC_rank_mem inv_image_def)
qed
lemma less_TC_minimal:
assumes "P a"
obtains x where "P x" "x ⊑ a" "⋀y. y ⊏ x ⟹ ¬ P y"
using wfE_min' [OF wf_TC_less, of "{x. P x ∧ x ⊑ a}"]
by simp (metis le_TC_def less_le_TC_trans assms)
lemma Vfrom_rank_eq: "Vfrom A (rank(x)) = Vfrom A x"
proof (rule order_antisym)
show "Vfrom A (rank x) ≤ Vfrom A x"
proof (induction x rule: eps_induct)
case (step x)
have "(⨆j∈elts (rank x). VPow (Vfrom A j)) ≤ (⨆j∈elts x. VPow (Vfrom A j))"
apply (rule Sup_least)
apply (clarsimp simp add: rank [of x])
by (meson Ord_in_Ord Ord_rank OrdmemD Vfrom_mono order.trans less_imp_le order.refl step)
then show ?case
by (simp add: Vfrom [of _ x] Vfrom [of _ "rank(x)"] sup.coboundedI2)
qed
show "Vfrom A x ≤ Vfrom A (rank x)"
proof (induction x rule: eps_induct)
case (step x)
have "(⨆j∈elts x. VPow (Vfrom A j)) ≤ (⨆j∈elts (rank x). VPow (Vfrom A j))"
using step.IH TC_rank_mem less_TC_iff by force
then show ?case
by (simp add: Vfrom [of _ x] Vfrom [of _ "rank(x)"] sup.coboundedI2)
qed
qed
lemma Vfrom_succ: "Vfrom A (succ(i)) = A ⊔ VPow(Vfrom A i)"
by (metis Ord_rank Vfrom_rank_eq Vfrom_succ_Ord rank_succ)
lemma Vset_succ_TC:
assumes "x ∈ elts (Vset (ZFC_in_HOL.succ k))" "u ⊏ x"
shows "u ∈ elts (Vset k)"
using assms
using TC_least Transset_Vfrom Vfrom_succ less_TC_def by auto
subsection‹Cardinal Numbers›
text‹We extend the membership relation to a wellordering›
definition VWO :: "(V × V) set"
where "VWO ≡ @r. {(x,y). x ∈ elts y} ⊆ r ∧ Well_order r ∧ Field r = UNIV"
lemma VWO: "{(x,y). x ∈ elts y} ⊆ VWO ∧ Well_order VWO ∧ Field VWO = UNIV"
unfolding VWO_def
by (metis (mono_tags, lifting) VWO_def foundation someI_ex total_well_order_extension)
lemma wf_VWO: "wf(VWO - Id)"
using VWO well_order_on_def by blast
lemma wf_Ord_less: "wf {(x, y). Ord y ∧ x < y}"
by (metis (no_types, lifting) Ord_mem_iff_lt eps_induct wfPUNIVI wfP_def)
lemma refl_VWO: "refl VWO"
using VWO order_on_defs by fastforce
lemma trans_VWO: "trans VWO"
using VWO by (simp add: VWO wo_rel.TRANS wo_rel_def)
lemma antisym_VWO: "antisym VWO"
using VWO by (simp add: VWO wo_rel.ANTISYM wo_rel_def)
lemma total_VWO: "total VWO"
using VWO by (metis wo_rel.TOTAL wo_rel.intro)
lemma total_VWOId: "total (VWO-Id)"
by (simp add: total_VWO)
lemma Linear_order_VWO: "Linear_order VWO"
using VWO well_order_on_def by blast
lemma wo_rel_VWO: "wo_rel VWO"
using VWO wo_rel_def by blast
subsubsection ‹Transitive Closure and VWO›
lemma mem_imp_VWO: "x ∈ elts y ⟹ (x,y) ∈ VWO"
using VWO by blast
lemma less_TC_imp_VWO: "x ⊏ y ⟹ (x,y) ∈ VWO"
unfolding less_TC_def
proof (induction y arbitrary: x rule: eps_induct)
case (step y' u)
then consider "u ∈ elts y'" | v where "v ∈ elts y'" "u ∈ elts (TC v)"
by (auto simp: TC [of y'])
then show ?case
proof cases
case 2
then show ?thesis
by (meson mem_imp_VWO step.IH transD trans_VWO)
qed (use mem_imp_VWO in blast)
qed
lemma le_TC_imp_VWO: "x ⊑ y ⟹ (x,y) ∈ VWO"
by (metis Diff_iff Linear_order_VWO Linear_order_in_diff_Id UNIV_I VWO le_TC_def less_TC_imp_VWO)
lemma le_TC_0_iff [simp]: "x ⊑ 0 ⟷ x = 0"
by (simp add: le_TC_def)
lemma less_TC_succ: " x ⊏ succ β ⟷ x ⊏ β ∨ x = β"
by (metis elts_succ insert_iff le_TC_def less_TC_iff)
lemma le_TC_succ: "x ⊑ succ β ⟷ x ⊑ β ∨ x = succ β"
by (simp add: le_TC_def less_TC_succ)
lemma Transset_TC_eq [simp]: "Transset x ⟹ TC x = x"
by (simp add: TC_least arg_subset_TC eq_iff)
lemma Ord_TC_less_iff: "⟦Ord α; Ord β⟧ ⟹ β ⊏ α ⟷ β < α"
by (metis Ord_def Ord_mem_iff_lt Transset_TC_eq less_TC_def)
lemma Ord_mem_iff_less_TC: "Ord l ⟹ k ∈ elts l ⟷ k ⊏ l"
by (simp add: Ord_def less_TC_def)
lemma le_TC_Ord: "⟦β ⊑ α; Ord α⟧ ⟹ Ord β"
by (metis Ord_def Ord_in_Ord Transset_TC_eq le_TC_def less_TC_def)
lemma Ord_less_TC_mem:
assumes "Ord α" "β ⊏ α" shows "β ∈ elts α"
using Ord_def assms less_TC_def by auto
lemma VWO_TC_le: "⟦Ord α; Ord β; (β, α) ∈ VWO⟧ ⟹ β ⊑ α"
proof (induct α arbitrary: β rule: Ord_induct)
case (step α)
then show ?case
by (metis DiffI IdD Linear_order_VWO Linear_order_in_diff_Id Ord_linear Ord_mem_iff_less_TC VWO iso_tuple_UNIV_I le_TC_def mem_imp_VWO)
qed
lemma VWO_iff_Ord_le [simp]: "⟦Ord α; Ord β⟧ ⟹ (β, α) ∈ VWO ⟷ β ≤ α"
by (metis VWO_TC_le Ord_TC_less_iff le_TC_def le_TC_imp_VWO le_less)
lemma zero_TC_le [iff]: "0 ⊑ y"
using le_TC_def nonzero_less_TC by auto
lemma succ_le_TC_iff: "Ord j ⟹ succ i ⊑ j ⟷ i ⊏ j"
by (metis Ord_in_Ord Ord_linear Ord_mem_iff_less_TC Ord_succ le_TC_def less_TC_succ less_asym_TC)
lemma VWO_0_iff [simp]: "(x,0) ∈ VWO ⟷ x=0"
proof
show "x = 0" if "(x, 0) ∈ VWO"
using zero_TC_le [of x] le_TC_imp_VWO that
by (metis DiffI Linear_order_VWO Linear_order_in_diff_Id UNIV_I VWO pair_in_Id_conv)
qed auto
lemma VWO_antisym:
assumes "(x,y) ∈ VWO" "(y,x) ∈ VWO" shows "x=y"
by (metis Diff_iff IdD Linear_order_VWO Linear_order_in_diff_Id UNIV_I VWO assms)
subsubsection ‹Relation VWF›
definition VWF where "VWF ≡ VWO - Id"
lemma wf_VWF [iff]: "wf VWF"
by (simp add: VWF_def wf_VWO)
lemma trans_VWF [iff]: "trans VWF"
by (simp add: VWF_def antisym_VWO trans_VWO trans_diff_Id)
lemma asym_VWF [iff]: "asym VWF"
by (metis wf_VWF wf_imp_asym)
lemma total_VWF [iff]: "total VWF"
using VWF_def total_VWOId by auto
lemma total_on_VWF [iff]: "total_on A VWF"
by (meson UNIV_I total_VWF total_on_def)
lemma VWF_asym:
assumes "(x,y) ∈ VWF" "(y,x) ∈ VWF" shows False
using VWF_def assms wf_VWO wf_not_sym by fastforce
lemma VWF_non_refl [iff]: "(x,x) ∉ VWF"
by simp
lemma VWF_iff_Ord_less [simp]: "⟦Ord α; Ord β⟧ ⟹ (α,β) ∈ VWF ⟷ α < β"
by (simp add: VWF_def less_V_def)
lemma mem_imp_VWF: "x ∈ elts y ⟹ (x,y) ∈ VWF"
using VWF_def mem_imp_VWO by fastforce
subsection‹Order types›
definition ordermap :: "'a set ⇒ ('a × 'a) set ⇒ 'a ⇒ V"
where "ordermap A r ≡ wfrec r (λf x. set (f ` {y ∈ A. (y,x) ∈ r}))"
definition ordertype :: "'a set ⇒ ('a × 'a) set ⇒ V"
where "ordertype A r ≡ set (ordermap A r ` A)"
lemma ordermap_type:
"small A ⟹ ordermap A r ∈ A → elts (ordertype A r)"
by (simp add: ordertype_def)
lemma ordermap_in_ordertype [intro]: "⟦a ∈ A; small A⟧ ⟹ ordermap A r a ∈ elts (ordertype A r)"
by (simp add: ordertype_def)
lemma ordermap: "wf r ⟹ ordermap A r a = set (ordermap A r ` {y ∈ A. (y,a) ∈ r})"
unfolding ordermap_def
by (auto simp: wfrec_fixpoint adm_wf_def)
lemma wf_Ord_ordermap [iff]: assumes "wf r" "trans r" shows "Ord (ordermap A r x)"
using ‹wf r›
proof (induction x rule: wf_induct_rule)
case (less u)
have "Transset (set (ordermap A r ` {y ∈ A. (y, u) ∈ r}))"
proof (clarsimp simp add: Transset_def)
show "x ∈ ordermap A r ` {y ∈ A. (y, u) ∈ r}"
if "small (ordermap A r ` {y ∈ A. (y, u) ∈ r})"
and x: "x ∈ elts (ordermap A r y)" and "y ∈ A" "(y, u) ∈ r" for x y
proof -
have "ordermap A r y = ZFC_in_HOL.set (ordermap A r ` {a ∈ A. (a, y) ∈ r})"
using ordermap assms(1) by force
then have "x ∈ ordermap A r ` {z ∈ A. (z, y) ∈ r}"
by (metis (no_types, lifting) elts_of_set empty_iff x)
then have "∃v. v ∈ A ∧ (v, u) ∈ r ∧ x = ordermap A r v"
using that transD [OF ‹trans r›] by blast
then show ?thesis
by blast
qed
qed
moreover have "Ord x"
if "x ∈ elts (set (ordermap A r ` {y ∈ A. (y, u) ∈ r}))" for x
using that less by (auto simp: split: if_split_asm)
ultimately show ?case
by (metis (full_types) Ord_def ordermap assms(1))
qed
lemma wf_Ord_ordertype: assumes "wf r" "trans r" shows "Ord(ordertype A r)"
proof -
have "y ≤ set (ordermap A r ` A)"
if "y = ordermap A r x" "x ∈ A" "small (ordermap A r ` A)" for x y
using that by (auto simp: less_eq_V_def ordermap [OF ‹wf r›, of A x])
moreover have "z ≤ y" if "y ∈ ordermap A r ` A" "z ∈ elts y" for y z
by (metis wf_Ord_ordermap OrdmemD assms imageE order.strict_implies_order that)
ultimately show ?thesis
unfolding ordertype_def Ord_def Transset_def by simp
qed
lemma Ord_ordertype [simp]: "Ord(ordertype A VWF)"
using wf_Ord_ordertype by blast
lemma Ord_ordermap [simp]: "Ord (ordermap A VWF x)"
by blast
lemma ordertype_singleton [simp]:
assumes "wf r"
shows "ordertype {x} r = 1"
proof -
have †: "{y. y = x ∧ (y, x) ∈ r} = {}"
using assms by auto
show ?thesis
by (auto simp add: ordertype_def assms † ordermap [where a=x])
qed
subsubsection‹@{term ordermap} preserves the orderings in both directions›
lemma ordermap_mono:
assumes wx: "(w, x) ∈ r" and "wf r" "w ∈ A" "small A"
shows "ordermap A r w ∈ elts (ordermap A r x)"
proof -
have "small {a ∈ A. (a, x) ∈ r} ∧ w ∈ A ∧ (w, x) ∈ r"
by (simp add: assms)
then show ?thesis
using assms ordermap [of r A]
by (metis (no_types, lifting) elts_of_set image_eqI mem_Collect_eq replacement)
qed
lemma converse_ordermap_mono:
assumes "ordermap A r y ∈ elts (ordermap A r x)" "wf r" "total_on A r" "x ∈ A" "y ∈ A" "small A"
shows "(y, x) ∈ r"
proof (cases "x = y")
case True
then show ?thesis
using assms(1) mem_not_refl by blast
next
case False
then consider "(x,y) ∈ r" | "(y,x) ∈ r"
using ‹total_on A r› assms by (meson UNIV_I total_on_def)
then show ?thesis
by (meson ordermap_mono assms mem_not_sym)
qed
lemma converse_ordermap_mono_iff:
assumes "wf r" "total_on A r" "x ∈ A" "y ∈ A" "small A"
shows "ordermap A r y ∈ elts (ordermap A r x) ⟷ (y, x) ∈ r"
by (metis assms converse_ordermap_mono ordermap_mono)
lemma ordermap_surj: "elts (ordertype A r) ⊆ ordermap A r ` A"
unfolding ordertype_def by simp
lemma ordermap_bij:
assumes "wf r" "total_on A r" "small A"
shows "bij_betw (ordermap A r) A (elts (ordertype A r))"
unfolding bij_betw_def
proof (intro conjI)
show "inj_on (ordermap A r) A"
unfolding inj_on_def by (metis assms mem_not_refl ordermap_mono total_on_def)
show "ordermap A r ` A = elts (ordertype A r)"
by (metis ordertype_def ‹small A› elts_of_set replacement)
qed
lemma ordermap_eq_iff [simp]:
"⟦x ∈ A; y ∈ A; wf r; total_on A r; small A⟧ ⟹ ordermap A r x = ordermap A r y ⟷ x = y"
by (metis bij_betw_iff_bijections ordermap_bij)
lemma inv_into_ordermap: "α ∈ elts (ordertype A r) ⟹ inv_into A (ordermap A r) α ∈ A"
by (meson in_mono inv_into_into ordermap_surj)
lemma ordertype_nat_imp_finite:
assumes "ordertype A r = ord_of_nat m" "small A" "wf r" "total_on A r"
shows "finite A"
proof -
have "A ≈ elts m"
using eqpoll_def assms ordermap_bij by fastforce
then show ?thesis
using eqpoll_finite_iff finite_Ord_omega by blast
qed
lemma wf_ordertype_eqpoll:
assumes "wf r" "total_on A r" "small A"
shows "elts (ordertype A r) ≈ A"
using assms eqpoll_def eqpoll_sym ordermap_bij by blast
lemma ordertype_eqpoll:
assumes "small A"
shows "elts (ordertype A VWF) ≈ A"
using assms wf_ordertype_eqpoll total_VWF wf_VWF
by (simp add: wf_ordertype_eqpoll total_on_def)
subsection ‹More advanced @{term ordertype} and @{term ordermap} results›
lemma ordermap_VWF_0 [simp]: "ordermap A VWF 0 = 0"
by (simp add: ordermap wf_VWO VWF_def)
lemma ordertype_empty [simp]: "ordertype {} r = 0"
by (simp add: ordertype_def)
lemma ordertype_eq_0_iff [simp]: "⟦small X; wf r⟧ ⟹ ordertype X r = 0 ⟷ X = {}"
by (metis ordertype_def elts_of_set replacement image_is_empty zero_V_def)
lemma ordermap_mono_less:
assumes "(w, x) ∈ r"
and "wf r" "trans r"
and "w ∈ A" "x ∈ A"
and "small A"
shows "ordermap A r w < ordermap A r x"
by (simp add: OrdmemD assms ordermap_mono)
lemma ordermap_mono_le:
assumes "(w, x) ∈ r ∨ w=x"
and "wf r" "trans r"
and "w ∈ A" "x ∈ A"
and "small A"
shows "ordermap A r w ≤ ordermap A r x"
by (metis assms dual_order.strict_implies_order eq_refl ordermap_mono_less)
lemma converse_ordermap_le_mono:
assumes "ordermap A r y ≤ ordermap A r x" "wf r" "total r" "x ∈ A" "small A"
shows "(y, x) ∈ r ∨ y=x"
by (meson UNIV_I assms mem_not_refl ordermap_mono total_on_def vsubsetD)
lemma ordertype_mono:
assumes "X ⊆ Y" and r: "wf r" "trans r" and "small Y"
shows "ordertype X r ≤ ordertype Y r"
proof -
have "small X"
using assms smaller_than_small by fastforce
have *: "ordermap X r x ≤ ordermap Y r x" for x
using ‹wf r›
proof (induction x rule: wf_induct_rule)
case (less x)
have "ordermap X r z < ordermap Y r x" if "z ∈ X" and zx: "(z,x) ∈ r" for z
using less [OF zx] assms
by (meson Ord_linear2 OrdmemD wf_Ord_ordermap ordermap_mono in_mono leD that(1) vsubsetD zx)
then show ?case
by (auto simp add: ordermap [of _ X x] ‹small X› Ord_mem_iff_lt set_image_le_iff less_eq_V_def r)
qed
show ?thesis
proof -
have "ordermap Y r ` Y = elts (ordertype Y r)"
by (metis ordertype_def ‹small Y› elts_of_set replacement)
then have "ordertype Y r ∉ ordermap X r ` X"
using "*" ‹X ⊆ Y› by fastforce
then show ?thesis
by (metis Ord_linear2 Ord_mem_iff_lt ordertype_def wf_Ord_ordertype ‹small X› elts_of_set replacement r)
qed
qed
corollary ordertype_VWF_mono:
assumes "X ⊆ Y" "small Y"
shows "ordertype X VWF ≤ ordertype Y VWF"
using assms by (simp add: ordertype_mono)
lemma ordertype_UNION_ge:
assumes "A ∈ 𝒜" "wf r" "trans r" "𝒜 ⊆ Collect small" "small 𝒜"
shows "ordertype A r ≤ ordertype (⋃𝒜) r"
by (rule ordertype_mono) (use assms in auto)
lemma inv_ordermap_mono_less:
assumes "(inv_into M (ordermap M r) α, inv_into M (ordermap M r) β) ∈ r"
and "small M" and α: "α ∈ elts (ordertype M r)" and β: "β ∈ elts (ordertype M r)"
and "wf r" "trans r"
shows "α < β"
proof -
have "α = ordermap M r (inv_into M (ordermap M r) α)"
by (metis α f_inv_into_f ordermap_surj subset_eq)
also have "… < ordermap M r (inv_into M (ordermap M r) β)"
by (meson α β assms in_mono inv_into_into ordermap_mono_less ordermap_surj)
also have "… = β"
by (meson β f_inv_into_f in_mono ordermap_surj)
finally show ?thesis .
qed
lemma inv_ordermap_mono_eq:
assumes "inv_into M (ordermap M r) α = inv_into M (ordermap M r) β"
and "α ∈ elts (ordertype M r)" "β ∈ elts (ordertype M r)"
shows "α = β"
by (metis assms f_inv_into_f ordermap_surj subsetD)
lemma inv_ordermap_VWF_mono_le:
assumes "inv_into M (ordermap M VWF) α ≤ inv_into M (ordermap M VWF) β"
and "M ⊆ ON" "small M" and α: "α ∈ elts (ordertype M VWF)" and β: "β ∈ elts (ordertype M VWF)"
shows "α ≤ β"
proof -
have "α = ordermap M VWF (inv_into M (ordermap M VWF) α)"
by (metis α f_inv_into_f ordermap_surj subset_eq)
also have "… ≤ ordermap M VWF (inv_into M (ordermap M VWF) β)"
by (metis ON_imp_Ord VWF_iff_Ord_less assms dual_order.strict_implies_order elts_of_set eq_refl inv_into_into order.not_eq_order_implies_strict ordermap_mono_less ordertype_def replacement trans_VWF wf_VWF)
also have "… = β"
by (meson β f_inv_into_f in_mono ordermap_surj)
finally show ?thesis .
qed
lemma inv_ordermap_VWF_mono_iff:
assumes "M ⊆ ON" "small M" and "α ∈ elts (ordertype M VWF)" and "β ∈ elts (ordertype M VWF)"
shows "inv_into M (ordermap M VWF) α ≤ inv_into M (ordermap M VWF) β ⟷ α ≤ β"
by (metis ON_imp_Ord Ord_linear_le assms dual_order.eq_iff inv_into_ordermap inv_ordermap_VWF_mono_le)
lemma inv_ordermap_VWF_strict_mono_iff:
assumes "M ⊆ ON" "small M" and "α ∈ elts (ordertype M VWF)" and "β ∈ elts (ordertype M VWF)"
shows "inv_into M (ordermap M VWF) α < inv_into M (ordermap M VWF) β ⟷ α < β"
by (simp add: assms inv_ordermap_VWF_mono_iff less_le_not_le)
lemma strict_mono_on_ordertype:
assumes "M ⊆ ON" "small M"
obtains f where "f ∈ elts (ordertype M VWF) → M" "strict_mono_on (elts (ordertype M VWF)) f"
proof
show "inv_into M (ordermap M VWF) ∈ elts (ordertype M VWF) → M"
by (meson Pi_I' in_mono inv_into_into ordermap_surj)
show "strict_mono_on (elts (ordertype M VWF)) (inv_into M (ordermap M VWF))"
proof (clarsimp simp: strict_mono_on_def)
fix x y
assume "x ∈ elts (ordertype M VWF)" "y ∈ elts (ordertype M VWF)" "x < y"
then show "inv_into M (ordermap M VWF) x < inv_into M (ordermap M VWF) y"
using assms by (meson ON_imp_Ord Ord_linear2 inv_into_into inv_ordermap_VWF_mono_le leD ordermap_surj subsetD)
qed
qed
lemma ordermap_inc_eq:
assumes "x ∈ A" "small A"
and π: "⋀x y. ⟦x∈A; y∈A; (x,y) ∈ r⟧ ⟹ (π x, π y) ∈ s"
and r: "wf r" "total_on A r" and "wf s"
shows "ordermap (π ` A) s (π x) = ordermap A r x"
using ‹wf r› ‹x ∈ A›
proof (induction x rule: wf_induct_rule)
case (less x)
then have 1: "{y ∈ A. (y, x) ∈ r} = A ∩ {y. (y, x) ∈ r}"
using r by auto
have 2: "{y ∈ π ` A. (y, π x) ∈ s} = π ` A ∩ {y. (y, π x) ∈ s}"
by auto
have invπ: "⋀x y. ⟦x∈A; y∈A; (π x, π y) ∈ s⟧ ⟹ (x, y) ∈ r"
by (metis π ‹wf s› ‹total_on A r› total_on_def wf_not_sym)
have eq: "f ` (π ` A ∩ {y. (y, π x) ∈ s}) = (f ∘ π) ` (A ∩ {y. (y, x) ∈ r})" for f :: "'b ⇒ V"
using less by (auto simp: image_subset_iff invπ π)
show ?case
using less
by (simp add: ordermap [OF ‹wf r›, of _ x] ordermap [OF ‹wf s›, of _ "π x"] 1 2 eq)
qed
lemma ordertype_inc_eq:
assumes "small A"
and π: "⋀x y. ⟦x∈A; y∈A; (x,y) ∈ r⟧ ⟹ (π x, π y) ∈ s"
and r: "wf r" "total_on A r" and "wf s"
shows "ordertype (π ` A) s = ordertype A r"
proof -
have "ordermap (π ` A) s (π x) = ordermap A r x" if "x ∈ A" for x
using assms that by (auto simp: ordermap_inc_eq)
then show ?thesis
unfolding ordertype_def
by (metis (no_types, lifting) image_cong image_image)
qed
lemma ordertype_inc_le:
assumes "small A" "small B"
and π: "⋀x y. ⟦x∈A; y∈A; (x,y) ∈ r⟧ ⟹ (π x, π y) ∈ s"
and r: "wf r" "total_on A r" and "wf s" "trans s"
and "π ` A ⊆ B"
shows "ordertype A r ≤ ordertype B s"
by (metis assms ordertype_inc_eq ordertype_mono)
corollary ordertype_VWF_inc_eq:
assumes "A ⊆ ON" "π ` A ⊆ ON" "small A" and "⋀x y. ⟦x∈A; y∈A; x<y⟧ ⟹ π x < π y"
shows "ordertype (π ` A) VWF = ordertype A VWF"
proof (rule ordertype_inc_eq)
show "(π x, π y) ∈ VWF"
if "x ∈ A" "y ∈ A" "(x, y) ∈ VWF" for x y
using that ON_imp_Ord assms by auto
show "total_on A VWF"
by (meson UNIV_I total_VWF total_on_def)
qed (use assms in auto)
lemma ordertype_image_ordermap:
assumes "small A" "X ⊆ A" "wf r" "trans r" "total_on X r"
shows "ordertype (ordermap A r ` X) VWF = ordertype X r"
proof (rule ordertype_inc_eq)
show "small X"
by (meson assms smaller_than_small)
show "(ordermap A r x, ordermap A r y) ∈ VWF"
if "x ∈ X" "y ∈ X" "(x, y) ∈ r" for x y
by (meson that wf_Ord_ordermap VWF_iff_Ord_less assms ordermap_mono_less subsetD)
qed (use assms in auto)
lemma ordertype_map_image:
assumes "B ⊆ A" "small A"
shows "ordertype (ordermap A VWF ` A - ordermap A VWF ` B) VWF = ordertype (A - B) VWF"
proof -
have "ordermap A VWF ` A - ordermap A VWF ` B = ordermap A VWF ` (A - B)"
using assms by auto
then have "ordertype (ordermap A VWF ` A - ordermap A VWF ` B) VWF = ordertype (ordermap A VWF ` (A - B)) VWF"
by simp
also have "… = ordertype (A - B) VWF"
using ‹small A› ordertype_image_ordermap by fastforce
finally show ?thesis .
qed
proposition ordertype_le_ordertype:
assumes r: "wf r" "total_on A r" and "small A"
assumes s: "wf s" "total_on B s" "trans s" and "small B"
shows "ordertype A r ≤ ordertype B s ⟷
(∃f ∈ A → B. inj_on f A ∧ (∀x ∈ A. ∀y ∈ A. ((x,y) ∈ r ⟶ (f x, f y) ∈ s)))"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
define f where "f ≡ inv_into B (ordermap B s) ∘ ordermap A r"
show ?rhs
proof (intro bexI conjI ballI impI)
have AB: "elts (ordertype A r) ⊆ ordermap B s ` B"
by (metis L assms(7) ordertype_def replacement set_of_elts small_elts subset_iff_less_eq_V)
have bijA: "bij_betw (ordermap A r) A (elts (ordertype A r))"
using ordermap_bij ‹small A› r by blast
have "inv_into B (ordermap B s) (ordermap A r i) ∈ B" if "i ∈ A" for i
by (meson L ‹small A› inv_into_into ordermap_in_ordertype ordermap_surj subsetD that vsubsetD)
then show "f ∈ A → B"
by (auto simp: Pi_iff f_def)
show "inj_on f A"
proof (clarsimp simp add: f_def inj_on_def)
fix x y
assume "x ∈ A" "y ∈ A"
and "inv_into B (ordermap B s) (ordermap A r x) = inv_into B (ordermap B s) (ordermap A r y)"
then have "ordermap A r x = ordermap A r y"
by (meson AB ‹small A› inv_into_injective ordermap_in_ordertype subsetD)
then show "x = y"
by (metis ‹x ∈ A› ‹y ∈ A› bijA bij_betw_inv_into_left)
qed
next
fix x y
assume "x ∈ A" "y ∈ A" and "(x, y) ∈ r"
have ‡: "ordermap A r y ∈ ordermap B s ` B"
by (meson L ‹y ∈ A› ‹small A› in_mono ordermap_in_ordertype ordermap_surj vsubsetD)
moreover have †: "⋀x. inv_into B (ordermap B s) (ordermap A r x) = f x"
by (simp add: f_def)
then have *: "ordermap B s (f y) = ordermap A r y"
using ‡ by (metis f_inv_into_f)
moreover have "ordermap A r x ∈ ordermap B s ` B"
by (meson L ‹x ∈ A› ‹small A› in_mono ordermap_in_ordertype ordermap_surj vsubsetD)
moreover have "ordermap A r x < ordermap A r y"
using * r s by (metis (no_types) wf_Ord_ordermap OrdmemD ‹(x, y) ∈ r› ‹x ∈ A› ‹small A› ordermap_mono)
ultimately show "(f x, f y) ∈ s"
using † s by (metis assms(7) f_inv_into_f inv_into_into less_asym ordermap_mono_less total_on_def)
qed
next
assume R: ?rhs
then obtain f where f: "f∈A → B" "inj_on f A" "∀x∈A. ∀y∈A. (x, y) ∈ r ⟶ (f x, f y) ∈ s"
by blast
show ?lhs
by (rule ordertype_inc_le [where π=f]) (use f assms in auto)
qed
lemma iso_imp_ordertype_eq_ordertype:
assumes iso: "iso r r' f"
and "wf r"
and "Total r"
and sm: "small (Field r)"
shows "ordertype (Field r) r = ordertype (Field r') r'"
by (metis (no_types, lifting) iso_forward iso_wf assms iso_Field ordertype_inc_eq sm)
lemma ordertype_infinite_ge_ω:
assumes "infinite A" "small A"
shows "ordertype A VWF ≥ ω"
proof -
have "inj_on (ordermap A VWF) A"
by (meson ordermap_bij ‹small A› bij_betw_def total_on_VWF wf_VWF)
then have "infinite (ordermap A VWF ` A)"
using ‹infinite A› finite_image_iff by blast
then show ?thesis
using Ord_ordertype ‹small A› infinite_Ord_omega by (auto simp: ordertype_def)
qed
lemma ordertype_eqI:
assumes "wf r" "total_on A r" "small A" "wf s"
"bij_betw f A B" "(∀x ∈ A. ∀y ∈ A. (f x, f y) ∈ s ⟷ (x,y) ∈ r)"
shows "ordertype A r = ordertype B s"
by (metis assms bij_betw_imp_surj_on ordertype_inc_eq)
lemma ordermap_eq_self:
assumes "Ord α" and x: "x ∈ elts α"
shows "ordermap (elts α) VWF x = x"
using Ord_in_Ord [OF assms] x
proof (induction x rule: Ord_induct)
case (step x)
have 1: "{y ∈ elts α. (y, x) ∈ VWF} = elts x" (is "?A = _")
proof
show "?A ⊆ elts x"
using ‹Ord α› by clarify (meson Ord_in_Ord Ord_mem_iff_lt VWF_iff_Ord_less step.hyps)
show "elts x ⊆ ?A"
using ‹Ord α› by clarify (meson Ord_in_Ord Ord_trans OrdmemD VWF_iff_Ord_less step.prems)
qed
show ?case
using step
by (simp add: ordermap [OF wf_VWF, of _ x] 1 Ord_trans [of _ _ α] step.prems ‹Ord α› cong: image_cong)
qed
lemma ordertype_eq_Ord [simp]:
assumes "Ord α"
shows "ordertype (elts α) VWF = α"
using assms ordermap_eq_self [OF assms] by (simp add: ordertype_def)
proposition ordertype_eq_iff:
assumes α: "Ord α" and r: "wf r" and "small A" "total_on A r" "trans r"
shows "ordertype A r = α ⟷
(∃f. bij_betw f A (elts α) ∧ (∀x ∈ A. ∀y ∈ A. f x < f y ⟷ (x,y) ∈ r))"
(is "?lhs = ?rhs")
proof safe
assume eq: "α = ordertype A r"
show "∃f. bij_betw f A (elts (ordertype A r)) ∧ (∀x∈A. ∀y∈A. f x < f y ⟷ ((x, y) ∈ r))"
proof (intro exI conjI ballI)
show "bij_betw (ordermap A r) A (elts (ordertype A r))"
by (simp add: assms ordermap_bij)
then show "ordermap A r x < ordermap A r y ⟷ (x, y) ∈ r"
if "x ∈ A" "y ∈ A" for x y
using that assms
by (metis order.asym ordermap_mono_less total_on_def)
qed
next
fix f
assume f: "bij_betw f A (elts α)" "∀x∈A. ∀y∈A. f x < f y ⟷ (x, y) ∈ r"
have "ordertype A r = ordertype (elts α) VWF"
proof (rule ordertype_eqI)
show "∀x∈A. ∀y∈A. ((f x, f y) ∈ VWF) = ((x, y) ∈ r)"
by (meson Ord_in_Ord VWF_iff_Ord_less α bij_betwE f)
qed (use assms f in auto)
then show ?lhs
by (simp add: α)
qed
corollary ordertype_VWF_eq_iff:
assumes "Ord α" "small A"
shows "ordertype A VWF = α ⟷
(∃f. bij_betw f A (elts α) ∧ (∀x ∈ A. ∀y ∈ A. f x < f y ⟷ (x,y) ∈ VWF))"
by (metis UNIV_I assms ordertype_eq_iff total_VWF total_on_def trans_VWF wf_VWF)
lemma ordertype_le_Ord:
assumes "Ord α" "X ⊆ elts α"
shows "ordertype X VWF ≤ α"
by (metis assms ordertype_VWF_mono ordertype_eq_Ord small_elts)
lemma ordertype_inc_le_Ord:
assumes "small A" "Ord α"
and π: "⋀x y. ⟦x∈A; y∈A; (x,y) ∈ r⟧ ⟹ π x < π y"
and "wf r" "total_on A r"
and sub: "π ` A ⊆ elts α"
shows "ordertype A r ≤ α"
proof -
have "⋀x y. ⟦x∈A; y∈A; (x,y) ∈ r⟧ ⟹ (π x, π y) ∈ VWF"
by (meson Ord_in_Ord VWF_iff_Ord_less π ‹Ord α› sub image_subset_iff)
with assms show ?thesis
by (metis ordertype_inc_eq ordertype_le_Ord wf_VWF)
qed
lemma le_ordertype_obtains_subset:
assumes α: "β ≤ α" "ordertype H VWF = α" and "small H" "Ord β"
obtains G where "G ⊆ H" "ordertype G VWF = β"
proof (intro exI conjI that)
let ?f = "ordermap H VWF"
show ‡: "inv_into H ?f ` elts β ⊆ H"
unfolding image_subset_iff
by (metis α inv_into_into ordermap_surj subsetD vsubsetD)
have "∃f. bij_betw f (inv_into H ?f ` elts β) (elts β) ∧ (∀x∈inv_into H ?f ` elts β. ∀y∈inv_into H ?f ` elts β. (f x < f y) = ((x, y) ∈ VWF))"
proof (intro exI conjI ballI iffI)
show "bij_betw ?f (inv_into H ?f ` elts β) (elts β)"
using ordermap_bij [OF wf_VWF total_on_VWF ‹small H›] α
by (metis bij_betw_inv_into_RIGHT bij_betw_subset less_eq_V_def ‡)
next
fix x y
assume x: "x ∈ inv_into H ?f ` elts β"
and y: "y ∈ inv_into H ?f ` elts β"
show "?f x < ?f y" if "(x,y) ∈ VWF"
using that ‡ ‹small H› in_mono ordermap_mono_less x y by fastforce
show "(x,y) ∈ VWF" if "?f x < ?f y"
using that ‡ ‹small H› in_mono ordermap_mono_less [OF _ wf_VWF trans_VWF] x y
by (metis UNIV_I less_imp_not_less total_VWF total_on_def)
qed
then show "ordertype (inv_into H ?f ` elts β) VWF = β"
by (subst ordertype_eq_iff) (use assms in auto)
qed
lemma ordertype_infinite_ω:
assumes "A ⊆ elts ω" "infinite A"
shows "ordertype A VWF = ω"
proof (rule antisym)
show "ordertype A VWF ≤ ω"
by (simp add: assms ordertype_le_Ord)
show "ω ≤ ordertype A VWF"
using assms down ordertype_infinite_ge_ω by auto
qed
text ‹For infinite sets of natural numbers›
lemma ordertype_nat_ω:
assumes "infinite N" shows "ordertype N less_than = ω"
proof -
have "small N"
by (meson inj_on_def ord_of_nat_inject small_def small_iff_range small_image_nat_V)
have "ordertype (ord_of_nat ` N) VWF = ω"
by (force simp: assms finite_image_iff inj_on_def intro: ordertype_infinite_ω)
moreover have "ordertype (ord_of_nat ` N) VWF = ordertype N less_than"
by (auto intro: ordertype_inc_eq ‹small N›)
ultimately show ?thesis
by simp
qed
proposition ordertype_eq_ordertype:
assumes r: "wf r" "total_on A r" "trans r" and "small A"
assumes s: "wf s" "total_on B s" "trans s" and "small B"
shows "ordertype A r = ordertype B s ⟷
(∃f. bij_betw f A B ∧ (∀x ∈ A. ∀y ∈ A. (f x, f y) ∈ s ⟷ (x,y) ∈ r))"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
define γ where "γ = ordertype A r"
have A: "bij_betw (ordermap A r) A (ordermap A r ` A)"
by (meson ordermap_bij assms(4) bij_betw_def r)
have B: "bij_betw (ordermap B s) B (ordermap B s ` B)"
by (meson ordermap_bij assms(8) bij_betw_def s)
define f where "f ≡ inv_into B (ordermap B s) ∘ ordermap A r"
show ?rhs
proof (intro exI conjI)
have bijA: "bij_betw (ordermap A r) A (elts γ)"
unfolding γ_def using ordermap_bij ‹small A› r by blast
moreover have bijB: "bij_betw (ordermap B s) B (elts γ)"
by (simp add: L γ_def ordermap_bij ‹small B› s)
ultimately show bij: "bij_betw f A B"
unfolding f_def using bij_betw_comp_iff bij_betw_inv_into by blast
have invB: "⋀α. α ∈ elts γ ⟹ ordermap B s (inv_into B (ordermap B s) α) = α"
by (meson bijB bij_betw_inv_into_right)
have ordermap_A_γ: "⋀a. a ∈ A ⟹ ordermap A r a ∈ elts γ"
using bijA bij_betwE by auto
have f_in_B: "⋀a. a ∈ A ⟹ f a ∈ B"
using bij bij_betwE by fastforce
show "∀x∈A. ∀y∈A. (f x, f y) ∈ s ⟷ (x, y) ∈ r"
proof (intro iffI ballI)
fix x y
assume "x ∈ A" "y ∈ A" and ins: "(f x, f y) ∈ s"
then have "ordermap A r x < ordermap A r y"
unfolding o_def
by (metis (mono_tags, lifting) f_def ‹small B› comp_apply f_in_B invB ordermap_A_γ ordermap_mono_less s(1) s(3))
then show "(x, y) ∈ r"
by (metis ‹x ∈ A› ‹y ∈ A› ‹small A› order.asym ordermap_mono_less r total_on_def)
next
fix x y
assume "x ∈ A" "y ∈ A" and "(x, y) ∈ r"
then have "ordermap A r x < ordermap A r y"
by (simp add: ‹small A› ordermap_mono_less r)
then have "(f y, f x) ∉ s"
by (metis (mono_tags, lifting) ‹x ∈ A› ‹y ∈ A› ‹small B› comp_apply f_def f_in_B invB order.asym ordermap_A_γ ordermap_mono_less s(1) s(3))
moreover have "f y ≠ f x"
by (metis ‹(x, y) ∈ r› ‹x ∈ A› ‹y ∈ A› bij bij_betw_inv_into_left r(1) wf_not_sym)
ultimately show "(f x, f y) ∈ s"
by (meson ‹x ∈ A› ‹y ∈ A› f_in_B s(2) total_on_def)
qed
qed
next
assume ?rhs
then show ?lhs
using assms ordertype_eqI by blast
qed
corollary ordertype_eq_ordertype_iso:
assumes r: "wf r" "total_on A r" "trans r" and "small A" and FA: "Field r = A"
assumes s: "wf s" "total_on B s" "trans s" and "small B" and FB: "Field s = B"
shows "ordertype A r = ordertype B s ⟷ (∃f. iso r s f)"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
then obtain f where "bij_betw f A B" "∀x ∈ A. ∀y ∈ A. (f x, f y) ∈ s ⟷ (x,y) ∈ r"
using assms ordertype_eq_ordertype by blast
then show ?rhs
using FA FB iso_iff2 by blast
next
assume ?rhs
then show ?lhs
using FA FB ‹small A› iso_imp_ordertype_eq_ordertype r by blast
qed
lemma Limit_ordertype_imp_Field_Restr:
assumes Lim: "Limit (ordertype A r)" and r: "wf r" "total_on A r" and "small A"
shows "Field (Restr r A) = A"
proof -
have "∃y∈A. (x,y) ∈ r" if "x ∈ A" for x
proof -
let ?oy = "succ (ordermap A r x)"
have §: "?oy ∈ elts (ordertype A r)"
by (simp add: Lim ‹small A› ordermap_in_ordertype succ_in_Limit_iff that)
then have A: "inv_into A (ordermap A r) ?oy ∈ A"
by (simp add: inv_into_ordermap)
moreover have "(x, inv_into A (ordermap A r) ?oy) ∈ r"
proof -
have "ordermap A r x ∈ elts (ordermap A r (inv_into A (ordermap A r) ?oy))"
by (metis "§" elts_succ f_inv_into_f insert_iff ordermap_surj subsetD)
then show ?thesis
by (metis ‹small A› A converse_ordermap_mono r that)
qed
ultimately show ?thesis ..
qed
then have "A ⊆ Field (Restr r A)"
by (auto simp: Field_def)
then show ?thesis
by (simp add: Field_Restr_subset subset_antisym)
qed
lemma ordertype_Field_Restr:
assumes "wf r" "total_on A r" "trans r" "small A" "Field (Restr r A) = A"
shows "ordertype (Field (Restr r A)) (Restr r A) = ordertype A r"
using assms by (force simp: ordertype_eq_ordertype wf_Int1 total_on_def trans_Restr)
proposition ordertype_eq_ordertype_iso_Restr:
assumes r: "wf r" "total_on A r" "trans r" and "small A" and FA: "Field (Restr r A) = A"
assumes s: "wf s" "total_on B s" "trans s" and "small B" and FB: "Field (Restr s B) = B"
shows "ordertype A r = ordertype B s ⟷ (∃f. iso (Restr r A) (Restr s B) f)"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
then obtain f where "bij_betw f A B" "∀x ∈ A. ∀y ∈ A. (f x, f y) ∈ s ⟷ (x,y) ∈ r"
using assms ordertype_eq_ordertype by blast
then show ?rhs
using FA FB bij_betwE unfolding iso_iff2 by fastforce
next
assume ?rhs
moreover
have "ordertype (Field (Restr r A)) (Restr r A) = ordertype A r"
using FA ‹small A› ordertype_Field_Restr r by blast
moreover
have "ordertype (Field (Restr s B)) (Restr s B) = ordertype B s"
using FB ‹small B› ordertype_Field_Restr s by blast
ultimately show ?lhs
using iso_imp_ordertype_eq_ordertype FA FB ‹small A› r
by (fastforce intro: total_on_imp_Total_Restr trans_Restr wf_Int1)
qed
lemma ordermap_insert:
assumes "Ord α" and y: "Ord y" "y ≤ α" and U: "U ⊆ elts α"
shows "ordermap (insert α U) VWF y = ordermap U VWF y"
using y
proof (induction rule: Ord_induct)
case (step y)
then have 1: "{u ∈ U. (u, y) ∈ VWF} = elts y ∩ U"
apply (simp add: set_eq_iff)
by (meson Ord_in_Ord Ord_mem_iff_lt VWF_iff_Ord_less assms subsetD)
have 2: "{u ∈ insert α U. (u, y) ∈ VWF} = elts y ∩ U"
apply (simp add: set_eq_iff)
by (meson Ord_in_Ord Ord_mem_iff_lt VWF_iff_Ord_less assms leD step.hyps step.prems subsetD)
show ?case
using step
apply (simp only: ordermap [OF wf_VWF, of _ y] 1 2)
by (meson Int_lower1 Ord_is_Transset Sup.SUP_cong Transset_def assms(1) in_mono vsubsetD)
qed
lemma ordertype_insert:
assumes "Ord α" and U: "U ⊆ elts α"
shows "ordertype (insert α U) VWF = succ (ordertype U VWF)"
proof -
have †: "{y ∈ insert α U. (y, α) ∈ VWF} = U" "{y ∈ U. (y, α) ∈ VWF} = U"
using Ord_in_Ord OrdmemD assms by auto
have eq: "⋀x. x ∈ U ⟹ ordermap (insert α U) VWF x = ordermap U VWF x"
by (meson Ord_in_Ord Ord_is_Transset Transset_def U assms(1) in_mono ordermap_insert)
have "ordertype (insert α U) VWF =
ZFC_in_HOL.set (insert (ordermap U VWF α) (ordermap U VWF ` U))"
by (simp add: ordertype_def ordermap_insert assms eq)
also have "… = succ (ZFC_in_HOL.set (ordermap U VWF ` U))"
using "†" U by (simp add: ordermap [OF wf_VWF, of _ α] down succ_def vinsert_def)
also have "… = succ (ordertype U VWF)"
by (simp add: ordertype_def)
finally show ?thesis .
qed
lemma finite_ordertype_le_card:
assumes "finite A" "wf r" "trans r"
shows "ordertype A r ≤ ord_of_nat (card A)"
proof -
have "Ord (ordertype A r)"
by (simp add: wf_Ord_ordertype assms)
moreover have "ordermap A r ` A = elts (ordertype A r)"
by (simp add: ordertype_def finite_imp_small ‹finite A›)
moreover have "card (ordermap A r ` A) ≤ card A"
using ‹finite A› card_image_le by blast
ultimately show ?thesis
by (metis Ord_linear_le Ord_ord_of_nat ‹finite A› card_ord_of_nat card_seteq finite_imageI less_eq_V_def)
qed
lemma ordertype_VWF_ω:
assumes "finite A"
shows "ordertype A VWF ∈ elts ω"
proof -
have "finite (ordermap A VWF ` A)"
using assms by blast
then have "ordertype A VWF < ω"
by (meson Ord_ω OrdmemD trans_VWF wf_VWF assms finite_ordertype_le_card le_less_trans ord_of_nat_ω)
then show ?thesis
by (simp add: Ord_mem_iff_lt)
qed
lemma ordertype_VWF_finite_nat:
assumes "finite A"
shows "ordertype A VWF = ord_of_nat (card A)"
by (metis finite_imp_small ordermap_bij total_on_VWF wf_VWF ω_def assms bij_betw_same_card card_ord_of_nat elts_of_set f_inv_into_f inf ordertype_VWF_ω)
lemma finite_ordertype_eq_card:
assumes "small A" "wf r" "trans r" "total_on A r"
shows "ordertype A r = ord_of_nat m ⟷ finite A ∧ card A = m"
using ordermap_bij [OF ‹wf r›]
proof -
have *: "bij_betw (ordermap A r) A (elts (ordertype A r))"
by (simp add: assms ordermap_bij)
moreover have "card (ordermap A r ` A) = card A"
by (meson bij_betw_def * card_image)
ultimately show ?thesis
using assms bij_betw_finite bij_betw_imp_surj_on finite_Ord_omega ordertype_VWF_finite_nat wf_Ord_ordertype by fastforce
qed
lemma ex_bij_betw_strict_mono_card:
assumes "finite M" "M ⊆ ON"
obtains h where "bij_betw h {..<card M} M" and "strict_mono_on {..<card M} h"
proof -
have bij: "bij_betw (ordermap M VWF) M (elts (card M))"
using Finite_V ‹finite M› ordermap_bij ordertype_VWF_finite_nat by fastforce
let ?h = "(inv_into M (ordermap M VWF)) ∘ ord_of_nat"
show thesis
proof
show bijh: "bij_betw ?h {..<card M} M"
proof (rule bij_betw_trans)
show "bij_betw ord_of_nat {..<card M} (elts (card M))"
by (simp add: bij_betw_def elts_ord_of_nat inj_on_def)
show "bij_betw (inv_into M (ordermap M VWF)) (elts (card M)) M"
using Finite_V assms bij_betw_inv_into ordermap_bij ordertype_VWF_finite_nat by fastforce
qed
show "strict_mono_on {..<card M} ?h"
proof -
have "?h m < ?h n"
if "m < n" "n < card M" for m n
proof (rule ccontr)
obtain mn: "m ∈ elts (ordertype M VWF)" "n ∈ elts (ordertype M VWF)"
using ‹m < n› ‹n < card M› ‹finite M› ordertype_VWF_finite_nat by auto
have ord: "Ord (?h m)" "Ord (?h n)"
using bijh assms(2) bij_betwE that by fastforce+
moreover
assume "¬ ?h m < ?h n"
ultimately consider "?h m = ?h n" | "?h m > ?h n"
using Ord_linear_lt by blast
then show False
proof cases
case 1
then have "m = n"
by (metis inv_ordermap_mono_eq mn comp_apply ord_of_nat_inject)
with ‹m < n› show False by blast
next
case 2
then have "ord_of_nat n ≤ ord_of_nat m"
by (metis Finite_V mn assms comp_def inv_ordermap_VWF_mono_le less_imp_le)
then show ?thesis
using leD ‹m < n› by blast
qed
qed
with assms show ?thesis
by (auto simp: strict_mono_on_def)
qed
qed
qed
lemma ordertype_finite_less_than [simp]:
assumes "finite A" shows "ordertype A less_than = card A"
proof -
let ?M = "ord_of_nat ` A"
obtain M: "finite ?M" "?M ⊆ ON"
using Ord_ord_of_nat assms by blast
have "ordertype A less_than = ordertype ?M VWF"
by (rule ordertype_inc_eq [symmetric]) (use assms finite_imp_small total_on_def in ‹force+›)
also have "… = card A"
proof (subst ordertype_eq_iff)
let ?M = "ord_of_nat ` A"
obtain h where bijh: "bij_betw h {..<card A} ?M" and smh: "strict_mono_on {..<card A} h"
by (metis M card_image ex_bij_betw_strict_mono_card inj_on_def ord_of_nat_inject)
define f where "f ≡ ord_of_nat ∘ inv_into {..<card A} h"
show "∃f. bij_betw f ?M (elts (card A)) ∧ (∀x∈?M. ∀y∈?M. f x < f y ⟷ ((x, y) ∈ VWF))"
proof (intro exI conjI ballI)
have "bij_betw (ord_of_nat ∘ inv_into {..<card A} h) (ord_of_nat ` A) (ord_of_nat ` {..<card A})"
by (meson UNIV_I bijh bij_betw_def bij_betw_inv_into bij_betw_subset bij_betw_trans inj_ord_of_nat subsetI)
then show "bij_betw f ?M (elts (card A))"
by (metis elts_ord_of_nat f_def)
next
fix x y
assume xy: "x ∈ ?M" "y ∈ ?M"
then obtain m n where "x = ord_of_nat m" "y = ord_of_nat n"
by auto
have "(f x < f y) ⟷ ((h ∘ inv_into {..<card A} h) x < (h ∘ inv_into {..<card A} h) y)"
unfolding f_def using smh bij_betw_imp_surj_on [OF bijh]
apply simp
by (metis (mono_tags, lifting) inv_into_into not_less_iff_gr_or_eq order.asym strict_mono_onD xy)
also have "… = (x < y)"
using bijh
by (simp add: bij_betw_inv_into_right xy)
also have "… ⟷ ((x, y) ∈ VWF)"
using M(2) ON_imp_Ord xy by auto
finally show "(f x < f y) ⟷ ((x, y) ∈ VWF)" .
qed
qed auto
finally show ?thesis .
qed
subsection ‹Cardinality of an arbitrary HOL set›
definition gcard :: "'a set ⇒ V"
where "gcard X ≡ if small X then (LEAST i. Ord i ∧ elts i ≈ X) else 0"
subsection‹Cardinality of a set›
definition vcard :: "V⇒V"
where "vcard a ≡ (LEAST i. Ord i ∧ elts i ≈ elts a)"
lemma gcard_eq_vcard [simp]: "gcard (elts x) = vcard x"
by (simp add: vcard_def gcard_def)
definition Card:: "V⇒bool"
where "Card i ≡ i = vcard i"
abbreviation CARD where "CARD ≡ Collect Card"
lemma cardinal_cong: "elts x ≈ elts y ⟹ vcard x = vcard y"
unfolding vcard_def by (meson eqpoll_sym eqpoll_trans)
lemma gcardinal_cong:
assumes "X ≈ Y" shows "gcard X = gcard Y"
proof -
have "(LEAST i. Ord i ∧ elts i ≈ X) = (LEAST i. Ord i ∧ elts i ≈ Y)"
by (meson eqpoll_sym eqpoll_trans assms)
then show ?thesis
unfolding gcard_def
by (meson eqpoll_sym small_eqcong assms)
qed
lemma vcard_set_image: "inj_on f (elts x) ⟹ vcard (set (f ` elts x)) = vcard x"
by (simp add: cardinal_cong)
lemma gcard_image: "inj_on f X ⟹ gcard (f ` X) = gcard X"
by (simp add: gcardinal_cong)
lemma Card_cardinal_eq: "Card κ ⟹ vcard κ = κ"
by (simp add: Card_def)
lemma Card_is_Ord:
assumes "Card κ" shows "Ord κ"
proof -
obtain α where "Ord α" "elts α ≈ elts κ"
using Ord_ordertype ordertype_eqpoll by blast
then have "Ord (LEAST i. Ord i ∧ elts i ≈ elts κ)"
by (metis Ord_Least)
then show ?thesis
using Card_def vcard_def assms by auto
qed
lemma cardinal_eqpoll: "elts (vcard a) ≈ elts a"
unfolding vcard_def
using ordertype_eqpoll [of "elts a"] Ord_LeastI by (meson Ord_ordertype small_elts)
lemma inj_into_vcard:
obtains f where "f ∈ elts A → elts (vcard A)" "inj_on f (elts A)"
using cardinal_eqpoll [of A] inj_on_the_inv_into the_inv_into_onto
by (fastforce simp: Pi_iff bij_betw_def eqpoll_def)
lemma cardinal_idem [simp]: "vcard (vcard a) = vcard a"
using cardinal_cong cardinal_eqpoll by blast
lemma subset_smaller_vcard:
assumes "κ ≤ vcard x" "Card κ"
obtains y where "y ≤ x" "vcard y = κ"
proof -
obtain φ where φ: "bij_betw φ (elts (vcard x)) (elts x)"
using cardinal_eqpoll eqpoll_def by blast
show thesis
proof
let ?y = "ZFC_in_HOL.set (φ ` elts κ)"
show "?y ≤ x"
by (meson φ assms bij_betwE set_image_le_iff small_elts vsubsetD)
show "vcard ?y = κ"
by (metis vcard_set_image Card_def assms bij_betw_def bij_betw_subset φ less_eq_V_def)
qed
qed
text‹every natural number is a (finite) cardinal›
lemma nat_into_Card:
assumes "α ∈ elts ω" shows "Card(α)"
proof (unfold Card_def vcard_def, rule sym)
obtain n where n: "α = ord_of_nat n"
by (metis ω_def assms elts_of_set imageE inf)
have "Ord(α)" using assms by auto
moreover
{ fix β
assume "β < α" "Ord β" "elts β ≈ elts α"
with n have "elts β ≈ {..<n}"
by (simp add: ord_of_nat_eq_initial [of n] eqpoll_trans inj_on_def inj_on_image_eqpoll_self)
hence False using assms n ‹Ord β› ‹β < α› ‹Ord(α)›
by (metis ‹elts β ≈ elts α› card_seteq eqpoll_finite_iff eqpoll_iff_card finite_lessThan less_eq_V_def less_le_not_le order_refl)
}
ultimately
show "(LEAST i. Ord i ∧ elts i ≈ elts α) = α"
by (metis (no_types, lifting) Least_equality Ord_linear_le eqpoll_refl less_le_not_le)
qed
lemma Card_ord_of_nat [simp]: "Card (ord_of_nat n)"
by (simp add: ω_def nat_into_Card)
lemma Card_0 [iff]: "Card 0"
by (simp add: nat_into_Card)
lemma CardI: "⟦Ord i; ⋀j. ⟦j < i; Ord j⟧ ⟹ ¬ elts j ≈ elts i⟧ ⟹ Card i"
unfolding Card_def vcard_def
by (metis Ord_Least Ord_linear_lt cardinal_eqpoll eqpoll_refl not_less_Ord_Least vcard_def)
lemma vcard_0 [simp]: "vcard 0 = 0"
using Card_0 Card_def by auto
lemma Ord_cardinal [simp,intro!]: "Ord(vcard a)"
unfolding vcard_def by (metis Card_def Card_is_Ord cardinal_cong cardinal_eqpoll vcard_def)
lemma gcard_big_0: "¬ small X ⟹ gcard X = 0"
by (simp add: gcard_def)
lemma gcard_eq_card:
assumes "finite X" shows "gcard X = ord_of_nat (card X)"
proof -
have "⋀y. Ord y ∧ elts y ≈ X ⟹ ord_of_nat (card X) ≤ y"
by (metis assms eqpoll_finite_iff eqpoll_iff_card order_le_less ordertype_VWF_finite_nat ordertype_eq_Ord)
then have "(LEAST i. Ord i ∧ elts i ≈ X) = ord_of_nat (card X)"
by (simp add: assms eqpoll_iff_card finite_Ord_omega Least_equality)
with assms show ?thesis
by (simp add: finite_imp_small gcard_def)
qed
lemma gcard_empty_0 [simp]: "gcard {} = 0"
by (simp add: gcard_eq_card)
lemma gcard_single_1 [simp]: "gcard {x} = 1"
by (simp add: gcard_eq_card one_V_def)
lemma Card_gcard [iff]: "Card (gcard X)"
by (metis Card_0 Card_def cardinal_idem gcard_big_0 gcardinal_cong small_eqpoll gcard_eq_vcard)
lemma gcard_eqpoll: "small X ⟹ elts (gcard X) ≈ X"
by (metis cardinal_eqpoll eqpoll_trans gcard_eq_vcard gcardinal_cong small_eqpoll)
lemma lepoll_imp_gcard_le:
assumes "A ≲ B" "small B"
shows "gcard A ≤ gcard B"
proof -
have "elts (gcard A) ≈ A" "elts (gcard B) ≈ B"
by (meson assms gcard_eqpoll lepoll_small)+
with ‹A ≲ B› show ?thesis
by (metis Ord_cardinal Ord_linear2 eqpoll_sym gcard_eq_vcard gcardinal_cong lepoll_antisym
lepoll_trans2 less_V_def less_eq_V_def subset_imp_lepoll)
qed
lemma gcard_image_le:
assumes "small A" shows "gcard (f ` A) ≤ gcard A"
using assms image_lepoll lepoll_imp_gcard_le by blast
lemma subset_imp_gcard_le:
assumes "A ⊆ B" "small B"
shows "gcard A ≤ gcard B"
by (simp add: assms lepoll_imp_gcard_le subset_imp_lepoll)
lemma gcard_le_lepoll: "⟦gcard A ≤ α; small A⟧ ⟹ A ≲ elts α"
by (meson eqpoll_sym gcard_eqpoll lepoll_trans1 less_eq_V_def subset_imp_lepoll)
subsection‹Cardinality of a set›
text‹The cardinals are the initial ordinals.›
lemma Card_iff_initial: "Card κ ⟷ Ord κ ∧ (∀α. Ord α ∧ α < κ ⟶ ~ elts α ≈ elts κ)"
by (metis CardI Card_def Card_is_Ord not_less_Ord_Least vcard_def)
lemma Card_ω [iff]: "Card ω"
by (meson CardI Ord_ω eqpoll_finite_iff infinite_Ord_omega infinite_ω leD)
lemma lt_Card_imp_lesspoll: "⟦i < a; Card a; Ord i⟧ ⟹ elts i ≺ elts a"
by (meson Card_iff_initial less_eq_V_def less_imp_le lesspoll_def subset_imp_lepoll)
lemma lepoll_imp_Card_le:
assumes "elts a ≲ elts b" shows "vcard a ≤ vcard b"
using assms lepoll_imp_gcard_le by fastforce
lemma lepoll_cardinal_le: "⟦elts A ≲ elts i; Ord i⟧ ⟹ vcard A ≤ i"
by (metis Ord_Least Ord_linear2 dual_order.trans eqpoll_refl lepoll_imp_Card_le not_less_Ord_Least vcard_def)
lemma cardinal_le_lepoll: "vcard A ≤ α ⟹ elts A ≲ elts α"
by (meson cardinal_eqpoll eqpoll_sym lepoll_trans1 less_eq_V_def subset_imp_lepoll)
lemma lesspoll_imp_Card_less:
assumes "elts a ≺ elts b" shows "vcard a < vcard b"
by (metis assms cardinal_eqpoll eqpoll_sym eqpoll_trans lepoll_imp_Card_le less_V_def lesspoll_def)
lemma Card_Union [simp,intro]:
assumes A: "⋀x. x ∈ A ⟹ Card(x)" shows "Card(⨆A)"
proof (rule CardI)
show "Ord(⨆A)" using A
by (simp add: Card_is_Ord Ord_Sup)
next
fix j
assume j: "j < ⨆A" "Ord j"
hence "∃c∈A. j < c ∧ Card(c)" using A
by (meson Card_is_Ord Ord_linear2 ZFC_in_HOL.Sup_least leD)
then obtain c where c: "c∈A" "j < c" "Card(c)"
by blast
hence jls: "elts j ≺ elts c"
using j(2) lt_Card_imp_lesspoll by blast
{ assume eqp: "elts j ≈ elts (⨆A)"
have "elts c ≲ elts (⨆A)" using c
by (metis Card_def Sup_V_def ZFC_in_HOL.Sup_upper cardinal_le_lepoll j(1) not_less_0)
also have "... ≈ elts j" by (rule eqpoll_sym [OF eqp])
also have "... ≺ elts c" by (rule jls)
finally have "elts c ≺ elts c" .
hence False
by auto
} thus "¬ elts j ≈ elts (⨆A)" by blast
qed
lemma Card_UN: "(⋀x. x ∈ A ⟹ Card(K x)) ==> Card(Sup (K ` A))"
by blast
subsection‹Transfinite recursion for definitions based on the three cases of ordinals›
definition
transrec3 :: "[V, [V,V]⇒V, [V,V⇒V]⇒V, V] ⇒ V" where
"transrec3 a b c ≡
transrec (λr x.
if x=0 then a
else if Limit x then c x (λy ∈ elts x. r y)
else b(pred x) (r (pred x)))"
lemma transrec3_0 [simp]: "transrec3 a b c 0 = a"
by (simp add: transrec transrec3_def)
lemma transrec3_succ [simp]:
"transrec3 a b c (succ i) = b i (transrec3 a b c i)"
by (simp add: transrec transrec3_def)
lemma transrec3_Limit [simp]:
"Limit i ⟹ transrec3 a b c i = c i (λj ∈ elts i. transrec3 a b c j)"
unfolding transrec3_def
by (subst transrec) auto
subsection ‹Cardinal Addition›
definition cadd :: "[V,V]⇒V" (infixl ‹⊕› 65)
where "κ ⊕ μ ≡ vcard (κ ⨄ μ)"
subsubsection‹Cardinal addition is commutative›
lemma vsum_commute_eqpoll: "elts (a⨄b) ≈ elts (b⨄a)"
proof -
have "bij_betw (λz ∈ elts (a⨄b). sum_case Inr Inl z) (elts (a⨄b)) (elts (b⨄a))"
unfolding bij_betw_def
proof (intro conjI inj_onI)
show "restrict (sum_case Inr Inl) (elts (a ⨄ b)) ` elts (a ⨄ b) = elts (b ⨄ a)"
apply auto
apply (metis (no_types) imageI sum_case_Inr sum_iff)
by (metis Inl_in_sum_iff imageI sum_case_Inl)
qed auto
then show ?thesis
using eqpoll_def by blast
qed
lemma cadd_commute: "i ⊕ j = j ⊕ i"
by (simp add: cadd_def cardinal_cong vsum_commute_eqpoll)
subsubsection‹Cardinal addition is associative›
lemma sum_assoc_bij:
"bij_betw (λz ∈ elts ((a⨄b)⨄c). sum_case(sum_case Inl (λy. Inr(Inl y))) (λy. Inr(Inr y)) z)
(elts ((a⨄b)⨄c)) (elts (a⨄(b⨄c)))"
by (rule_tac f' = "sum_case (λx. Inl (Inl x)) (sum_case (λx. Inl (Inr x)) Inr)"
in bij_betw_byWitness) auto
lemma sum_assoc_eqpoll: "elts ((a⨄b)⨄c) ≈ elts (a⨄(b⨄c))"
unfolding eqpoll_def by (metis sum_assoc_bij)
lemma elts_vcard_vsum_eqpoll: "elts (vcard (i ⨄ j)) ≈ Inl ` elts i ∪ Inr ` elts j"
proof -
have "elts (i ⨄ j) ≈ Inl ` elts i ∪ Inr ` elts j"
by (simp add: elts_vsum)
then show ?thesis
using cardinal_eqpoll eqpoll_trans by blast
qed
lemma cadd_assoc: "(i ⊕ j) ⊕ k = i ⊕ (j ⊕ k)"
proof (unfold cadd_def, rule cardinal_cong)
have "elts (vcard(i ⨄ j) ⨄ k) ≈ elts ((i ⨄ j) ⨄ k)"
by (auto simp: disjnt_def elts_vsum elts_vcard_vsum_eqpoll intro: Un_eqpoll_cong)
also have "… ≈ elts (i ⨄ (j ⨄ k))"
by (rule sum_assoc_eqpoll)
also have "… ≈ elts (i ⨄ vcard(j ⨄ k))"
by (auto simp: disjnt_def elts_vsum elts_vcard_vsum_eqpoll [THEN eqpoll_sym] intro: Un_eqpoll_cong)
finally show "elts (vcard (i ⨄ j) ⨄ k) ≈ elts (i ⨄ vcard (j ⨄ k))" .
qed
lemma cadd_left_commute: "j ⊕ (i ⊕ k) = i ⊕ (j ⊕ k)"
using cadd_assoc cadd_commute by force
lemmas cadd_ac = cadd_assoc cadd_commute cadd_left_commute
text‹0 is the identity for addition›
lemma vsum_0_eqpoll: "elts (0⨄a) ≈ elts a"
by (simp add: elts_vsum)
lemma cadd_0 [simp]: "Card κ ⟹ 0 ⊕ κ = κ"
by (metis Card_def cadd_def cardinal_cong vsum_0_eqpoll)
lemma cadd_0_right [simp]: "Card κ ⟹ κ ⊕ 0 = κ"
by (simp add: cadd_commute)
lemma vsum_lepoll_self: "elts a ≲ elts (a⨄b)"
unfolding elts_vsum by (meson Inl_iff Un_upper1 inj_onI lepoll_def)
lemma cadd_le_self:
assumes κ: "Card κ" shows "κ ≤ κ ⊕ a"
proof (unfold cadd_def)
have "κ ≤ vcard κ"
using Card_def κ by auto
also have "… ≤ vcard (κ ⨄ a)"
by (simp add: lepoll_imp_Card_le vsum_lepoll_self)
finally show "κ ≤ vcard (κ ⨄ a)" .
qed
text‹Monotonicity of addition›
lemma cadd_le_mono: "⟦κ' ≤ κ; μ' ≤ μ⟧ ⟹ κ' ⊕ μ' ≤ κ ⊕ μ"
unfolding cadd_def
by (metis (no_types) lepoll_imp_Card_le less_eq_V_def subset_imp_lepoll sum_subset_iff)
subsection‹Cardinal multiplication›
definition cmult :: "[V,V]⇒V" (infixl ‹⊗› 70)
where "κ ⊗ μ ≡ vcard (VSigma κ (λz. μ))"
subsubsection‹Cardinal multiplication is commutative›
lemma prod_bij: "⟦bij_betw f A C; bij_betw g B D⟧
⟹ bij_betw (λ(x, y). (f x, g y)) (A × B) (C × D)"
apply (rule bij_betw_byWitness [where f' = "λ(x,y). (inv_into A f x, inv_into B g y)"])
apply (auto simp: bij_betw_inv_into_left bij_betw_inv_into_right bij_betwE)
using bij_betwE bij_betw_inv_into apply blast+
done
lemma cmult_commute: "i ⊗ j = j ⊗ i"
proof -
have "(λ(x, y). ⟨x, y⟩) ` (elts i × elts j) ≈ (λ(x, y). ⟨x, y⟩) ` (elts j × elts i)"
by (simp add: times_commute_eqpoll)
then show ?thesis
unfolding cmult_def
using cardinal_cong elts_VSigma by auto
qed
subsubsection‹Cardinal multiplication is associative›
lemma elts_vcard_VSigma_eqpoll: "elts (vcard (vtimes i j)) ≈ elts i × elts j"
proof -
have "elts (vtimes i j) ≈ elts i × elts j"
by (simp add: elts_VSigma)
then show ?thesis
using cardinal_eqpoll eqpoll_trans by blast
qed
lemma elts_cmult: "elts (κ' ⊗ κ) ≈ elts κ' × elts κ"
by (simp add: cmult_def elts_vcard_VSigma_eqpoll)
lemma cmult_assoc: "(i ⊗ j) ⊗ k = i ⊗ (j ⊗ k)"
unfolding cmult_def
proof (rule cardinal_cong)
have "elts (vcard (vtimes i j)) × elts k ≈ (elts i × elts j) × elts k"
by (blast intro: times_eqpoll_cong elts_vcard_VSigma_eqpoll cardinal_eqpoll)
also have "… ≈ elts i × (elts j × elts k)"
by (rule times_assoc_eqpoll)
also have "… ≈ elts i × elts (vcard (vtimes j k))"
by (blast intro: times_eqpoll_cong elts_vcard_VSigma_eqpoll cardinal_eqpoll eqpoll_sym)
finally show "elts (VSigma (vcard (vtimes i j)) (λz. k)) ≈ elts (VSigma i (λz. vcard (vtimes j k)))"
by (simp add: elts_VSigma)
qed
subsubsection‹Cardinal multiplication distributes over addition›
lemma cadd_cmult_distrib: "(i ⊕ j) ⊗ k = (i ⊗ k) ⊕ (j ⊗ k)"
unfolding cadd_def cmult_def
proof (rule cardinal_cong)
have "elts (vtimes (vcard (i ⨄ j)) k) ≈ elts (vcard (vsum i j)) × elts k"
using cardinal_eqpoll elts_vcard_VSigma_eqpoll eqpoll_sym eqpoll_trans by blast
also have "… ≈ (Inl ` elts i ∪ Inr ` elts j) × elts k"
using elts_vcard_vsum_eqpoll times_eqpoll_cong by blast
also have "… ≈ (Inl ` elts i) × elts k ∪ (Inr ` elts j) × elts k"
by (simp add: Sigma_Un_distrib1)
also have "… ≈ elts (vtimes i k ⨄ vtimes j k)"
unfolding Plus_def
by (auto simp: elts_vsum elts_VSigma disjnt_iff intro!: Un_eqpoll_cong times_eqpoll_cong)
also have "… ≈ elts (vcard (vtimes i k ⨄ vtimes j k))"
by (simp add: cardinal_eqpoll eqpoll_sym)
also have "… ≈ elts (vcard (vtimes i k) ⨄ vcard (vtimes j k))"
by (metis cadd_assoc cadd_def cardinal_cong cardinal_eqpoll vsum_0_eqpoll vsum_commute_eqpoll)
finally show "elts (VSigma (vcard (i ⨄ j)) (λz. k))
≈ elts (vcard (vtimes i k) ⨄ vcard (vtimes j k))" .
qed
text‹Multiplication by 0 yields 0›
lemma cmult_0 [simp]: "0 ⊗ i = 0"
using Card_0 Card_def cmult_def by auto
text‹1 is the identity for multiplication›
lemma cmult_1 [simp]: assumes "Card κ" shows "1 ⊗ κ = κ"
proof -
have "elts (vtimes (set {0}) κ) ≈ elts κ"
by (auto simp: elts_VSigma intro!: times_singleton_eqpoll)
then show ?thesis
by (metis Card_def assms cardinal_cong cmult_def elts_1 set_of_elts)
qed
subsection‹Some inequalities for multiplication›
lemma cmult_square_le: assumes "Card κ" shows "κ ≤ κ ⊗ κ"
proof -
have "elts κ ≲ elts (κ ⊗ κ)"
using times_square_lepoll [of "elts κ"] cmult_def elts_vcard_VSigma_eqpoll eqpoll_sym lepoll_trans2
by fastforce
then show ?thesis
using Card_def assms cmult_def lepoll_cardinal_le by fastforce
qed
text‹Multiplication by a non-empty set›
lemma cmult_le_self: assumes "Card κ" "α ≠ 0" shows "κ ≤ κ ⊗ α"
proof -
have "κ = vcard κ"
using Card_def ‹Card κ› by blast
also have "… ≤ vcard (vtimes κ α)"
apply (rule lepoll_imp_Card_le)
apply (simp add: elts_VSigma)
by (metis ZFC_in_HOL.ext ‹α ≠ 0› elts_0 lepoll_times1)
also have "… = κ ⊗ α"
by (simp add: cmult_def)
finally show ?thesis .
qed
text‹Monotonicity of multiplication›
lemma cmult_le_mono: "⟦κ' ≤ κ; μ' ≤ μ⟧ ⟹ κ' ⊗ μ' ≤ κ ⊗ μ"
unfolding cmult_def
by (auto simp: elts_VSigma intro!: lepoll_imp_Card_le times_lepoll_mono subset_imp_lepoll)
lemma vcard_Sup_le_cmult:
assumes "small U" and κ: "⋀x. x ∈ U ⟹ vcard x ≤ κ"
shows "vcard (⨆U) ≤ vcard (set U) ⊗ κ"
proof -
have "∃f. f ∈ elts x → elts κ ∧ inj_on f (elts x)" if "x ∈ U" for x
using κ [OF that] by (metis cardinal_le_lepoll image_subset_iff_funcset lepoll_def)
then obtain φ where φ: "⋀x. x ∈ U ⟹ (φ x) ∈ elts x → elts κ ∧ inj_on (φ x) (elts x)"
by metis
define u where "u ≡ λy. @x. x ∈ U ∧ y ∈ elts x"
have u: "u y ∈ U ∧ y ∈ elts (u y)" if "y ∈ ⋃(elts ` U)" for y
unfolding u_def by (metis (mono_tags, lifting)that someI2_ex UN_iff)
define ψ where "ψ ≡ λy. (u y, φ (u y) y)"
have U: "elts (vcard (set U)) ≈ U"
by (metis ‹small U› cardinal_eqpoll elts_of_set)
have "elts (⨆U) = ⋃(elts ` U)"
using ‹small U› by blast
also have "… ≲ U × elts κ"
unfolding lepoll_def
proof (intro exI conjI)
show "inj_on ψ (⋃ (elts ` U))"
using φ u by (smt (verit) ψ_def inj_on_def prod.inject)
show "ψ ` ⋃ (elts ` U) ⊆ U × elts κ"
using φ u by (auto simp: ψ_def)
qed
also have "… ≈ elts (vcard (set U) ⊗ κ)"
using U elts_cmult eqpoll_sym eqpoll_trans times_eqpoll_cong by blast
finally have "elts (⨆ U) ≲ elts (vcard (set U) ⊗ κ)" .
then show ?thesis
by (simp add: cmult_def lepoll_cardinal_le)
qed
subsection‹The finite cardinals›
lemma succ_lepoll_succD: "elts (succ(m)) ≲ elts (succ(n)) ⟹ elts m ≲ elts n"
by (simp add: insert_lepoll_insertD)
text‹Congruence law for @{text succ} under equipollence›
lemma succ_eqpoll_cong: "elts a ≈ elts b ⟹ elts (succ(a)) ≈ elts (succ(b))"
by (simp add: succ_def insert_eqpoll_cong)
lemma sum_succ_eqpoll: "elts (succ a ⨄ b) ≈ elts (succ(a⨄b))"
unfolding eqpoll_def
proof (rule exI)
let ?f = "λz. if z=Inl a then a⨄b else z"
let ?g = "λz. if z=a⨄b then Inl a else z"
show "bij_betw ?f (elts (succ a ⨄ b)) (elts (succ (a ⨄ b)))"
apply (rule bij_betw_byWitness [where f' = ?g], auto)
apply (metis Inl_in_sum_iff mem_not_refl)
by (metis Inr_in_sum_iff mem_not_refl)
qed
lemma cadd_succ: "succ m ⊕ n = vcard (succ(m ⊕ n))"
proof (unfold cadd_def)
have [intro]: "elts (m ⨄ n) ≈ elts (vcard (m ⨄ n))"
using cardinal_eqpoll eqpoll_sym by blast
have "vcard (succ m ⨄ n) = vcard (succ(m ⨄ n))"
by (rule sum_succ_eqpoll [THEN cardinal_cong])
also have "… = vcard (succ(vcard (m ⨄ n)))"
by (blast intro: succ_eqpoll_cong cardinal_cong)
finally show "vcard (succ m ⨄ n) = vcard (succ(vcard (m ⨄ n)))" .
qed
lemma nat_cadd_eq_add: "ord_of_nat m ⊕ ord_of_nat n = ord_of_nat (m + n)"
proof (induct m)
case (Suc m) thus ?case
by (metis Card_def Card_ord_of_nat add_Suc cadd_succ ord_of_nat.simps(2))
qed auto
lemma vcard_disjoint_sup:
assumes "x ⊓ y = 0" shows "vcard (x ⊔ y) = vcard x ⊕ vcard y"
proof -
have "elts (x ⊔ y) ≈ elts (x ⨄ y)"
unfolding eqpoll_def
proof (rule exI)
let ?f = "λz. if z ∈ elts x then Inl z else Inr z"
let ?g = "sum_case id id"
show "bij_betw ?f (elts (x ⊔ y)) (elts (x ⨄ y))"
by (rule bij_betw_byWitness [where f' = ?g]) (use assms V_disjoint_iff in auto)
qed
then show ?thesis
by (metis cadd_commute cadd_def cardinal_cong cardinal_idem vsum_0_eqpoll cadd_assoc)
qed
lemma vcard_sup: "vcard (x ⊔ y) ≤ vcard x ⊕ vcard y"
proof -
have "elts (x ⊔ y) ≲ elts (x ⨄ y)"
unfolding lepoll_def
proof (intro exI conjI)
let ?f = "λz. if z ∈ elts x then Inl z else Inr z"
show "inj_on ?f (elts (x ⊔ y))"
by (simp add: inj_on_def)
show "?f ` elts (x ⊔ y) ⊆ elts (x ⨄ y)"
by force
qed
then show ?thesis
using cadd_ac
by (metis cadd_def cardinal_cong cardinal_idem lepoll_imp_Card_le vsum_0_eqpoll)
qed
subsection‹Infinite cardinals›
definition InfCard :: "V⇒bool"
where "InfCard κ ≡ Card κ ∧ ω ≤ κ"
lemma InfCard_iff: "InfCard κ ⟷ Card κ ∧ infinite (elts κ)"
proof (cases "ω ≤ κ")
case True
then show ?thesis
using inj_ord_of_nat lepoll_def less_eq_V_def
by (auto simp: InfCard_def ω_def infinite_le_lepoll)
next
case False
then show ?thesis
using Card_iff_initial InfCard_def infinite_Ord_omega by blast
qed
lemma InfCard_ge_ord_of_nat:
assumes "InfCard κ" shows "ord_of_nat n ≤ κ"
using InfCard_def assms ord_of_nat_le_omega by blast
lemma InfCard_not_0[iff]: "¬ InfCard 0"
by (simp add: InfCard_iff)
definition csucc :: "V⇒V"
where "csucc κ ≡ LEAST κ'. Ord κ' ∧ (Card κ' ∧ κ < κ')"
lemma less_vcard_VPow: "vcard A < vcard (VPow A)"
proof (rule lesspoll_imp_Card_less)
show "elts A ≺ elts (VPow A)"
by (simp add: elts_VPow down inj_on_def lesspoll_Pow_self)
qed
lemma greater_Card:
assumes "Card κ" shows "κ < vcard (VPow κ)"
proof -
have "κ = vcard κ"
using Card_def assms by blast
also have "… < vcard (VPow κ)"
proof (rule lesspoll_imp_Card_less)
show "elts κ ≺ elts (VPow κ)"
by (simp add: elts_VPow down inj_on_def lesspoll_Pow_self)
qed
finally show ?thesis .
qed
lemma
assumes "Card κ"
shows Card_csucc [simp]: "Card (csucc κ)" and less_csucc [simp]: "κ < csucc κ"
proof -
have "Card (csucc κ) ∧ κ < csucc κ"
unfolding csucc_def
proof (rule Ord_LeastI2)
show "Card (vcard (VPow κ)) ∧ κ < (vcard (VPow κ))"
using Card_def assms greater_Card by auto
qed auto
then show "Card (csucc κ)" "κ < csucc κ"
by auto
qed
lemma le_csucc:
assumes "Card κ" shows "κ ≤ csucc κ"
by (simp add: assms less_csucc less_imp_le)
lemma csucc_le: "⟦Card μ; κ ∈ elts μ⟧ ⟹ csucc κ ≤ μ"
unfolding csucc_def
by (simp add: Card_is_Ord Ord_Least_le OrdmemD)
lemma finite_csucc: "a ∈ elts ω ⟹ csucc a = succ a"
unfolding csucc_def
proof (rule Least_equality)
show "Ord (ZFC_in_HOL.succ a) ∧ Card (ZFC_in_HOL.succ a) ∧ a < ZFC_in_HOL.succ a"
if "a ∈ elts ω"
using that by (auto simp: less_V_def less_eq_V_def nat_into_Card)
show "ZFC_in_HOL.succ a ≤ y"
if "a ∈ elts ω"
and "Ord y ∧ Card y ∧ a < y"
for y :: V
using that
using Ord_mem_iff_lt dual_order.strict_implies_order by fastforce
qed
lemma Finite_imp_cardinal_cons [simp]:
assumes FA: "finite A" and a: "a ∉ A"
shows "vcard (set (insert a A)) = csucc(vcard (set A))"
proof -
show ?thesis
unfolding csucc_def
proof (rule Least_equality [THEN sym])
have "small A"
by (simp add: FA Finite_V)
then have "¬ elts (set A) ≈ elts (set (insert a A))"
using FA a eqpoll_imp_lepoll eqpoll_sym finite_insert_lepoll by fastforce
then show "Ord (vcard (set (insert a A))) ∧ Card (vcard (set (insert a A))) ∧ vcard (set A) < vcard (set (insert a A))"
by (simp add: Card_def lesspoll_imp_Card_less lesspoll_def subset_imp_lepoll subset_insertI)
show "vcard (set (insert a A)) ≤ i"
if "Ord i ∧ Card i ∧ vcard (set A) < i" for i
proof -
have "elts (vcard (set A)) ≈ A"
by (metis FA finite_imp_small cardinal_eqpoll elts_of_set)
then have less: "A ≺ elts i"
using eq_lesspoll_trans eqpoll_sym lt_Card_imp_lesspoll that by blast
show ?thesis
using that less by (auto simp: less_imp_insert_lepoll lepoll_cardinal_le)
qed
qed
qed
lemma vcard_finite_set: "finite A ⟹ vcard (set A) = ord_of_nat (card A)"
by (induction A rule: finite_induct) (auto simp: set_empty ω_def finite_csucc)
lemma lt_csucc_iff:
assumes "Ord α" "Card κ"
shows "α < csucc κ ⟷ vcard α ≤ κ"
proof
show "vcard α ≤ κ" if "α < csucc κ"
proof -
have "vcard α ≤ csucc κ"
by (meson ‹Ord α› dual_order.trans lepoll_cardinal_le lepoll_refl less_le_not_le that)
then show ?thesis
by (metis (no_types) Card_def Card_iff_initial Ord_linear2 Ord_mem_iff_lt assms cardinal_eqpoll cardinal_idem csucc_le eq_iff eqpoll_sym that)
qed
show "α < csucc κ" if "vcard α ≤ κ"
proof -
have "¬ csucc κ ≤ α"
using that
by (metis Card_csucc Card_def assms(2) le_less_trans lepoll_imp_Card_le less_csucc less_eq_V_def less_le_not_le subset_imp_lepoll)
then show ?thesis
by (meson Card_csucc Card_is_Ord Ord_linear2 assms)
qed
qed
lemma Card_lt_csucc_iff: "⟦Card κ'; Card κ⟧ ⟹ (κ' < csucc κ) = (κ' ≤ κ)"
by (simp add: lt_csucc_iff Card_cardinal_eq Card_is_Ord)
lemma csucc_lt_csucc_iff: "⟦Card κ'; Card κ⟧ ⟹ (csucc κ' < csucc κ) = (κ' < κ)"
by (metis Card_csucc Card_is_Ord Card_lt_csucc_iff Ord_not_less)
lemma csucc_le_csucc_iff: "⟦Card κ'; Card κ⟧ ⟹ (csucc κ' ≤ csucc κ) = (κ' ≤ κ)"
by (metis Card_csucc Card_is_Ord Card_lt_csucc_iff Ord_not_less)
lemma csucc_0 [simp]: "csucc 0 = 1"
by (simp add: finite_csucc one_V_def)
lemma Card_Un [simp,intro]:
assumes "Card x" "Card y" shows "Card(x ⊔ y)"
by (metis Card_is_Ord Ord_linear_le assms sup.absorb2 sup.orderE)
lemma InfCard_csucc: "InfCard κ ⟹ InfCard (csucc κ)"
using InfCard_def le_csucc by auto
text‹Kunen's Lemma 10.11›
lemma InfCard_is_Limit:
assumes "InfCard κ" shows "Limit κ"
proof (rule non_succ_LimitI)
show "κ ≠ 0"
using InfCard_def assms mem_not_refl by blast
show "Ord κ"
using Card_is_Ord InfCard_def assms by blast
show "ZFC_in_HOL.succ y ≠ κ" for y
proof
assume "succ y = κ"
then have "Card (succ y)"
using InfCard_def assms by auto
moreover have "ω ≤ y"
by (metis InfCard_iff Ord_in_Ord ‹Ord κ› ‹ZFC_in_HOL.succ y = κ› assms elts_succ finite_insert infinite_Ord_omega insertI1)
moreover have "elts y ≈ elts (succ y)"
using InfCard_iff ‹ZFC_in_HOL.succ y = κ› assms eqpoll_sym infinite_insert_eqpoll by fastforce
ultimately show False
by (metis Card_iff_initial Ord_in_Ord OrdmemD elts_succ insertI1)
qed
qed
subsection‹Toward's Kunen's Corollary 10.13 (1)›
text‹Kunen's Theorem 10.12›
lemma InfCard_csquare_eq:
assumes "InfCard(κ)" shows "κ ⊗ κ = κ"
using infinite_times_eqpoll_self [of "elts κ"] assms
unfolding InfCard_iff Card_def
by (metis cardinal_cong cardinal_eqpoll cmult_def elts_vcard_VSigma_eqpoll eqpoll_trans)
lemma InfCard_le_cmult_eq:
assumes "InfCard κ" "μ ≤ κ" "μ ≠ 0"
shows "κ ⊗ μ = κ"
proof (rule order_antisym)
have "κ ⊗ μ ≤ κ ⊗ κ"
by (simp add: assms(2) cmult_le_mono)
also have "… ≤ κ"
by (simp add: InfCard_csquare_eq assms(1))
finally show "κ ⊗ μ ≤ κ" .
show "κ ≤ κ ⊗ μ"
using InfCard_def assms(1) assms(3) cmult_le_self by auto
qed
text‹Kunen's Corollary 10.13 (1), for cardinal multiplication›
lemma InfCard_cmult_eq: "⟦InfCard κ; InfCard μ⟧ ⟹ κ ⊗ μ = κ ⊔ μ"
by (metis Card_is_Ord InfCard_def InfCard_le_cmult_eq Ord_linear_le cmult_commute inf_sup_aci(5) mem_not_refl sup.orderE sup_V_0_right zero_in_omega)
lemma cmult_succ:
"succ(m) ⊗ n = n ⊕ (m ⊗ n)"
unfolding cmult_def cadd_def
proof (rule cardinal_cong)
have "elts (vtimes (ZFC_in_HOL.succ m) n) ≈ elts n <+> elts m × elts n"
by (simp add: elts_VSigma prod_insert_eqpoll)
also have "… ≈ elts (n ⨄ vcard (vtimes m n))"
unfolding elts_VSigma elts_vsum Plus_def
proof (rule Un_eqpoll_cong)
show "(Sum_Type.Inr ` (elts m × elts n)::(V + V × V) set) ≈ Inr ` elts (vcard (vtimes m n))"
by (simp add: elts_vcard_VSigma_eqpoll eqpoll_sym)
qed (auto simp: disjnt_def)
finally show "elts (vtimes (ZFC_in_HOL.succ m) n) ≈ elts (n ⨄ vcard (vtimes m n))" .
qed
lemma cmult_2:
assumes "Card n" shows "ord_of_nat 2 ⊗ n = n ⊕ n"
proof -
have "ord_of_nat 2 = succ (succ 0)"
by force
then show ?thesis
by (simp add: cmult_succ assms)
qed
lemma InfCard_cdouble_eq:
assumes "InfCard κ" shows "κ ⊕ κ = κ"
proof -
have "κ ⊕ κ = κ ⊗ ord_of_nat 2"
using InfCard_def assms cmult_2 cmult_commute by auto
also have "… = κ"
by (simp add: InfCard_le_cmult_eq InfCard_ge_ord_of_nat assms)
finally show ?thesis .
qed
text‹Corollary 10.13 (1), for cardinal addition›
lemma InfCard_le_cadd_eq: "⟦InfCard κ; μ ≤ κ⟧ ⟹ κ ⊕ μ = κ"
by (metis InfCard_cdouble_eq InfCard_def antisym cadd_le_mono cadd_le_self)
lemma InfCard_cadd_eq: "⟦InfCard κ; InfCard μ⟧ ⟹ κ ⊕ μ = κ ⊔ μ"
by (metis Card_iff_initial InfCard_def InfCard_le_cadd_eq Ord_linear_le cadd_commute sup.absorb2 sup.orderE)
lemma csucc_le_Card_iff: "⟦Card κ'; Card κ⟧ ⟹ csucc κ' ≤ κ ⟷ κ' < κ"
by (metis Card_csucc Card_is_Ord Card_lt_csucc_iff Ord_not_le)
lemma cadd_InfCard_le:
assumes "α ≤ κ" "β ≤ κ" "InfCard κ"
shows "α ⊕ β ≤ κ"
using assms by (metis InfCard_cdouble_eq cadd_le_mono)
lemma cmult_InfCard_le:
assumes "α ≤ κ" "β ≤ κ" "InfCard κ"
shows "α ⊗ β ≤ κ"
using assms
by (metis InfCard_csquare_eq cmult_le_mono)
subsection ‹The Aleph-seqence›
text ‹This is the well-known transfinite enumeration of the cardinal numbers.›
definition Aleph :: "V ⇒ V" (‹ℵ_› [90] 90)
where "Aleph ≡ transrec (λf x. ω ⊔ ⨆((λy. csucc(f y)) ` elts x))"
lemma Aleph: "Aleph α = ω ⊔ (⨆y∈elts α. csucc (Aleph y))"
by (simp add: Aleph_def transrec[of _ α])
lemma InfCard_Aleph [simp, intro]: "InfCard(Aleph x)"
proof (induction x rule: eps_induct)
case (step x)
then show ?case
by (simp add: Aleph [of x] InfCard_def Card_UN step)
qed
lemma Card_Aleph [simp, intro]: "Card(Aleph x)"
using InfCard_def by auto
lemma Aleph_0 [simp]: "ℵ0 = ω"
by (simp add: Aleph [of 0])
lemma mem_Aleph_succ: "ℵα ∈ elts (Aleph (succ α))"
apply (simp add: Aleph [of "succ α"])
by (meson InfCard_Aleph Card_csucc Card_is_Ord InfCard_def Ord_mem_iff_lt less_csucc)
lemma Aleph_lt_succD [simp]: "ℵα < Aleph (succ α)"
by (simp add: InfCard_is_Limit Limit_is_Ord OrdmemD mem_Aleph_succ)
lemma Aleph_succ [simp]: "Aleph (succ x) = csucc (Aleph x)"
proof (rule antisym)
show "Aleph (ZFC_in_HOL.succ x) ≤ csucc (Aleph x)"
apply (simp add: Aleph [of "succ x"])
by (metis Aleph InfCard_Aleph InfCard_def Sup_V_insert le_csucc le_sup_iff order_refl
replacement small_elts)
show "csucc (Aleph x) ≤ Aleph (ZFC_in_HOL.succ x)"
by (force simp add: Aleph [of "succ x"])
qed
lemma csucc_Aleph_le_Aleph: "α ∈ elts β ⟹ csucc (ℵα) ≤ ℵβ"
by (metis Aleph ZFC_in_HOL.SUP_le_iff replacement small_elts sup_ge2)
lemma Aleph_in_Aleph: "α ∈ elts β ⟹ ℵα ∈ elts (ℵβ)"
using csucc_Aleph_le_Aleph mem_Aleph_succ by auto
lemma Aleph_Limit:
assumes "Limit γ"
shows "Aleph γ = ⨆ (Aleph ` elts γ)"
proof -
have [simp]: "γ ≠ 0"
using assms by auto
show ?thesis
proof (rule antisym)
show "Aleph γ ≤ ⨆ (Aleph ` elts γ)"
apply (simp add: Aleph [of γ])
by (metis (mono_tags, lifting) Aleph_0 Aleph_succ Limit_def ZFC_in_HOL.SUP_le_iff
ZFC_in_HOL.Sup_upper assms imageI replacement small_elts)
show "⨆ (Aleph ` elts γ) ≤ Aleph γ"
apply (simp add: cSup_le_iff)
by (meson InfCard_Aleph InfCard_def csucc_Aleph_le_Aleph le_csucc order_trans)
qed
qed
lemma Aleph_increasing:
assumes ab: "α < β" "Ord α" "Ord β" shows "ℵα < ℵβ"
by (meson Aleph_in_Aleph InfCard_Aleph Card_iff_initial InfCard_def Ord_mem_iff_lt assms)
lemma countable_iff_le_Aleph0: "countable (elts A) ⟷ vcard A ≤ ℵ0"
proof
show "vcard A ≤ ℵ0"
if "countable (elts A)"
proof (cases "finite (elts A)")
case True
then show ?thesis
using vcard_finite_set by fastforce
next
case False
then have "elts ω ≈ elts A"
using countableE_infinite [OF that]
by (simp add: eqpoll_def ω_def)
(meson bij_betw_def bij_betw_inv bij_betw_trans inj_ord_of_nat)
then show ?thesis
using Card_ω Card_def cardinal_cong vcard_def by auto
qed
show "countable (elts A)"
if "vcard A ≤ Aleph 0"
proof -
have "elts A ≲ elts ω"
using cardinal_le_lepoll [OF that] by simp
then show ?thesis
by (simp add: countable_iff_lepoll ω_def inj_ord_of_nat)
qed
qed
lemma Aleph_csquare_eq [simp]: "ℵα ⊗ ℵα = ℵα"
using InfCard_csquare_eq by auto
lemma vcard_Aleph [simp]: "vcard (ℵα) = ℵα"
using Card_def InfCard_Aleph InfCard_def by auto
lemma omega_le_Aleph [simp]: "ω ≤ ℵα"
using InfCard_def by auto
lemma finite_iff_less_Aleph0: "finite (elts x) ⟷ vcard x < ω"
proof
show "finite (elts x) ⟹ vcard x < ω"
by (metis Card_ω Card_def finite_lesspoll_infinite infinite_ω lesspoll_imp_Card_less)
show "vcard x < ω ⟹ finite (elts x)"
by (meson Ord_cardinal cardinal_eqpoll eqpoll_finite_iff infinite_Ord_omega less_le_not_le)
qed
lemma countable_iff_vcard_less1: "countable (elts x) ⟷ vcard x < ℵ1"
by (simp add: countable_iff_le_Aleph0 lt_csucc_iff one_V_def)
lemma countable_infinite_vcard: "countable (elts x) ∧ infinite (elts x) ⟷ vcard x = ℵ0"
by (metis Aleph_0 countable_iff_le_Aleph0 dual_order.refl finite_iff_less_Aleph0 less_V_def)
subsection ‹The ordinal @{term "ω1"}›
abbreviation "ω1 ≡ Aleph 1"
lemma Ord_ω1 [simp]: "Ord ω1"
by (metis Ord_cardinal vcard_Aleph)
lemma omega_ω1 [iff]: "ω ∈ elts ω1"
by (metis Aleph_0 mem_Aleph_succ one_V_def)
lemma ord_of_nat_ω1 [iff]: "ord_of_nat n ∈ elts ω1"
using Ord_ω1 Ord_trans by blast
lemma countable_iff_less_ω1:
assumes "Ord α"
shows "countable (elts α) ⟷ α < ω1"
by (simp add: assms countable_iff_le_Aleph0 lt_csucc_iff one_V_def)
lemma less_ω1_imp_countable:
assumes "α ∈ elts ω1"
shows "countable (elts α)"
using Ord_ω1 Ord_in_Ord OrdmemD assms countable_iff_less_ω1 by blast
lemma ω1_gt0 [simp]: "ω1 > 0"
using Ord_ω1 Ord_trans OrdmemD by blast
lemma ω1_gt1 [simp]: "ω1 > 1"
using Ord_ω1 OrdmemD ω_gt1 less_trans by blast
lemma Limit_ω1 [simp]: "Limit ω1"
by (simp add: InfCard_def InfCard_is_Limit le_csucc one_V_def)
end